Search results for: network knowledge graph
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12072

Search results for: network knowledge graph

10872 Curriculum Check in Industrial Design, Based on Knowledge Management in Iran Universities

Authors: Maryam Mostafaee, Hassan Sadeghi Naeini, Sara Mostowfi

Abstract:

Today’s Knowledge management (KM), plays an important role in organizations. Basically, knowledge management is in the relation of using it for taking advantage of work forces in an organization for forwarding the goals and demand of that organization used at the most. The purpose of knowledge management is not only to manage existing documentation, information, and Data through an organization, but the most important part of KM is to control most important and key factor of those information and Data. For sure it is to chase the information needed for the employees in the right time of needed to take from genuine source for bringing out the best performance and result then in this matter the performance of organization will be at most of it. There are a lot of definitions over the objective of management released. Management is the science that in force the accurate knowledge with repeating to the organization to shape it and take full advantages for reaching goals and targets in the organization to be used by employees and users, but the definition of Knowledge based on Kalinz dictionary is: Facts, emotions or experiences known by man or group of people is ‘ knowledge ‘: Based on the Merriam Webster Dictionary: the act or skill of controlling and making decision about a business, department, sport team, etc, based on the Oxford Dictionary: Efficient handling of information and resources within a commercial organization, and based on the Oxford Dictionary: The art or process of designing manufactured products: the scale is a beautiful work of industrial design. When knowledge management performed executive in universities, discovery and create a new knowledge be facilitated. Make procedures between different units for knowledge exchange. College's officials and employees understand the importance of knowledge for University's success and will make more efforts to prevent the errors. In this strategy, is explored factors and affective trends and manage of it in University. In this research, Iranian universities for a time being analyzed that over usage of knowledge management, how they are behaving and having understood this matter: 1. Discovery of knowledge management in Iranian Universities, 2. Transferring exciting knowledge between faculties and unites, 3. Participate of employees for getting and using and transferring knowledge, 4.The accessibility of valid sources, 5. Researching over factors and correct processes in the university. We are pointing in some examples that we have already analyzed which is: -Enabling better and faster decision-making, -Making it easy to find relevant information and resources, -Reusing ideas, documents, and expertise, -Avoiding redundant effort. Consequence: It is found that effectiveness of knowledge management in the Industrial design field is low. Based on filled checklist by Education officials and professors in universities, and coefficient of effectiveness Calculate, knowledge management could not get the right place.

Keywords: knowledge management, industrial design, educational curriculum, learning performance

Procedia PDF Downloads 370
10871 A Hybrid Curriculum: Privileging Indigenous knowledges Over Western knowledges In The School Curriculum In Kenya

Authors: Rose Mutuota

Abstract:

Western knowledge have influenced the Kenyan education system through colonisation and policies borrowed from the global North. Researchers argue that studies of education and systems based on Northernframeworks ignore the lived experiences of the global South. The history of colonization is one such example. In light of this, there is a need for schools to consider the lived experience of the Kenyan child and integrate Indigenous knowledge in the education system. The study reported here explored the possibility of creating a blended/hybrid curriculum that values Indigenous knowledge and practices but also selectively use side as from the global North. Acasestudyformat was employed. Teachers and principals in four schools were interviewed. The findings indicated that teachers and students brought indigenous knowledge to the classroom but were limited in their use by existing educational policies.AnotherfindingwasthatpoliciesborrowedfromtheglobalNorthdid not suit the context in the Southincountries with a history of colonization. There was the need for policymakers to ensure the policies borrowed from the North suit the Kenyan context. The recommendations included the deliberate and mandated use of indigenous knowledge in classrooms including indigenous languages for instruction, the use of locally available assets to support students with disabilities in mainstream classrooms, and the use of a hybrid curriculum that privileges indigenous knowledge over Westernknowledgesintheschoolcurriculum.

Keywords: global North, global South, inclusive educate indigenous knowledges

Procedia PDF Downloads 202
10870 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour

Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani

Abstract:

In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.

Keywords: video tracking, particle filter, greedy snake, neural network

Procedia PDF Downloads 342
10869 Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data

Authors: Pui Shan Wong, Kosuke Tashiro, Satoru Kuhara, Sachiyo Aburatani

Abstract:

Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.

Keywords: Escherichia coli, gene regulation, network, time-series

Procedia PDF Downloads 372
10868 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation

Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro

Abstract:

More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.

Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations

Procedia PDF Downloads 460
10867 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation

Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne

Abstract:

In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.

Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network

Procedia PDF Downloads 145
10866 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
10865 Filtering Intrusion Detection Alarms Using Ant Clustering Approach

Authors: Ghodhbani Salah, Jemili Farah

Abstract:

With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.

Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms

Procedia PDF Downloads 404
10864 Knowledge Management and Administrative Effectiveness of Non-teaching Staff in Federal Universities in the South-West, Nigeria

Authors: Nathaniel Oladimeji Dixon, Adekemi Dorcas Fadun

Abstract:

Educational managers have observed a downward trend in the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. This is evident in the low-quality service delivery of administrators and unaccomplished institutional goals and missions of higher education. Scholars have thus indicated the need for the deployment and adoption of a practice that encourages information collection and sharing among stakeholders with a view to improving service delivery and outcomes. This study examined the extent to which knowledge management correlated with the administrative effectiveness of non-teaching staff in federal universities in South-west Nigeria. The study adopted the survey design. Three federal universities (the University of Ibadan, Federal University of Agriculture, Abeokuta, and Obafemi Awolowo University) were purposively selected because administrative ineffectiveness was more pronounced among non-teaching staff in government-owned universities, and these federal universities were long established. The proportional and stratified random sampling was adopted to select 1156 non-teaching staff across the three universities along the three existing layers of the non-teaching staff: secretarial (senior=311; junior=224), non-secretarial (senior=147; junior=241) and technicians (senior=130; junior=103). Knowledge Management Practices Questionnaire with four sub-scales: knowledge creation (α=0.72), knowledge utilization (α=0.76), knowledge sharing (α=0.79) and knowledge transfer (α=0.83); and Administrative Effectiveness Questionnaire with four sub-scales: communication (α=0.84), decision implementation (α=0.75), service delivery (α=0.81) and interpersonal relationship (α=0.78) were used for data collection. Data were analyzed using descriptive statistics, Pearson product-moment correlation and multiple regression at 0.05 level of significance, while qualitative data were content analyzed. About 59.8% of the non-teaching staff exhibited a low level of knowledge management. The indices of administrative effectiveness of non-teaching staff were rated as follows: service delivery (82.0%), communication (78.0%), decision implementation (71.0%) and interpersonal relationship (68.0%). Knowledge management had significant relationships with the indices of administrative effectiveness: service delivery (r=0.82), communication (r=0.81), decision implementation (r=0.80) and interpersonal relationship (r=0.47). Knowledge management had a significant joint prediction on administrative effectiveness (F (4;1151)= 0.79, R=0.86), accounting for 73.0% of its variance. Knowledge sharing (β=0.38), knowledge transfer (β=0.26), knowledge utilization (β=0.22), and knowledge creation (β=0.06) had relatively significant contributions to administrative effectiveness. Lack of team spirit and withdrawal syndrome is the major perceived constraints to knowledge management practices among the non-teaching staff. Knowledge management positively influenced the administrative effectiveness of the non-teaching staff in federal universities in South-west Nigeria. There is a need to ensure that the non-teaching staff imbibe team spirit and embrace teamwork with a view to eliminating their withdrawal syndromes. Besides, knowledge management practices should be deployed into the administrative procedures of the university system.

Keywords: knowledge management, administrative effectiveness of non-teaching staff, federal universities in the south-west of nigeria., knowledge creation, knowledge utilization, effective communication, decision implementation

Procedia PDF Downloads 102
10863 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 105
10862 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 726
10861 Integration Network ASI in Lab Automation and Networks Industrial in IFCE

Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro

Abstract:

The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.

Keywords: automation, industrial networks, SCADA systems, lab automation

Procedia PDF Downloads 547
10860 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD

Authors: Mehdi Montakhabrazlighi, Ercan Balikci

Abstract:

The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.

Keywords: neural network, rupture strength, superalloy, thermocalc

Procedia PDF Downloads 314
10859 Country of Origin, Ethnocentrism and Initial Trust in Indonesia: The Role of Religiosity and Subjective Knowledge

Authors: Adilla Anggraeni

Abstract:

The purpose of the paper is to investigate the effects of religiosity and subjective knowledge towards initial trust that a consumer has towards a product manufacturer. Since globalization enters the point of no return, it should be acknowledged that further exploration of country of origin image, its influences and possible limiting factors is imperative. This model aims to broaden COO-related research, especially related to different product categories based on the perception of consumers in emerging markets. The study employs quantitative method, aiming to involve 200 Indonesian respondents to evaluate different product categories (food/apparel). Relationships between variables are evaluated using structural equation modeling. It is expected that subjective knowledge will have significant influence towards initial trust that an individual possesses towards food products. A major contribution of this study will be the inclusion of religiosity and subjective knowledge in the country of origin study’s body of knowledge. Companies are also expected to benefit from the study as the acceleration of globalization may again repose the question of whether companies should market their product using similar strategies across different countries or different ones. Religiosity dimension is expected to add values to international marketing literature concerning emerging economies in particular, as many companies view the emerging economies as promising markets.

Keywords: country of origin, subjective knowledge, initial trust, emerging economy, Indonesia

Procedia PDF Downloads 290
10858 Online Teaching and Learning Processes: Declarative and Procedural Knowledge

Authors: Eulalia Torras, Andreu Bellot

Abstract:

To know whether students’ achievements are the result of online interaction and not just a consequence of individual differences themselves, it seems essential to link the teaching presence and social presence to the types of knowledge built. The research aim is to analyze the social presence in relation to two types of knowledge, declarative and procedural. Qualitative methodology has been used. The analysis of the contents was based on an observation protocol that included community of enquiry indicators and procedural and declarative knowledge indicators. The research has been conducted in three phases that focused on an observational protocol and indicators, results and conclusions. Results show that the teaching-learning processes have been characterized by the patterns of presence and types of knowledge. Results also show the importance of social presence support provided by the teacher and the students, not only in regard to the nature of the instructional support but also concerning how it is presented to the student and the importance that is attributed to it in the teaching-learning process, that is, what it is that assistance is offered on. In this study, we find that the presence based on procedural guidelines and declarative reflection, the management of shared meaning on the basis of the skills and the evidence of these skills entail patterns of learning. Nevertheless, the importance that the teacher attributes to each support aspect has a bearing on the extent to which the students reflect more on the given task.

Keywords: education, online, teaching and learning processes, knowledge

Procedia PDF Downloads 216
10857 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)

Procedia PDF Downloads 367
10856 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria

Authors: Desmond Okorie, Emmanuel Prince

Abstract:

Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.

Keywords: local area network, Ph measurement, wireless sensor network, zigbee

Procedia PDF Downloads 172
10855 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 223
10854 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach

Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares

Abstract:

Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.

Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network

Procedia PDF Downloads 205
10853 Acute Bronchiolitis: Impact of an Educational Video on Mothers’ Knowledge, Attitudes, and Practices

Authors: Atitallah Sofien, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Bouyahia Olfa, Boukthir Samir

Abstract:

Introduction: Acute bronchiolitis (AB) is a real public health problem on a global and national scale. Its treatment is most often outpatient. The use of audio-visual supports, such as educational videos, is an innovation in therapeutic education in outpatient treatment. The aim of our study was to evaluate the impact of an educational video on the knowledge, attitudes, and practices of mothers of infants with AB. Methodology: This was a descriptive, analytical, and cross-sectional study with prospective data collection, including mothers of infants with AB. We assessed mothers' knowledge, attitudes, and practices regarding AB, and we created an educational video. We used a questionnaire written in Tunisian Arabic concerning sociodemographic data, mothers' knowledge and attitudes regarding AB, and their opinions on the video, as well as an observation grid to evaluate their practices on the nasopharyngeal unblocking technique. We compared the different parameters before and after watching the video. Results: We noted a statistically significant improvement in mothers' knowledge scores on AB (7.46 in the pre-test versus 14.08 in the post-test; p≤0.05), practices (12.42 in the pre-test versus 18 in the post-test; p≤0.05) and attitudes (5.86 in pre-test versus 9.02 in post-test; p≤0.05). Conclusion: The use of an educational video has a positive impact on the knowledge, practices, and attitudes of mothers towards AB.

Keywords: acute bronchiolitis, therapeutic education, mothers, educational video

Procedia PDF Downloads 68
10852 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 147
10851 Applying Knowledge Management and Attitude Based on Holistic Approach in Learning Andragogy, as an Effort to Solve Environmental Problems after Mining Activities

Authors: Aloysius Hardoko, Susilo

Abstract:

The root cause of environmental damage post coal mining activities as determined by the province of East Kalimantan as a corridor of economic activity masterplan acceleration of economic development expansion (MP3EI) is the behavior of adults. Adult behavior can be changed through knowledge management and attitude. Based on the root of the problem, the objective of the research is to apply knowledge management and attitude based on holistic approach in learning andragogy as an effort to solve environmental problems after coal mining activities. Research methods to achieve the objective of using quantitative research with pretest posttest group design. Knowledge management and attitudes based on a holistic approach in adult learning are applied through initial learning activities, core and case-based cover of environmental damage. The research instrument is a description of the case of environmental damage. The data analysis uses t-test to see the effect of knowledge management attitude based on holistic approach before and after adult learning. Location and sample of representative research of adults as many as 20 people in Kutai Kertanegara District, one of the districts in East Kalimantan province, which suffered the worst environmental damage. The conclusion of the research result is the application of knowledge management and attitude in adult learning influence to adult knowledge and attitude to overcome environmental problem post coal mining activity.

Keywords: knowledge management and attitude, holistic approach, andragogy learning, environmental damage

Procedia PDF Downloads 241
10850 Analysis and Performance of Handover in Universal Mobile Telecommunications System (UMTS) Network Using OPNET Modeller

Authors: Latif Adnane, Benaatou Wafa, Pla Vicent

Abstract:

Handover is of great significance to achieve seamless connectivity in wireless networks. This paper gives an impression of the main factors which are being affected by the soft and the hard handovers techniques. To know and understand the handover process in The Universal Mobile Telecommunications System (UMTS) network, different statistics are calculated. This paper focuses on the quality of service (QoS) of soft and hard handover in UMTS network, which includes the analysis of received power, signal to noise radio, throughput, delay traffic, traffic received, delay, total transmit load, end to end delay and upload response time using OPNET simulator.

Keywords: handover, UMTS, mobility, simulation, OPNET modeler

Procedia PDF Downloads 321
10849 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.

Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime

Procedia PDF Downloads 150
10848 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 351
10847 First Aid Awareness Campaign for Two Undergraduate Nursing Cohorts

Authors: Mona Afifi, Yara Al Qahtani, Afnan Al Dosari, Amnah Hamdi

Abstract:

Background: First aid is the care provided outside the hospital. It is important in saving lives. Delay in helping the victims may result in serious complication or even death. Many people die in Saudi Arabia because they don’t get proper first aid interventions. According to Traffic Safety council in KSA (2012), in the year of 2011 there was 7153 deaths from car accident in KAS. Subjects and method: Quasi-experimental research design was utilized to assess the effect of a structured 45-minute educational session on 82 undergraduate nursing students’ knowledge about first aid. Two tools were developed for the purpose of the current study. First tool containing the sociodemographic data including age, gender, level, and previous participation in a first aid course, and 55 statements specific to different situations that requires first aid. Concept and Knowledge of First Aid has 9 questions, cardiopulmonary resuscitation has 12 questions, Bleeding and Shock have 7 questions, Road Traffic Accidents has 5 questions, Fracture and Trauma have 4 questions, wound has 5 questions, sunstroke has 4 questions, bits and stings has 4 questions and burn has 5 questions. The second tool was to evaluate the campaign session. Result: The overall knowledge score showed significant difference between the pre and post awareness session (59.58 and 93.00 respectively, p=.000). Mean score shows significant difference in pre-tests between third and fourth year nursing students indicating that knowledge of fourth year students is higher compared to third year students with the mean knowledge scores of 69.56 and 60.88 respectively (p=0.006). Conclusion: Results of the current study indicate that the level of the knowledge in the post test session was higher than in the pre session. Also results showed that the fourth year student`s knowledge in pre-test was better compared to previous year.

Keywords: first aid, awareness campaign, undergraduate nursing students, knowledge

Procedia PDF Downloads 169
10846 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
10845 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain

Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik

Abstract:

The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.

Keywords: distribution strategy, mathematical model, network design, supply chain management

Procedia PDF Downloads 297
10844 Awareness regarding Radiation Protection among the Technicians Practicing in Bharatpur, Chitwan, Nepal

Authors: Jayanti Gyawali, Deepak Adhikari, Mukesh Mallik, Sanjay Sah

Abstract:

Radiation is defined as an emission or transmission of energy in form of waves or particles through space or material medium. The major imaging tools used in diagnostic radiology is based on the use of ionizing radiation. A cross-sectional study was carried out during July- August, 2015 among technicians in 15 different hospitals of Bharatpur, Chitwan, Nepal to assess awareness regarding radiation protection and their current practice. The researcher was directly engaged for data collection using self-administered semi-structured questionnaire. The findings of the study are presented in socio-demographic characteristics of respondents, current practice of respondents and knowledge regarding radiation protection. The result of this study demonstrated that despite the importance of radiation and its consequent hazards, the level of knowledge among technicians is only 60.23% and their current practice is 76.84%. The difference in the mean score of knowledge and practice might have resulted due to technicians’s regular work and lack of updates. The study also revealed that there is no significant (p>0.05) difference in knowledge level of technicians practicing in different hospitals. But the mean difference in practice scores of different hospital is significant (p<0.05) i.e. i.e. the cancer hospital with large volumes of regular radiological cases and radiation therapies for cancer treatment has better practice in comparison to other hospitals. The deficiency in knowledge of technicians might alter the expected benefits, compared to the risk involved, and can cause erroneous medical diagnosis and radiation hazard. Therefore, this study emphasizes the need for all technicians to update themselves with the appropriate knowledge and current practice about ionizing and non-ionizing radiation.

Keywords: technicians, knowledge, Nepal, radiation

Procedia PDF Downloads 331
10843 Networking Approach for Historic Urban Landscape: Case Study of the Porcelain Capital of China

Authors: Ding He, Ping Hu

Abstract:

This article presents a “networking approach” as an alternative to the “layering model” in the issue of the historic urban landscape [HUL], based on research conducted in the historic city of Jingdezhen, the center of the porcelain industry in China. This study points out that the existing HUL concept, which can be traced back to the fundamental conceptual divisions set forth by western science, tends to analyze the various elements of urban heritage (composed of hybrid natural-cultural elements) by layers and ignore the nuanced connections and interweaving structure of various elements. Instead, the networking analysis approach can respond to the challenges of complex heritage networks and to the difficulties that are often faced when modern schemes of looking and thinking of landscape in the Eurocentric heritage model encounters local knowledge of Chinese settlement. The fieldwork in this paper examines the local language regarding place names and everyday uses of urban spaces, thereby highlighting heritage systems grounded in local life and indigenous knowledge. In the context of Chinese “Fengshui”, this paper demonstrates the local knowledge of nature and local intelligence of settlement location and design. This paper suggests that industrial elements (kilns, molding rooms, piers, etc.) and spiritual elements (temples for ceramic saints or water gods) are located in their intimate natural networks. Furthermore, the functional, spiritual, and natural elements are perceived as a whole and evolve as an interactive system. This paper proposes a local and cognitive approach in heritage, which was initially developed in European Landscape Convention and historic landscape characterization projects, and yet seeks a more tentative and nuanced model based on urban ethnography in a Chinese city.

Keywords: Chinese city, historic urban landscape, heritage conservation, network

Procedia PDF Downloads 140