Search results for: nano titanium dioxide (TiO2)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2303

Search results for: nano titanium dioxide (TiO2)

1103 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 52
1102 Effect of Methoxy and Polyene Additional Functionalized Group on the Photocatalytic Properties of Polyene-Diphenylaniline Organic Chromophores for Solar Energy Applications

Authors: Ife Elegbeleye, Nnditshedzeni Eric, Regina Maphanga, Femi Elegbeleye, Femi Agunbiade

Abstract:

The global potential of other renewable energy sources such as wind, hydroelectric, bio-mass, and geothermal is estimated to be approximately 13 %, with hydroelectricity constituting a larger percentage. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from the sunlight strikes the Earth in one hour (4.3 × 1020 J) than all the energy consumed on the planet in a year (4.1 × 1020 J), hence, solar energy remains the most abundant clean, renewable energy resources for mankind. Photovoltaic (PV) devices such as silicon solar cells, dye sensitized solar cells are utilized for harnessing solar energy. Polyene-diphenylaniline organic molecules are important sets of molecules that has stirred many research interest as photosensitizers in TiO₂ semiconductor-based dye sensitized solar cells (DSSCs). The advantages of organic dye molecule over metal-based complexes are higher extinction coefficient, moderate cost, good environmental compatibility, and electrochemical properties. The polyene-diphenylaniline organic dyes with basic configuration of donor-π-acceptor are affordable, easy to synthesize and possess chemical structures that can easily be modified to optimize their photocatalytic and spectral properties. The enormous interest in polyene-diphenylaniline dyes as photosensitizers is due to their fascinating spectral properties which include visible light to near infra-red-light absorption. In this work, density functional theory approach via GPAW software, Avogadro and ASE were employed to study the effect of methoxy functionalized group on the spectral properties of polyene-diphenylaniline dyes and their photons absorbing characteristics in the visible region to near infrared region of the solar spectrum. Our results showed that the two-phenyl based complexes D5 and D7 exhibits maximum absorption peaks at 750 nm and 850 nm, while D9 and D11 with methoxy group shows maximum absorption peak at 800 nm and 900 nm respectively. The highest absorption wavelength is notable for D9 and D11 containing additional polyene and methoxy groups. Also, D9 and D11 chromophores with the methoxy group shows lower energy gap of 0.98 and 0.85 respectively than the corresponding D5 and D7 dyes complexes with energy gap of 1.32 and 1.08. The analysis of their electron injection kinetics ∆Ginject into the band gap of TiO₂ shows that D9 and D11 with the methoxy group has higher electron injection kinetics of -2.070 and -2.030 than the corresponding polyene-diphenylaniline complexes without the addition of polyene group with ∆Ginject values of -2.820 and -2.130 respectively. Our findings suggest that the addition of functionalized group as an extension of the organic complexes results in higher light harvesting efficiencies and bathochromic shift of the absorption spectra to higher wavelength which suggest higher current densities and open circuit voltage in DSSCs. The study suggests that the photocatalytic properties of organic chromophores/complexes with donor-π-acceptor configuration can be enhanced by the addition of functionalized groups.

Keywords: renewable energy resource, solar energy, dye sensitized solar cells, polyene-diphenylaniline organic chromophores

Procedia PDF Downloads 93
1101 Electronic States at SnO/SnO2 Heterointerfaces

Authors: A. Albar, U. Schwingenschlogel

Abstract:

Device applications of transparent conducting oxides require a thorough understanding of the physical and chemical properties of the involved interfaces. We use ab-initio calculations within density functional theory to investigate the electronic states at the SnO/SnO2 hetero-interface. Tin dioxide and monoxide are transparent materials with high n-type and p-type mobilities, respectively. This work aims at exploring the modifications of the electronic states, in particular the charge transfer, in the vicinity of the hetero-interface. The (110) interface is modeled by a super-cell approach in order to minimize the mismatch between the lattice parameters of the two compounds. We discuss the electronic density of states as a function of the distance to the interface.

Keywords: density of states, ab-initio calculations, interface states, charge transfer

Procedia PDF Downloads 405
1100 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers

Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush

Abstract:

Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.

Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships

Procedia PDF Downloads 99
1099 The Impact of Land Use Ex-Concession to the Environment in Dharmasraya District, West Sumatra Province, Indonesia

Authors: Yurike, Yonariza, Rudi Febriamansyah, Syafruddin Karimi

Abstract:

Forest is a natural resource that has an important function as a supporting element of human life. Forest degradation enormous impact on global warming is a reality we have experienced together, that disruption of ecosystems, extreme weather conditions, disruption of water management system watersheds and the threat of natural disasters as floods, landslides and droughts, even disruption food security. Dharmasraya is a district in the province of West Sumatra, which has an area of 92.150 ha of forest, which is largely a former production forest concessions (Forest Management Rights) which is supposed to be a secondary forest. This study answers about the impact of land use in the former concession area Dharmasraya on the environment. The methodology used is the household survey, key informants, and satellite data / GIS. From the results of the study, the former concession area in Dharmasraya experienced a reduction of forest cover over time significantly. Forest concessions should be secondary forests in Dharmasraya, now turned conversion to oil palm plantations. Population pressures and growing economic pressures, resulting in more intensive harvesting. As a result of these forest disturbances caused changes in forest functions. These changes put more emphasis towards economic function by ignoring social functions or ecological function. Society prefers to maximize their benefits today and pay less attention to the protection of natural resources. This causes global warming is increasing and this is not only felt by people around Dharmasraya but also the world. Land clearing by the community through a process in slash and burn. This fire was observed by NOAA satellites and recorded by the Forest Service of West Sumatra. This demonstrates the ability of trees felled trees to absorb carbon dioxide (CO2) to be lost, even with forest fires accounted for carbon dioxide emitted into the air, and this has an impact on global warming. In addition to the change of control of land into oil palm plantations water service has been poor, people began to trouble the water and oil palm plantations are located in the watershed caused the river dried up. Through the findings of this study is expected to contribute ideas to the policy makers to pay more attention to the former concession forest management as the prevention or reduction of global warming.

Keywords: climate change, community, concession forests, environment

Procedia PDF Downloads 317
1098 Antimicrobial and Anti-Biofilm Activity of Non-Thermal Plasma

Authors: Jan Masak, Eva Kvasnickova, Vladimir Scholtz, Olga Matatkova, Marketa Valkova, Alena Cejkova

Abstract:

Microbial colonization of medical instruments, catheters, implants, etc. is a serious problem in the spread of nosocomial infections. Biofilms exhibit enormous resistance to environment. The resistance of biofilm populations to antibiotic or biocides often increases by two to three orders of magnitude in comparison with suspension populations. Subjects of interests are substances or physical processes that primarily cause the destruction of biofilm, while the released cells can be killed by existing antibiotics. In addition, agents that do not have a strong lethal effect do not cause such a significant selection pressure to further enhance resistance. Non-thermal plasma (NTP) is defined as neutral, ionized gas composed of particles (photons, electrons, positive and negative ions, free radicals and excited or non-excited molecules) which are in permanent interaction. In this work, the effect of NTP generated by the cometary corona with a metallic grid on the formation and stability of biofilm and metabolic activity of cells in biofilm was studied. NTP was applied on biofilm populations of Staphylococcus epidermidis DBM 3179, Pseudomonas aeruginosa DBM 3081, DBM 3777, ATCC 15442 and ATCC 10145, Escherichia coli DBM 3125 and Candida albicans DBM 2164 grown on solid media on Petri dishes and on the titanium alloy (Ti6Al4V) surface used for the production joint replacements. Erythromycin (for S. epidermidis), polymyxin B (for E. coli and P. aeruginosa), amphotericin B (for C. albicans) and ceftazidime (for P. aeruginosa) were used to study the combined effect of NTP and antibiotics. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Fluorescence microscopy was applied to visualize the biofilm on the surface of the titanium alloy; SYTO 13 was used as a fluorescence probe to stain cells in the biofilm. It has been shown that biofilm populations of all studied microorganisms are very sensitive to the type of used NTP. The inhibition zone of biofilm recorded after 60 minutes exposure to NTP exceeded 20 cm², except P. aeruginosa DBM 3777 and ATCC 10145, where it was about 9 cm². Also metabolic activity of cells in biofilm differed for individual microbial strains. High sensitivity to NTP was observed in S. epidermidis, in which the metabolic activity of biofilm decreased after 30 minutes of NTP exposure to 15% and after 60 minutes to 1%. Conversely, the metabolic activity of cells of C. albicans decreased to 53% after 30 minutes of NTP exposure. Nevertheless, this result can be considered very good. Suitable combinations of exposure time of NTP and the concentration of antibiotic achieved in most cases a remarkable synergic effect on the reduction of the metabolic activity of the cells of the biofilm. For example, in the case of P. aeruginosa DBM 3777, a combination of 30 minutes of NTP with 1 mg/l of ceftazidime resulted in a decrease metabolic activity below 4%.

Keywords: anti-biofilm activity, antibiotic, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 175
1097 Possible Sulfur Induced Superconductivity in Nano-Diamond

Authors: J. Mona, R. R. da Silva, C.-L.Cheng, Y. Kopelevich

Abstract:

We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites.

Keywords: nanodiamond, sulfur, superconductivity, Raman spectroscopy

Procedia PDF Downloads 479
1096 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 53
1095 Superparamagnetic Core Shell Catalysts for the Environmental Production of Fuels from Renewable Lignin

Authors: Cristina Opris, Bogdan Cojocaru, Madalina Tudorache, Simona M. Coman, Vasile I. Parvulescu, Camelia Bala, Bahir Duraki, Jeroen A. Van Bokhoven

Abstract:

The tremendous achievements in the development of the society concretized by more sophisticated materials and systems are merely based on non-renewable resources. Consequently, after more than two centuries of intensive development, among others, we are faced with the decrease of the fossil fuel reserves, an increased impact of the greenhouse gases on the environment, and economic effects caused by the fluctuations in oil and mineral resource prices. The use of biomass may solve part of these problems, and recent analyses demonstrated that from the perspective of the reduction of the emissions of carbon dioxide, its valorization may bring important advantages conditioned by the usage of genetic modified fast growing trees or wastes, as primary sources. In this context, the abundance and complex structure of lignin may offer various possibilities of exploitation. However, its transformation in fuels or chemicals supposes a complex chemistry involving the cleavage of C-O and C-C bonds and altering of the functional groups. Chemistry offered various solutions in this sense. However, despite the intense work, there are still many drawbacks limiting the industrial application. Thus, the proposed technologies considered mainly homogeneous catalysts meaning expensive noble metals based systems that are hard to be recovered at the end of the reaction. Also, the reactions were carried out in organic solvents that are not acceptable today from the environmental point of view. To avoid these problems, the concept of this work was to investigate the synthesis of superparamagnetic core shell catalysts for the fragmentation of lignin directly in the aqueous phase. The magnetic nanoparticles were covered with a nanoshell of an oxide (niobia) with a double role: to protect the magnetic nanoparticles and to generate a proper (acidic) catalytic function and, on this composite, cobalt nanoparticles were deposed in order to catalyze the C-C bond splitting. With this purpose, we developed a protocol to prepare multifunctional and magnetic separable nano-composite Co@Nb2O5@Fe3O4 catalysts. We have also established an analytic protocol for the identification and quantification of the fragments resulted from lignin depolymerization in both liquid and solid phase. The fragmentation of various lignins occurred on the prepared materials in high yields and with very good selectivity in the desired fragments. The optimization of the catalyst composition indicated a cobalt loading of 4wt% as optimal. Working at 180 oC and 10 atm H2 this catalyst allowed a conversion of lignin up to 60% leading to a mixture containing over 96% in C20-C28 and C29-C37 fragments that were then completely fragmented to C12-C16 in a second stage. The investigated catalysts were completely recyclable, and no leaching of the elements included in the composition was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).

Keywords: superparamagnetic core-shell catalysts, environmental production of fuels, renewable lignin, recyclable catalysts

Procedia PDF Downloads 322
1094 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 164
1093 Chemical Vapor Deposition (CVD) of Molybdenum Disulphide (MoS2) Monolayers

Authors: Omar Omar, Yuan Jun, Hong Jinghua, Jin Chuanhong

Abstract:

In this work molybdenum dioxide (MoO2) and sulphur powders are used to grow MoS2 mono layers at elevated temperatures T≥800 °C. Centimetre scale continues thin films with grain size up to 410 µm have been grown using chemical vapour deposition. To our best knowledge, these domains are the largest that have been grown so far. Advantage of our approach is not only because of the high quality films with large domain size one can produce, but also the procedure is potentially less hazardous than other methods tried. The thin films have been characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy.

Keywords: molybdenum disulphide (MoS2), monolayers, chemical vapour deposition (CVD), growth and characterization

Procedia PDF Downloads 316
1092 Effect of Laser Ablation OTR Films on the Storability of Endive and Pak Choi by Baby Vegetables in Modified Atmosphere Condition

Authors: In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

As the consumption trends of vegetables become different from the past, it is increased using vegetable more convenience such as fresh-cut vegetables, sprouts, baby vegetables rather than an existing hole piece of vegetables. Selected baby vegetables have various functional materials but they have short shelf life. This study was conducted to improve storability by using suitable laser ablation OTR (oxygen transmission rate) films. Baby vegetable of endive (Cichorium endivia L.) and pak choi (Brassica rapa chinensis) for this research, around 10 cm height, cultivated in glass greenhouse during 3 weeks. Harvested endive and pak choi were stored at 8 ℃ for 5 days and were packed by PP (Polypropylene) container and covered different types of laser ablation OTR film (DaeRyung Co., Ltd.) such as 1,300 cc, 10,000 cc, 20,000 cc, 40,000 cc /m2•day•atm, and control (perforated film) with heat sealing machine (SC200-IP, Kumkang, Korea). All the samples conducted 5 times replication. Statistical analysis was carried out using a Microsoft Excel 2010 program and results were expressed as standard deviations. The fresh weight loss rate of both baby vegetables were less than 0.3 % in treated films as maximum weight loss rate. On the other hands, control in the final storage day had around 3.0 % weight loss rate and it followed decreasing quantity. Endive had less 2.0 % carbon dioxide contents as maximum contents in 20,000 cc and 40,000 cc. Oxygen contents was maintained between 17 and 20 % in endive, 19 and 20 % in pak choi. Ethylene concentration of both vegetables maintained little lower contents in 20,000 cc treatments than others at final storage day without statistical significance. In the case of hardness, 40,000 cc film was shown little higher value at both baby vegetables without statistical significance. Visual quality was good at 10,000 cc and 20,000 cc in endive and pak choi, and off-flavor was not appeard any off-flavor in both vegetables. Chlorophyll (SPAD-502, Minolta, Japan) value of endive was shown as similar result with initial in all treatments except 20,000 cc as little lower. And chlorophyll value of pak choi decreased in all treatments compared with initial value but was not shown significantly difference each other. Color of leaves (CR-400, Minolta, Japan) changed significantly in 40,000 cc at endive. In an event of pak choi, all the treatments started yellowing by increasing hunter b value, among them control increased substantially. As above the result, 10,000 cc film was most reasonable packaging film for storing at endive and 20,000 cc at pak choi with good quality.

Keywords: carbon dioxide, shelf-life, visual quality, pak choi

Procedia PDF Downloads 778
1091 Chemical Synthesis, Characterization and Dose Optimization of Chitosan-Based Nanoparticles of MCPA for Management of Broad-Leaved Weeds (Chenopodium album, Lathyrus aphaca, Angalis arvensis and Melilotus indica) of Wheat

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Tasawer Abbas

Abstract:

Nanoherbicides utilize nanotechnology to enhance the delivery of biological or chemical herbicides using combinations of nanomaterials. The aim of this research was to examine the efficacy of chitosan nanoparticles containing MCPA herbicide as a potential eco-friendly alternative for weed control in wheat crops. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet absorbance were used to analyze the developed nanoparticles. The SEM analysis indicated that the average size of the particles was 35 nm, forming clusters with a porous structure. Both nanoparticles of fluroxyper + MCPA exhibited maximal absorption peaks at a wavelength of 320 nm. The compound fluroxyper +MCPA has a strong peak at a 2θ value of 30.55°, which correlates to the 78 plane of the anatase phase. The weeds, including Chenopodium album, Lathyrus aphaca, Angalis arvensis, and Melilotus indica, were sprayed with the nanoparticles while they were in the third or fourth leaf stage. There were seven distinct dosages used: doses (D0 (Check weeds), D1 (Recommended dose of traditional herbicide, D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). The chitosan-based nanoparticles of MCPA at the prescribed dosage of conventional herbicide resulted in complete death and visual damage, with a 100% fatality rate. The dosage that was 5-fold lower exhibited the lowest levels of plant height (3.95 cm), chlorophyll content (5.63%), dry biomass (0.10 g), and fresh biomass (0.33 g) in the broad-leaved weed of wheat. The herbicide nanoparticles, when used at a dosage 10-fold lower than that of conventional herbicides, had a comparable impact on the prescribed dosage. Nano-herbicides have the potential to improve the efficiency of standard herbicides by increasing stability and lowering toxicity.

Keywords: mortality, visual injury, chlorophyl contents, chitosan-based nanoparticles

Procedia PDF Downloads 55
1090 Statistical Analysis of Failure Cases in Aerospace

Authors: J. H. Lv, W. Z. Wang, S.W. Liu

Abstract:

The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures.

Keywords: aerospace, disk, failure analysis, fatigue

Procedia PDF Downloads 319
1089 Petrogeochemistry of Hornblende-Bearing Gabbro Intrusive, the Greater Caucasus

Authors: Giorgi Chichinadze, David Shengelia, Tamara Tsutsunava, Nikoloz Maisuradze, Giorgi Beridze

Abstract:

The Jalovchat gabbro intrusive is exposed on the northern and southern slopes of Main Range zone of the Greater Caucasus, on an area about 25km2. It is intruded in Precambrian crystalline schists and amphibolites intensively metamorphose them along the contact zone. The intrusive is represented by hornblende-bearing gabbro, gabbro-norites and norites including thin vein bodies of gabbro-pegmatites, anorthosites and micro-gabbros. Especially should be noted the veins of gabbro-pegmatites with the gigantic (up to 0.5m) hornblende crystals. From this point of view, the Jalovchat gabbroid intrusive is particularly interesting and by its unusual composition has no analog in the Caucasus overall. The comprehensive petrologic and geochemical study of the intrusive was carried out by the authors. The results of investigations are following. Amphiboles correspond to magnesiohastingsite and magnesiohornblende. In hastingsite and hornblende as a result of isovalent isomorphism of Fe2+ by Mg, content of the latter has been increased. By AMF and Na20+K diagrams the intrusive rocks correspond to tholeiitic basalts or to basalts close to it by composition. According to ACM-AMF double diagram the samples distributed in the fields of MORB and alkali cumulates. In TiO2/FeO+Fe2O3, Zr/Y-Zr and Ti-Cr/Ni diagrams and Ti-Cr-Y triangular diagram samples are arranged in the fields of island-arc and mid-oceanic basalts or along the trends reflecting mid-oceanic ridges or island arcs. K2O/TiO2 diagram shows that these rocks belong to normal and enriched MORB type. According to Th/Nb/Y ratio, the Jalovchat intrusive composition corresponds to depleted mantle, but by Sm/Y-Ce/Sm - to the MORB area. Th/Y and Nb/Y ratios coincide with the MORB composition, Th/Yb-Ta/Yb and La/Nb-Ti ratios correspond to N MORB, and Rb/Y and N/Y - to the lower crust formations. Exceptional are Ce/Pb-Ce and Nb/Th-Nb diagrams, showing the area of primitive mantle. Spidergrams are characterized by almost horizontal trend, weakly expressed Eu minimums and by a slight depletion of light REE. Similar are characteristic of typical tholeiit basalts. In comparison to MORB spidergrams, they are characterized by depletion of light REE. Their correlation to the spidergrams of Jalovchat intrusive proves that they are more depleted. The above cited points to the gradual depletion of mantle with the light REE in geological time. The RE and REE diagrams reveal unexpected regularity. In particular, petro-geochemical characteristics of Jalovchat gabbroid intrusive predominantly correspond to MORB, that usually is an anomalous phenomenon, since in ‘ophiolitic’ section magmatic formations represented mainly by gigantic prismatic hornblende-bearing gabbro and gabbro-pegmatite are not indicated. On the basis of petro-mineralogical and petro-geochemical data analysis, the authors consider that the Jalovchat intrusive belongs to the subduction geodynamic type. In the depleted mantle rich in water the MORB rock system has subducted, where the favorable conditions for crystallization of hornblende and especially for its gigantic crystals occurred. It is considered that the Jalovchat intrusive was formed in deep horizons of the Earth’s crust as a result of crystallization of water-bearing Bajocian basalt magma.

Keywords: The Greater Caucasus, gabbro-pegmatite, hornblende-bearing gabbro, petrogenesis

Procedia PDF Downloads 436
1088 Numerical Study of Natural Convection Heat Transfer Performance in an Inclined Cavity: Nanofluid and Random Temperature

Authors: Hicham Salhi, Mohamed Si-Ameur, Nadjib Chafai

Abstract:

Natural convection of a nanofluid consisting of water and nanoparticles (Ag or TiO2) in an inclined enclosure cavity, has been studied numerically, heated by a (random temperature, based on the random function). The governing equations are solved numerically using the finite-volume. Results are presented in the form of streamlines, isotherms, and average Nusselt number. In addition, a parametric study is carried out to examine explicitly the volume fraction effects of nanoparticles (Ψ= 0.1, 0.2), the Rayleigh number (Ra=103, 104, 105, 106),the inclination angle of the cavity( égale à 0°, 30°, 45°, 90°, 135°, 180°), types of temperature (constant ,random), types of (NF) (Ag andTiO2). The results reveal that (NPs) addition remarkably enhances heat transfer in the cavity especially for (Ψ= 0.2). Besides, the effect of inclination angle and type of temperature is more pronounced at higher Rayleigh number.

Keywords: nanofluid, natural convection, inclined cavity, random temperature, finite-volume

Procedia PDF Downloads 274
1087 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: nonlinear optics, plasmonic waveguide, chalcogenide, propagation equation

Procedia PDF Downloads 399
1086 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 160
1085 Using Nanofiber-Like Attapulgite Microfiltration Membranes to Treat Oily Wastewater

Authors: Shouyong Zhou, Meisheng Li, Yijiang Zhao

Abstract:

The environmentally acceptable disposal of oily wastewater is a current challenge to many industries. The membrane separation technologies, which is no phase change, without pharmaceutical dosing, reprocessing costs low, less energy consumption, etc., have been widely applied in oily wastewater treatment. In our lab, a kind of low cost ceramic microfiltration membranes with a separation layer of attapulgite nanofibers (attapulgite nanofiber-like microfiltration membranes) has been prepared and applied in the purification of cellulase fermentation broth and TiO2 nanoparticles system successfully. In this paper, this new attapulgite nanofiber-like microfiltration membrane was selected to try to separate water from oily wastewater. The oil-in water emulsion was obtained from mixing 1 g/L engine oil, 0.5 g/L Tween-80, 0.5 g/L Span-80 and distilled water at mild speed in blender for 2 min. The particle size distribution of the oil-in-water emulsion was controlled. The maximum steady flux and COD rejection for a 0.2 um attapulgite nanofiber-like microfiltration membrane can reach about 450 L. m-2. h-1 and 98% at 0.2 MPa. The results obtained in this work indicated that the attapulgite microfiltration membrane may represent a feasible pretreatment for oily wastewater.

Keywords: attapulgite, microfiltration membrane, oily wastewater, cross-flow filtration

Procedia PDF Downloads 326
1084 Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles

Authors: Alireza Shams, Ali Zamanian, Atefehe Shamosi, Farnaz Ghorbani

Abstract:

Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies.

Keywords: differentiation, mesenchymal stem cells, nano particles, neuronal defects, Scaffolds

Procedia PDF Downloads 159
1083 Characteristics of Nanosilica-Geopolymer Nanocomposites and Mixing Effect

Authors: H. Assaedi, F. U. A. Shaikh, I. M. Low

Abstract:

This paper presents the effects of mixing procedures on mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by wt.. Comparison is made with conventional mechanical dry-mixing of NS with flyash and wet-mixing of NS in alkaline solutions. Physical and mechanical properties are investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that generally the addition of NS particles enhanced the microstructure and improved flexural and compressive strengths of geopolymer nanocomposites. However, samples prepared using dry-mixing approach demonstrate better physical and mechanical properties than wet-mixing of NS.

Keywords: geopolymer, nano-silica, dry mixing, wet mixing, physical properties, mechanical properties

Procedia PDF Downloads 231
1082 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model

Authors: N. Jinesh, K. Shankar

Abstract:

This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.

Keywords: inverse problem, particle swarm optimization, PZT patches, structural identification

Procedia PDF Downloads 298
1081 Biohydrogen and Potential Vinegar Production from Agricultural Wastes Using Thermotoga neopolitana

Authors: Nidhi Nalin

Abstract:

This study is theoretical modelling of the fermentation process of glucose in agricultural wastes like discarded peaches to produce hydrogen, acetic acid, and carbon dioxide using Thermotoga neopolitana bacteria. The hydrogen gas produced in this process can be used in hydrogen fuel cells to generate power, and the fermented broth with acetic acid and salts could be utilized as salty vinegar if enough acetic acid is produced. The theoretical modelling was done using SuperPro software, and the results indicated how much sugar (discarded peaches) is required to produce both hydrogen and vinegar for the process to be profitable.

Keywords: fermentation, thermotoga, hydrogen, vinegar, biofuel

Procedia PDF Downloads 144
1080 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method

Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi

Abstract:

Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.

Keywords: hydrothermal growth, sol-gel, zinc dioxide, biosensors

Procedia PDF Downloads 288
1079 Aerodynamic Analysis of a Frontal Deflector for Vehicles

Authors: C. Malça, N. Alves, A. Mateus

Abstract:

This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.

Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption

Procedia PDF Downloads 398
1078 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems

Authors: A. Acidi, A. Abbaci

Abstract:

We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.

Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit

Procedia PDF Downloads 311
1077 Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application

Authors: Juree Hong, Sanggeun Lee, Jungmok Seo, Taeyoon Lee

Abstract:

We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2.

Keywords: metal nanoparticle, galvanic displacement reaction, graphene, hydrogen sensor

Procedia PDF Downloads 414
1076 Personal Exposure to Respirable Particles and Other Selected Gases among Cyclists near and Away from Busy Roads of Perth Metropolitan Area

Authors: Anu Shrestha, Krassi Rumchev, Ben Mullins, Yun Zhao, Linda Selvey

Abstract:

Cycling is often promoted as a means of reducing vehicular congestion, noise and greenhouse gas and air pollutant emissions in urban areas. It is also indorsed as a healthy means of transportation in terms of reducing the risk of developing a range of physical and psychological conditions. However, people who cycle regularly may not be aware that they can become exposed to high levels of Vehicular Air Pollutants (VAP) emitted by nearby traffics and therefore experience adverse health effects as a result. The study will highlight the present scenario of ambient air pollution level in different cycling routes in Perth and also highlight significant contribution to the understanding of health risks that cyclist may face from exposure to particulate air pollution. Methodology: This research was conducted in Perth, Western Austral and consisted of two groups of cyclists cycling near high (2 routes) and low (two routes) vehicular traffic roads, at high and low levels of exertion, during the cold and warm seasons. A sample size of 123 regular cyclists who cycled at least 80 km/week, aged 20-55, and non-smoker were selected for this study. There were altogether 100 male and 23 female who were asked to choose one or more routes among four different routes, and each participant cycled the route for warm or cold or both seasons. Cyclist who reported cardiovascular and other chronic health conditions (excluding asthma) were not invited into the study. Exposures to selected air pollutants were assessed by undertaking background and personal measurements alone with the measurement of heart and breathe rate of each participant. Finding: According to the preliminary study findings, the cyclists who used cycling route close to high traffic route were exposed to higher levels of measured air pollutants Nitrogen Oxide (NO₂) =0.12 ppm, sulfur dioxide (SO₂)=0.06 ppm and carbon monoxide (CO)=0.25 PPM compared to those who cycled away from busy roads. However, we measured high concentrations of particulate air pollution near one of the low traffic route which we associate with the close proximity to ferry station. Concluding Statement: As a conclusion, we recommend that cycling routes should be selected away from high traffic routes. If possible, we should also consider that if the cycling route is surrounded by the dense populated infrastructures, it can trap the pollutants and always facilitate in increasing inhalation of particle count among the cyclists.

Keywords: air pollution, carbon monoxide, cyclists' health, nitrogen dioxide, nitrogen oxide, respirable particulate matters

Procedia PDF Downloads 255
1075 Comprehensive Approach to Control Virus Infection and Energy Consumption in An Occupant Classroom

Authors: SeyedKeivan Nateghi, Jan Kaczmarczyk

Abstract:

People nowadays spend most of their time in buildings. Accordingly, maintaining a good quality of indoor air is very important. New universal matters related to the prevalence of Covid-19 also highlight the importance of indoor air conditioning in reducing the risk of virus infection. Cooling and Heating of a house will provide a suitable zone of air temperature for residents. One of the significant factors in energy demand is energy consumption in the building. In general, building divisions compose more than 30% of the world's fundamental energy requirement. As energy demand increased, greenhouse effects emerged that caused global warming. Regardless of the environmental damage to the ecosystem, it can spread infectious diseases such as malaria, cholera, or dengue to many other parts of the world. With the advent of the Covid-19 phenomenon, the previous instructions to reduce energy consumption are no longer responsive because they increase the risk of virus infection among people in the room. Two problems of high energy consumption and coronavirus infection are opposite. A classroom with 30 students and one teacher in Katowice, Poland, considered controlling two objectives simultaneal. The probability of transmission of the disease is calculated from the carbon dioxide concentration of people. Also, in a certain period, the amount of energy consumption is estimated by EnergyPlus. The effect of three parameters of number, angle, and time or schedule of opening windows on the probability of infection transmission and energy consumption of the class were investigated. Parameters were examined widely to determine the best possible condition for simultaneous control of infection spread and energy consumption. The number of opening windows is discrete (0,3), and two other parameters are continuous (0,180) and (8 AM, 2 PM). Preliminary results show that changes in the number, angle, and timing of window openings significantly impact the likelihood of virus transmission and class energy consumption. The greater the number, tilt, and timing of window openings, the less likely the student will transmit the virus. But energy consumption is increasing. When all the windows were closed at all hours of the class, the energy consumption for the first day of January was only 0.2 megajoules. In comparison, the probability of transmitting the virus per person in the classroom is more than 45%. But when all windows were open at maximum angles during class, the chance of transmitting the infection was reduced to 0.35%. But the energy consumption will be 36 megajoules. Therefore, school classrooms need an optimal schedule to control both functions. In this article, we will present a suitable plan for the classroom with natural ventilation through windows to control energy consumption and the possibility of infection transmission at the same time.

Keywords: Covid-19, energy consumption, building, carbon dioxide, energyplus

Procedia PDF Downloads 88
1074 Controlled Synthesis of CdSe Quantum Dots via Microwave-Enhanced Process: A Green Approach for Mass Production

Authors: Delele Worku Ayele, Bing-Joe Hwang

Abstract:

A method that does not employ hot injection techniques has been developed for the size-tunable synthesis of high-quality CdSe quantum dots (QDs) with a zinc blende structure. In this environmentally benign synthetic route, which uses relatively less toxic precursors, solvents, and capping ligands, CdSe QDs that absorb visible light are obtained. The size of the as-prepared CdSe QDs and, thus, their optical properties can be manipulated by changing the microwave reaction conditions. The QDs are characterized by XRD, TEM, UV-vis, FTIR, time-resolved fluorescence spectroscopy, and fluorescence spectrophotometry. In this approach, the reaction is conducted in open air and at a much lower temperature than in hot injection techniques. The use of microwaves in this process allows for a highly reproducible and effective synthesis protocol that is fully adaptable for mass production and can be easily employed to synthesize a variety of semiconductor QDs with the desired properties. The possible application of the as-prepared CdSe QDs has been also assessed using deposition on TiO2 films.

Keywords: average life time, CdSe QDs, microwave (MW), mass production oleic acid, Na2SeSO3

Procedia PDF Downloads 305