Search results for: nano sensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2506

Search results for: nano sensor

1306 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples

Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari

Abstract:

Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.

Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer

Procedia PDF Downloads 313
1305 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: nonlinear optics, plasmonic waveguide, chalcogenide, propagation equation

Procedia PDF Downloads 416
1304 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 172
1303 Theoretical Investigations on Optical Properties of GaFeMnN Quaternary Compound

Authors: H. A. Bentounes, A. Abbad, W. Benstaali

Abstract:

Using first principles calculations based on the density functional theory and local spin density approximation, we investigate optical properties of GaFeMnN quaternary compound. Results show that optical properties confirm that GaFeMnN can be a good candidate in the design of thin film solar cells in the visible and ultraviolet parts of the spectrum, and a good sensor in the infrared

Keywords: GaN, optical absorption, semi-metallic, dielectric function

Procedia PDF Downloads 367
1302 Performance Evaluation of GPS/INS Main Integration Approach

Authors: Othman Maklouf, Ahmed Adwaib

Abstract:

This paper introduces a comparative study between the main GPS/INS coupling schemes, this will include the loosely coupled and tightly coupled configurations, several types of situations and operational conditions, in which the data fusion process is done using Kalman filtering. This will include the importance of sensors calibration as well as the alignment of the strap down inertial navigation system. The limitations of the inertial navigation systems are investigated.

Keywords: GPS, INS, Kalman filter, sensor calibration, navigation system

Procedia PDF Downloads 588
1301 Treatment of Neuronal Defects by Bone Marrow Stem Cells Differentiation to Neuronal Cells Cultured on Gelatin-PLGA Scaffolds Coated with Nano-Particles

Authors: Alireza Shams, Ali Zamanian, Atefehe Shamosi, Farnaz Ghorbani

Abstract:

Introduction: Although the application of a new strategy remains a remarkable challenge for treatment of disabilities due to neuronal defects, progress in Nanomedicine and tissue engineering, suggesting the new medical methods. One of the promising strategies for reconstruction and regeneration of nervous tissue is replacing of lost or damaged cells by specific scaffolds after Compressive, ischemic and traumatic injuries of central nervous system. Furthermore, ultrastructure, composition, and arrangement of tissue scaffolds are effective on cell grafts. We followed implantation and differentiation of mesenchyme stem cells to neural cells on Gelatin Polylactic-co-glycolic acid (PLGA) scaffolds coated with iron nanoparticles. The aim of this study was to evaluate the capability of stem cells to differentiate into motor neuron-like cells under topographical cues and morphogenic factors. Methods and Materials: Bone marrow mesenchymal stem cells (BMMSCs) was obtained by primary cell culturing of adult rat bone marrow got from femur bone by flushing method. BMMSCs were incubated with DMEM/F12 (Gibco), 15% FBS and 100 U/ml pen/strep as media. Then, BMMSCs seeded on Gel/PLGA scaffolds and tissue culture (TCP) polystyrene embedded and incorporated by Fe Nano particles (FeNPs) (Fe3o4 oxide (M w= 270.30 gr/mol.). For neuronal differentiation, 2×10 5 BMMSCs were seeded on Gel/PLGA/FeNPs scaffolds was cultured for 7 days and 0.5 µ mol. Retinoic acid, 100 µ mol. Ascorbic acid,10 ng/ml. Basic fibroblast growth factor (Sigma, USA), 250 μM Iso butyl methyl xanthine, 100 μM 2-mercaptoethanol, and 0.2 % B27 (Invitrogen, USA) added to media. Proliferation of BMMSCs was assessed by using MTT assay for cell survival. The morphology of BMMSCs and scaffolds was investigated by scanning electron microscopy analysis. Expression of neuron-specific markers was studied by immunohistochemistry method. Data were analyzed by analysis of variance, and statistical significance was determined by Turkey’s test. Results: Our results revealed that differentiation and survival of BMMSCs into motor neuron-like cells on Gel/PLGA/FeNPs as a biocompatible and biodegradable scaffolds were better than those cultured in Gel/PLGA in absence of FeNPs and TCP scaffolds. FeNPs had raised physical power but decreased capacity absorption of scaffolds. Well defined oriented pores in scaffolds due to FeNPs may activate differentiation and synchronized cells as a mechanoreceptor. Induction effects of magnetic FeNPs by One way flow of channels in scaffolds help to lead the cells and can facilitate direction of their growth processes. Discussion: Progression of biological properties of BMMSCs and the effects of FeNPs spreading under magnetic field was evaluated in this investigation. In vitro study showed that the Gel/PLGA/FeNPs scaffold provided a suitable structure for motor neuron-like cells differentiation. This could be a promising candidate for enhancing repair and regeneration in neural defects. Dynamic and static magnetic field for inducing and construction of cells can provide better results for further experimental studies.

Keywords: differentiation, mesenchymal stem cells, nano particles, neuronal defects, Scaffolds

Procedia PDF Downloads 165
1300 Characteristics of Nanosilica-Geopolymer Nanocomposites and Mixing Effect

Authors: H. Assaedi, F. U. A. Shaikh, I. M. Low

Abstract:

This paper presents the effects of mixing procedures on mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by wt.. Comparison is made with conventional mechanical dry-mixing of NS with flyash and wet-mixing of NS in alkaline solutions. Physical and mechanical properties are investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that generally the addition of NS particles enhanced the microstructure and improved flexural and compressive strengths of geopolymer nanocomposites. However, samples prepared using dry-mixing approach demonstrate better physical and mechanical properties than wet-mixing of NS.

Keywords: geopolymer, nano-silica, dry mixing, wet mixing, physical properties, mechanical properties

Procedia PDF Downloads 243
1299 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction

Authors: Yanxue Shang, Jingbin Zeng

Abstract:

Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.

Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction

Procedia PDF Downloads 142
1298 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo

Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis

Abstract:

Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cells

Keywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks

Procedia PDF Downloads 132
1297 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 343
1296 Performance Evaluation of a Very High-Resolution Satellite Telescope

Authors: Walid A. Attia, Taher M. Bazan, Fawzy Eltohamy, Mahmoud Fathy

Abstract:

System performance evaluation is an essential stage in the design of high-resolution satellite telescopes prior to the development process. In this paper, a system performance evaluation of a very high-resolution satellite telescope is investigated. The evaluated system has a Korsch optical scheme design. This design has been discussed in another paper with respect to three-mirror anastigmat (TMA) scheme design and the former configuration showed better results. The investigated system is based on the Korsch optical design integrated with a time-delay and integration charge coupled device (TDI-CCD) sensor to achieve a ground sampling distance (GSD) of 25 cm. The key performance metrics considered are the spatial resolution, the signal to noise ratio (SNR) and the total modulation transfer function (MTF) of the system. In addition, the national image interpretability rating scale (NIIRS) metric is assessed to predict the image quality according to the modified general image quality equation (GIQE). Based on the orbital, optical and detector parameters, the estimated GSD is found to be 25 cm. The SNR has been analyzed at different illumination conditions of target albedos, sun and sensor angles. The system MTF has been computed including diffraction, aberration, optical manufacturing, smear and detector sampling as the main contributors for evaluation the MTF. Finally, the system performance evaluation results show that the computed MTF value is found to be around 0.08 at the Nyquist frequency, the SNR value was found to be 130 at albedo 0.2 with a nadir viewing angles and the predicted NIIRS is in the order of 6.5 which implies a very good system image quality.

Keywords: modulation transfer function, national image interpretability rating scale, signal to noise ratio, satellite telescope performance evaluation

Procedia PDF Downloads 382
1295 Model-Based Approach as Support for Product Industrialization: Application to an Optical Sensor

Authors: Frederic Schenker, Jonathan J. Hendriks, Gianluca Nicchiotti

Abstract:

In a product industrialization perspective, the end-product shall always be at the peak of technological advancement and developed in the shortest time possible. Thus, the constant growth of complexity and a shorter time-to-market calls for important changes on both the technical and business level. Undeniably, the common understanding of the system is beclouded by its complexity which leads to the communication gap between the engineers and the sale department. This communication link is therefore important to maintain and increase the information exchange between departments to ensure a punctual and flawless delivery to the end customer. This evolution brings engineers to reason with more hindsight and plan ahead. In this sense, they use new viewpoints to represent the data and to express the model deliverables in an understandable way that the different stakeholder may identify their needs and ideas. This article focuses on the usage of Model-Based System Engineering (MBSE) in a perspective of system industrialization and reconnect the engineering with the sales team. The modeling method used and presented in this paper concentrates on displaying as closely as possible the needs of the customer. Firstly, by providing a technical solution to the sales team to help them elaborate commercial offers without omitting technicalities. Secondly, the model simulates between a vast number of possibilities across a wide range of components. It becomes a dynamic tool for powerful analysis and optimizations. Thus, the model is no longer a technical tool for the engineers, but a way to maintain and solidify the communication between departments using different views of the model. The MBSE contribution to cost optimization during New Product Introduction (NPI) activities is made explicit through the illustration of a case study describing the support provided by system models to architectural choices during the industrialization of a novel optical sensor.

Keywords: analytical model, architecture comparison, MBSE, product industrialization, SysML, system thinking

Procedia PDF Downloads 158
1294 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 4
1293 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 190
1292 Dielectric Properties of Ni-Al Nano Ferrites Synthesized by Citrate Gel Method

Authors: D. Ravinder, K. S. Nagaraju

Abstract:

Ni–Al ferrite with composition of NiAlxFe2-xO4 (x=0.2, 0.4 0.6, and 0.8, ) were prepared by citrate gel method. The dielectric properties for all the samples were investigated at room temperature as a function of frequency. The dielectric constant shows dispersion in the lower frequency region and remains almost constant at higher frequencies. The frequency dependence of dielectric loss tangent (tanδ) is found to be abnormal, giving a peak at certain frequency for mixed Ni-Al ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric loss tangent.

Keywords: ferrites, citrate method, lattice parameter, dielectric constant

Procedia PDF Downloads 301
1291 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device

Authors: Pradakshina Sharma, Jagriti Narang

Abstract:

Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.

Keywords: biosensors, ePAD, arboviral infections, point of care

Procedia PDF Downloads 92
1290 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route

Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu

Abstract:

This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).

Keywords: sintering, fuel cell, electrical conductivity, nanostructures, impedance spectroscopy, ceramics

Procedia PDF Downloads 470
1289 Surface Enhanced Infrared Absorption for Detection of Ultra Trace of 3,4- Methylene Dioxy- Methamphetamine (MDMA)

Authors: Sultan Ben Jaber

Abstract:

Optical properties of molecules exhibit dramatic changes when adsorbed close to nano-structure metallic surfaces such as gold and silver nanomaterial. This phenomena opened a wide range of research to improve conventional spectroscopies efficiency. A well-known technique that has an intensive focus of study is surface-enhanced Raman spectroscopy (SERS), as since the first observation of SERS phenomena, researchers have published a great number of articles about the potential mechanisms behind this effect as well as developing materials to maximize the enhancement. Infrared and Raman spectroscopy are complementary techniques; thus, surface-enhanced infrared absorption (SEIRA) also shows a noticeable enhancement of molecules in the mid-IR excitation on nonmetallic structure substrates. In the SEIRA, vibrational modes that gave change in dipole moments perpendicular to the nano-metallic substrate enhanced 200 times greater than the free molecule’s modes. SEIRA spectroscopy is promising for the characterization and identification of adsorbed molecules on metallic surfaces, especially at trace levels. IR reflection-absorption spectroscopy (IRAS) is a well-known technique for measuring IR spectra of adsorbed molecules on metallic surfaces. However, SEIRA spectroscopy sensitivity is up to 50 times higher than IRAS. SEIRA enhancement has been observed for a wide range of molecules adsorbed on metallic substrates such as Au, Ag, Pd, Pt, Al, and Ni, but Au and Ag substrates exhibited the highest enhancement among the other mentioned substrates. In this work, trace levels of 3,4-methylenedioxymethamphetamine (MDMA) have been detected using gold nanoparticles (AuNPs) substrates with surface-enhanced infrared absorption (SEIRA). AuNPs were first prepared and washed, then mixed with different concentrations of MDMA samples. The process of fabricating the substrate prior SEIRA measurements included mixing of AuNPs and MDMA samples followed by vigorous stirring. The stirring step is particularly crucial, as stirring allows molecules to be robustly adsorbed on AuNPs. Thus, remarkable SEIRA was observed for MDMA samples even at trace levels, showing the rigidity of our approach to preparing SEIRA substrates.

Keywords: surface-enhanced infrared absorption (SEIRA), gold nanoparticles (AuNPs), amphetamines, methylene dioxy- methamphetamine (MDMA), enhancement factor

Procedia PDF Downloads 67
1288 Different Methods of Fe3O4 Nano Particles Synthesis

Authors: Arezoo Hakimi, Afshin Farahbakhsh

Abstract:

Herein, we comparison synthesized Fe3O4 using, hydrothermal method, Mechanochemical processes and solvent thermal method. The Hydrothermal Technique has been the most popular one, gathering interest from scientists and technologists of different disciplines, particularly in the last fifteen years. In the hydrothermal method Fe3O4 microspheres, in which many nearly monodisperse spherical particles with diameters of about 400nm, in the mechanochemical method regular morphology indicates that the particles are well crystallized and in the solvent thermal method Fe3O4 nanoparticles have good properties of uniform size and good dispersion.

Keywords: Fe3O4 nanoparticles, hydrothermal method, mechanochemical processes, solvent thermal method

Procedia PDF Downloads 349
1287 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet

Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez

Abstract:

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.

Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles

Procedia PDF Downloads 32
1286 Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement

Authors: Nazim Mir-Nasiri, Hudyjaya Siswoyo Jo

Abstract:

The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject’s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs.

Keywords: energy efficient system, exoskeleton, motion enhancement, robotics

Procedia PDF Downloads 368
1285 A Survey on Internet of Things and Fog Computing as a Platform for Internet of Things

Authors: Samira Kalantary, Sara Taghipour, Mansoure Ghias Abadi

Abstract:

The Internet of Things (IOT) is a technological revolution that represents the future of computing and communications. IOT is the convergence of Internet with RFID, NFC, Sensor, and smart objects. Fog Computing is the natural platform for IOT. At present, the IOT as a new network communication technology has rapidly shifted from concept to application under fog computing virtual storage computing platform. In this paper, we describe everything about IOT and difference between cloud computing and fog computing.

Keywords: cloud computing, fog computing, Internet of Things (IoT), IOT application

Procedia PDF Downloads 583
1284 Reliability Analysis of Geometric Performance of Onboard Satellite Sensors: A Study on Location Accuracy

Authors: Ch. Sridevi, A. Chalapathi Rao, P. Srinivasulu

Abstract:

The location accuracy of data products is a critical parameter in assessing the geometric performance of satellite sensors. This study focuses on reliability analysis of onboard sensors to evaluate their performance in terms of location accuracy performance over time. The analysis utilizes field failure data and employs the weibull distribution to determine the reliability and in turn to understand the improvements or degradations over a period of time. The analysis begins by scrutinizing the location accuracy error which is the root mean square (RMS) error of differences between ground control point coordinates observed on the product and the map and identifying the failure data with reference to time. A significant challenge in this study is to thoroughly analyze the possibility of an infant mortality phase in the data. To address this, the Weibull distribution is utilized to determine if the data exhibits an infant stage or if it has transitioned into the operational phase. The shape parameter beta plays a crucial role in identifying this stage. Additionally, determining the exact start of the operational phase and the end of the infant stage poses another challenge as it is crucial to eliminate residual infant mortality or wear-out from the model, as it can significantly increase the total failure rate. To address this, an approach utilizing the well-established statistical Laplace test is applied to infer the behavior of sensors and to accurately ascertain the duration of different phases in the lifetime and the time required for stabilization. This approach also helps in understanding if the bathtub curve model, which accounts for the different phases in the lifetime of a product, is appropriate for the data and whether the thresholds for the infant period and wear-out phase are accurately estimated by validating the data in individual phases with Weibull distribution curve fitting analysis. Once the operational phase is determined, reliability is assessed using Weibull analysis. This analysis not only provides insights into the reliability of individual sensors with regards to location accuracy over the required period of time, but also establishes a model that can be applied to automate similar analyses for various sensors and parameters using field failure data. Furthermore, the identification of the best-performing sensor through this analysis serves as a benchmark for future missions and designs, ensuring continuous improvement in sensor performance and reliability. Overall, this study provides a methodology to accurately determine the duration of different phases in the life data of individual sensors. It enables an assessment of the time required for stabilization and provides insights into the reliability during the operational phase and the commencement of the wear-out phase. By employing this methodology, designers can make informed decisions regarding sensor performance with regards to location accuracy, contributing to enhanced accuracy in satellite-based applications.

Keywords: bathtub curve, geometric performance, Laplace test, location accuracy, reliability analysis, Weibull analysis

Procedia PDF Downloads 64
1283 Modeling and Shape Prediction for Elastic Kinematic Chains

Authors: Jiun Jeon, Byung-Ju Yi

Abstract:

This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.

Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling

Procedia PDF Downloads 603
1282 Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System

Authors: P. S. D. Perera, S. U. Adikary

Abstract:

The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C.

Keywords: kinetics, gelation, sol-gel system, chitosan/ nHA/ Na ₂CO₃ composite

Procedia PDF Downloads 164
1281 Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor

Authors: B. L. Gadiga

Abstract:

This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.

Keywords: vegetation, NDVI, SPOT-vegetation, ecology, degradation

Procedia PDF Downloads 219
1280 Nanotechnology for Flame Retardancy of Thermoset Resins

Authors: Ewa Kicko Walczak, Grazyna Rymarz

Abstract:

In recent years, nanotechnology has been successfully applied for flame retardancy of polymers, in particular for construction materials. The consumption of thermoset resins as a construction polymers materials is approximately over one million tone word wide. Excellent mechanical, relatively high heat and thermal stability of their type of polymers are proven for variety applications, e.g. transportation, electrical, electronic, building part industry. Above applications in addition to the strength and thermal properties also requires -referring to the legal regulation or recommendation - an adequate level of flammability of the materials. This publication present the evaluation was made of effectiveness of flame retardancy of halogen-free hybrid flame retardants(FR) as compounds nitric/phosphorus modifiers that act with nanofillers (nano carbons, organ modified montmorillonite, nano silica, microsphere) in relation to unsaturated polyester/epoxy resins and glass-reinforced on base this resins laminates(GRP) as a final products. The analysis of the fire properties provided proof of effective flame retardancy of the tested composites by defining oxygen indices values (LOI), with the use of thermogravimetric methods (TGA) and combustion head (CH). An analysis of the combustion process with Cone Calorimeter (CC) method included in the first place N/P units and nanofillers with the observed phenomenon of synergic action of compounds. The fine-plates, phase morphology and rheology of composites were assessed by SEM/ TEM analysis. Polymer-matrix glass reinforced laminates with modified resins meet LOI over 30%, reduced in a decrease by 70% HRR (according to CC analysis), positive description of the curves TGA and values CH; no adverse negative impact on mechanical properties. The main objective of our current project is to contribute to the general understanding of the flame retardants mechanism and to investigate the corresponding structure/properties relationships. We confirm that nanotechnology systems are successfully concept for commercialized forms for non-flammable GRP pipe, concrete composites, and flame retardant tunnels constructions.

Keywords: fire retardants, FR, halogen-free FR nanofillers, non-flammable pipe/concrete, thermoset resins

Procedia PDF Downloads 283
1279 Structural, Optical and Electrical Properties of MnxZnO1-X Nanocrystals Synthesized by Sol-Gel Method

Authors: K. C. Gayithri, S. K. Naveen Kumar

Abstract:

ZnO is one of the most important semiconductor materials, non toxic, biocompatible, antibacterial properties for research and it is used in many biomedical applications. MnxZn1-xO nano thin films were prepared by a spin coating sol-gel method on silicon substrate. The structural, optical, electrical properties of Mn Doped ZnO are studied by using X-rd, FESEM, UV-Visible spectrophotometer. The X-rd reveals that the sample shows hexagonal wurtzits structure. Surface morphology and thickness of the sample are characterized by field emission scanning electron microscopy. Absorption and transmission spectra are studied by UV-Visible spectrophotometer. The electrical properties are measured by TCR meter.

Keywords: transition metals, Mn doped ZnO, Sol-gel, x-ray diffraction

Procedia PDF Downloads 394
1278 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning

Authors: Jean Berger, Mohamed Barkaoui

Abstract:

Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.

Keywords: search path planning, false alarm, search-and-delivery, entropy, genetic algorithm

Procedia PDF Downloads 359
1277 Functional Switching of Serratia marcescens Transcriptional Regulator from Activator to Inhibitor of Quorum Sensing by Exogenous Addition

Authors: Norihiro Kato, Yuriko Takayama

Abstract:

Some gram-negative bacteria enable the simultaneous activation of gene expression involved in N-acylhomoserine lactone (AHL) dependent cell-to-cell communication system. Such regulatory system for the bacterial group behavior is termed as quorum sensing (QS) because a diffusible AHL signal can accumulate around the cell during the increase of the cell density and trigger activation of the sequential QS process. By blocking the QS, the expression of diverse genes related to infection, antibiotic production, and biofilm formation is inhibited. Conditioning of QS by regulation of the DNA-receptor-AHL interaction is a potential target for enhancing host defenses against pathogenicity. We focused on engineered application of transcriptional regulator SpnR produced in opportunistic human pathogen Serratia marcescens. The SpnR can interact with AHL signals at an N-terminal domain and also with a promoter region of a QS target gene at a C-terminal domain. As the initial process of the QS activation, the SpnR forms a complex with the AHL to enhance the expression of pig cluster; the SpnR normally acts as an activator for the expression of the QS-dependent gene. In this research, we attempt to artificially control QS by changing the role of SpnR. The QS-dependent prodigiosin production is expected to inhibit by externally added SpnR in the culture broth of AS-1 strain because the AHL concentration was kept below the threshold by AHL-SpnR complex formation. Maltose-binding protein (MBP)-tagged SpnR (MBP-SpnR) was overexpressed in Escherichia coli and purified using an affinity chromatography equipped with an amylose resin column. The specific interaction between AHL and MBP-SpnR was demonstrated by quartz crystal microbalance (QCM) sensor. AHL with amino end-group was coupled with COOH-terminated self-assembled monolayer prepared on a gold electrode of 27-MHz quartz crystal sensor using water-soluble carbodiimide. After the injection of MBP-SpnR into a cup-type sensor cell filled with the buffer solution, time course of resonant frequency change (ΔFs) was determined. A decrease of ΔFs clearly showed the uptake of MBP-SpnR onto the AHL-immobilized electrode. Furthermore, no binding affinity was observed after the heat-inactivation of MBP-SpnR at 80ºC. These results suggest that MBP-SpnR possesses a specific affinity for AHL. MBP-SpnR was added to the culture medium as an AHL trap to study inhibitory effects on intracellularly accumulated prodigiosin. With approximately 2 µM MBP-SpnR, the amount of prodigiosin induced was half that of the control without any additives. In conclusion, the function of SpnR could be switched by adding it to the cell culture. Exogenously added MBP-SpnR possesses high affinity for AHL derived from cells and acts as an inhibitor of AHL-mediated QS.

Keywords: intracellular signaling, microbial biotechnology, quorum sensing, transcriptional regulator

Procedia PDF Downloads 266