Search results for: efficiency classification
7422 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles
Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake
Abstract:
Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM
Procedia PDF Downloads 4237421 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 3577420 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates
Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski
Abstract:
The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.Keywords: microwave radiation, biogas, methane fermentation, biomass
Procedia PDF Downloads 5327419 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 237418 Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heater under same operating conditions. However, the corrugated absorber leads to higher pressure drop thereby increasing pumping power. The results revealed that the energy and exergy efficiencies of double flow corrugated absorber solar air heater is much higher than conventional solar air heater with the concept involving of increase in heat transfer surface area and turbulence in air flow. The results indicate that the energy efficiency increases, however, exergy efficiency decreases with increase in mass flow rate.Keywords: corrugated absorber, double flow, exergy efficiency, solar air heater
Procedia PDF Downloads 3747417 Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron
Authors: Pawan Kumar Sharma, Sudhakar Dwivedi, R. K. Arora
Abstract:
Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06.Keywords: saffron, internal rate of return, cost efficiency, stochastic frontier model
Procedia PDF Downloads 1537416 Fatigue Life Estimation of Tubular Joints - A Comparative Study
Authors: Jeron Maheswaran, Sudath C. Siriwardane
Abstract:
In fatigue analysis, the structural detail of tubular joint has taken great attention among engineers. The DNV-RP-C203 is covering this topic quite well for simple and clear joint cases. For complex joint and geometry, where joint classification isn’t available and limitation on validity range of non-dimensional geometric parameters, the challenges become a fact among engineers. The classification of joint is important to carry out through the fatigue analysis. These joint configurations are identified by the connectivity and the load distribution of tubular joints. To overcome these problems to some extent, this paper compare the fatigue life of tubular joints in offshore jacket according to the stress concentration factors (SCF) in DNV-RP-C203 and finite element method employed Abaqus/CAE. The paper presents the geometric details, material properties and considered load history of the jacket structure. Describe the global structural analysis and identification of critical tubular joints for fatigue life estimation. Hence fatigue life is determined based on the guidelines provided by design codes. Fatigue analysis of tubular joints is conducted using finite element employed Abaqus/CAE [4] as next major step. Finally, obtained SCFs and fatigue lives are compared and their significances are discussed.Keywords: fatigue life, stress-concentration factor, finite element analysis, offshore jacket structure
Procedia PDF Downloads 4537415 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project
Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende
Abstract:
Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport
Procedia PDF Downloads 207414 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler
Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian
Abstract:
Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.Keywords: fin wave angle, tube, intercooler, optimum, performance
Procedia PDF Downloads 3827413 Comparative Performance Analysis of Parabolic Trough Collector Using Twisted Tape Inserts
Authors: Atwari Rawani, Hari Narayan Singh, K. D. P. Singh
Abstract:
In this paper, an analytical investigation of the enhancement of thermal performance of parabolic trough collector (PTC) with twisted tape inserts in the absorber tube is being reported. A comparative study between the absorber with various types of twisted tape inserts and plain tube collector has been performed in turbulent flows conditions. The parametric studies were conducted to investigate the effects of system and operating parameters on the performance of the collector. The parameters such as heat gain, overall heat loss coefficient, air rise temperature and efficiency are used to analyze the relative performance of PTC. The results show that parabolic through collector with serrated twisted tape insert shows the best performance under same set of conditions under range of parameters investigated. Results reveal that for serrated twisted tape with x=1, Nusselt number/heat transfer coefficient is found to be 4.38 and 3.51 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 15.7% and 5.41% respectively.Keywords: efficiency, heat transfer, twisted tape ratio, turbulent flow
Procedia PDF Downloads 2897412 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System
Authors: Omid Kalatpour, Mohammadreza Ajdari
Abstract:
This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.Keywords: human error, petrochemical industry, maintenance, HFACS
Procedia PDF Downloads 2427411 Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes
Authors: Sepideh Beiramipour, Hadi Haghjouei, Kourosh Qaderi, Majid Rahimpour, Mohammad M. Ahmadi, Sameh A. Kantoush
Abstract:
Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test.Keywords: dendritic bottomless extended structure, flushing efficiency, sedimentation, sediment flushing
Procedia PDF Downloads 2237410 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism
Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng
Abstract:
Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition
Procedia PDF Downloads 1837409 A Polynomial Relationship for Prediction of COD Removal Efficiency of Cyanide-Inhibited Wastewater in Aerobic Systems
Authors: Eze R. Onukwugha
Abstract:
The presence of cyanide in wastewater is known to inhibit the normal functioning of bio-reactors since it has the tendency to poison reactor micro-organisms. Bench scale models of activated sludge reactors with varying aspect ratios were operated for the treatment of cassava wastewater at several values of hydraulic retention time (HRT). The different values of HRT were achieved by the use of a peristaltic pump to vary the rate of introduction of the wastewater into the reactor. The main parameters monitored are the cyanide concentration and respective COD values of the influent and effluent. These observed values were then transformed into a mathematical model for the prediction of treatment efficiency.Keywords: wastewater, aspect ratio, cyanide-inhibited wastewater, modeling
Procedia PDF Downloads 787408 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 1257407 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network
Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui
Abstract:
Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN
Procedia PDF Downloads 1317406 A Fast Community Detection Algorithm
Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun
Abstract:
Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.Keywords: complex network, social network, community detection, network hierarchy
Procedia PDF Downloads 2277405 Feasibilities for Recovering of Precious Metals from Printed Circuit Board Waste
Authors: Simona Ziukaite, Remigijus Ivanauskas, Gintaras Denafas
Abstract:
Market development of electrical and electronic equipment and a short life cycle is driven by the increasing waste streams. Gold Au, copper Cu, silver Ag and palladium Pd can be found on printed circuit board. These metals make up the largest value of printed circuit board. Therefore, the printed circuit boards scrap is valuable as potential raw material for precious metals recovery. A comparison of Cu, Au, Ag, Pd recovery from waste printed circuit techniques was selected metals leaching of chemical reagents. The study was conducted using the selected multistage technique for Au, Cu, Ag, Pd recovery of printed circuit board. In the first and second metals leaching stages, as the elution reagent, 2M H2SO4 and H2O2 (35%) was used. In the third stage, leaching of precious metals used solution of 20 g/l of thiourea and 6 g/l of Fe2 (SO4)3. Verify the efficiency of the method was carried out the metals leaching test with aqua regia. Based on the experimental study, the leaching efficiency, using the preferred methodology, 60 % of Au and 85,5 % of Cu dissolution was achieved. Metals leaching efficiency after waste mechanical crushing and thermal treatment have been increased by 1,7 times (40 %) for copper, 1,6 times (37 %) for gold and 1,8 times (44 %) for silver. It was noticed that, the Au amount in old (> 20 years) waste is 17 times more, Cu amount - 4 times more, and Ag - 2 times more than in the new (< 1 years) waste. Palladium in the new printed circuit board waste has not been found, however, it was established that from 1 t of old printed circuit board waste can be recovered 1,064 g of Pd (leaching with aqua regia). It was found that from 1 t of old printed circuit board waste can be recovered 1,064 g of Ag. Precious metals recovery in Lithuania was estimated in this study. Given the amounts of generated printed circuit board waste, the limits for recovery of precious metals were identified.Keywords: leaching efficiency, limits for recovery, precious metals recovery, printed circuit board waste
Procedia PDF Downloads 3917404 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods
Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar
Abstract:
Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.Keywords: bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman
Procedia PDF Downloads 1967403 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method
Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović
Abstract:
The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR
Procedia PDF Downloads 3647402 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas
Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders
Abstract:
A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing
Procedia PDF Downloads 2147401 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 717400 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 1627399 Roughness Discrimination Using Bioinspired Tactile Sensors
Authors: Zhengkun Yi
Abstract:
Surface texture discrimination using artificial tactile sensors has attracted increasing attentions in the past decade as it can endow technical and robot systems with a key missing ability. However, as a major component of texture, roughness has rarely been explored. This paper presents an approach for tactile surface roughness discrimination, which includes two parts: (1) design and fabrication of a bioinspired artificial fingertip, and (2) tactile signal processing for tactile surface roughness discrimination. The bioinspired fingertip is comprised of two polydimethylsiloxane (PDMS) layers, a polymethyl methacrylate (PMMA) bar, and two perpendicular polyvinylidene difluoride (PVDF) film sensors. This artificial fingertip mimics human fingertips in three aspects: (1) Elastic properties of epidermis and dermis in human skin are replicated by the two PDMS layers with different stiffness, (2) The PMMA bar serves the role analogous to that of a bone, and (3) PVDF film sensors emulate Meissner’s corpuscles in terms of both location and response to the vibratory stimuli. Various extracted features and classification algorithms including support vector machines (SVM) and k-nearest neighbors (kNN) are examined for tactile surface roughness discrimination. Eight standard rough surfaces with roughness values (Ra) of 50 μm, 25 μm, 12.5 μm, 6.3 μm 3.2 μm, 1.6 μm, 0.8 μm, and 0.4 μm are explored. The highest classification accuracy of (82.6 ± 10.8) % can be achieved using solely one PVDF film sensor with kNN (k = 9) classifier and the standard deviation feature.Keywords: bioinspired fingertip, classifier, feature extraction, roughness discrimination
Procedia PDF Downloads 3127398 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes
Abstract:
Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process
Procedia PDF Downloads 707397 Resilient Leadership: An Analysis for Challenges, Transformation and Improvement of Organizational Climate in Gastronomic Companies
Authors: Margarita Santi Becerra Santiago
Abstract:
The following document addresses the descriptive analysis under the qualitative approach of resilient leadership that allows us to know the importance of the application of a new leadership model to face the new challenges within the gastronomic companies in Mexico. Likewise, to know the main factors that influence resilient leaders and companies to develop new skills to elaborate strategies that contribute to overcoming adversities and managing change. Adversities in a company always exist and challenge us to move and apply our knowledge to be competitive as well as to strengthen our work team through motivation to achieve efficiency and develop in a good organizational climate.Keywords: challenges, efficiency, leadership, resilience skills
Procedia PDF Downloads 767396 Non-parametric Linear Technique for Measuring the Efficiency of Winter Road Maintenance in the Arctic Area
Authors: Mahshid Hatamzad, Geanette Polanco
Abstract:
Improving the performance of Winter Road Maintenance (WRM) can increase the traffic safety and reduce the cost as well as environmental impacts. This study evaluates the efficiency of WRM technique, named salting, in the Arctic area by using Data Envelopment Analysis (DEA), which is a non-parametric linear method to measure the efficiencies of decision-making units (DMUs) based on handling multiple inputs and multiple outputs at the same time that their associated weights are not known. Here, roads are considered as DMUs for which the efficiency must be determined. The three input variables considered are traffic flow, road area and WRM cost. In addition, the two output variables included are level of safety in the roads and environment impacts resulted from WRM, which is also considered as an uncontrollable factor in the second scenario. The results show the performance of DMUs from the most efficient WRM to the inefficient/least efficient one and this information provides decision makers with technical support and the required suggested improvements for inefficient WRM, in order to achieve a cost-effective WRM and a safe road transportation during wintertime in the Arctic areas.Keywords: environmental impacts, DEA, risk and safety, WRM
Procedia PDF Downloads 1187395 Modelling and Optimization Analysis of Silicon/MgZnO-CBTSSe Tandem Solar Cells
Authors: Vallisree Sivathanu, Kumaraswamidhas Lakshmi Annamalai, Trupti Ranjan Lenka
Abstract:
We report a tandem solar cell model with Silicon as the bottom cell absorber material and Cu₂BaSn(S, Se)₄(CBTSSe) as absorber material for the top cell. As a first step, the top and bottom cells were modelled and validated by comparison with the experiment. Once the individual cells are validated, then the tandem structure is modelled with Indium Tin Oxide(ITO) as conducting layer between the top and bottom cells. The tandem structure yielded better open circuit voltage and fill factor; however, the efficiency obtained is 7.01%. The top cell and the bottom cells are investigated with the help of electron-hole current density, photogeneration rate, and external quantum efficiency profiles. In order to minimize the various loss mechanisms in the tandem solar cell, the material parameters are optimized within experimentally achievable limits. Initially, the top cell optimization was carried out; then, the bottom cell is optimized for maximizing the light absorption, and upon minimizing the current and photon losses in the tandem structure, the maximum achievable efficiency is predicted to be 19.52%.Keywords: CBTSSe, silicon, tandem, solar cell, device modeling, current losses, photon losses
Procedia PDF Downloads 1177394 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 317393 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor
Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand
Procedia PDF Downloads 314