Search results for: creating 2D animated movie style custom stickers from images
4298 Forestalling Heritage: Photography inside the Narrative of Catastrophe
Authors: Claudia Pimentel, Nuno Resende, Maria Fatima Lambert
Abstract:
In the present time, catastrophe seems to be inevitable, and individuals are permanently overwhelmed with challenges that test one’s ability to cope with reality. Undoubtedly, photography surpassed the barrier of efficient communication in a world filled with omnifarious narratives. It wandered an outing shorter than words and younger than other sciences but became, nowadays, imperative in the context of several fields of knowledge, namely Heritage studies. Heritage and photography thus emerge as unapologetically related concepts, a fact that makes them equally relevant in today's society. Political, economic, social and humanitarian challenges alter the way in which the relationship with the past is managed and the way in which identities and ideas for the future are constructed. Ruins and destruction have become part of aesthetics discourse since the 18th century and are an area of interest when we discuss cultural heritage preservation. The image proves to be a unique way of revealing the event details when we refer to a catastrophic situation, whether it be anthropic, social or climatic. Like poetry, which has a challenging connection with silence, image is capable of creating spaces of sound and silence, and it is often these “pseudo-voids” that capture the attention of the spectator, of the one who sees/observes/contacts with the photography. The way we look at the catastrophe, how we describe it, and the images we keep in our memory will determine the record/capture/news of the event. We, thus, have a visual record, a document that will contribute to the creation of individual and collective identity, in a jigsaw puzzle of memories, pseudo memories and post memories. Based on photographic records in the Portuguese press, we intend to rethink the earthquake at Angra do Heroísmo – Azores in 1980, exploring the viewer´s perspective on the catastrophe’s iconography under the perspective of aesthetics and genealogy of the catastrophe.Keywords: photography, aesthetics, catastrophe, Portugal
Procedia PDF Downloads 764297 CT-Scan Transition of Pulmonary Edema Due to Water-Soluble Paint Inhalation
Authors: Masashi Kanazawa, Takaaki Nakano, Masaaki Takemoto, Tomonori Imamura, Mamiko Sugimura, Toshitaka Ito
Abstract:
Introduction: We experienced a massive disaster due to inhalation of water-soluble paint. Sixteen patients were brought to our emergency room, and pulmonary edema was revealed on the CT images of 12 cases. Purpose: Transition of chest CT-scan findings in cases with pulmonary edema was examined. Method: CT-scans were performed on the 1st, 2nd, 5th, and 19th days after the inhalation event. Patients whose pulmonary edema showed amelioration or exacerbation were classified into the improvement or the exacerbation group, respectively. Those with lung edema findings appearing at different sites after the second day were classified into the changing group. Results: Eight, one and three patients were in the improvement, exacerbation and changing groups, respectively. In all cases, the pulmonary edema had disappeared from CT images on the 19th day after the inhalation event. Conclusion: Inhalation of water-soluble paints is considered to be relatively safe. However, our observations in these emergency cases suggest that, even if pulmonary edema is not severe immediately after the exposure, new lesions may appear later and existing lesions may worsen. Follow-up imaging is thus necessary for about two weeks.Keywords: CT scan, intoxication, pulmonary edema, water-soluble paint
Procedia PDF Downloads 1734296 The Role of P2X7 Cytoplasmic Anchor in Inflammation
Authors: Federico Cevoli
Abstract:
Purinergic P2X7 receptors (P2X7R) are ligand-gated non-selective cation channels involved in several physiological and pathological processes. They are particularly promising pharmacological targets as they are present in an increasing number of different cells types. P2X7R activation is triggered following elevated concentrations of extracellular ATP, similarly to those observed in tissues injury, chronic inflammation and T-cell activation, as well as in the scrambling of phospholipids leading to membrane blebbing and apoptosis. Another hallmark of P2X7 is cell permeabilization, commonly known as “macropore” formation allowing the passage of nanometer-sized molecules up to 900Da. Recently, full-length P2X7 Cryo-EM structures revealed unique functional sites, including two cytoplasmic domains - the cytoplasmic "anchor" and "ballast". To date, the molecular units/complex by which P2X7R exerts its pathophysiological functions are unknown. Using custom-made cell-penetrating HIV-1 TAT peptides, we show for the first-time potential implications of P2X7 cytoplasmic anchor in the regulation of caspase3/7 activation as well as TNFα regulation.Keywords: P2X7R, immunology, TAT-peptide, cell death
Procedia PDF Downloads 1374295 A Sociological Investigation on the Population and Public Spaces of Nguyen Cong Tru, a Soviet-Style Collective Housing Complex in Hanoi in Regards to Its New Community-Focused Architectural Design
Authors: Duy Nguyen Do, Bart Julien Dewancker
Abstract:
Many Soviet-style collective housing complexes (also known as KTT) were built since the 1960s in Hanoi to support the post-war population growth. Those low-rise buildings have created well-knitted, robust communities, so much to the point that in most complexes, all families in one housing block would know each other, occasionally interact and provide supports in need. To understand how the community of collective housing complexes have developed and maintained in order to adapt their advantages into modern housing designs, the study is executed on the site of Nguyen Cong Tru KTT. This is one of the oldest KTT in Hanoi, completed in 1954. The complex also has an unique characteristic that is closely related to its community: the symbiotic relationship with Hom – a flea market that has been co-developing with Nguyen Cong Tru KTT since its beginning. The research consists of three phases: the first phase is a sociological investigation with Nguyen Cong Tru KTT’s current residents and a site survey on the complex’s economic and architectural characteristics. In the second phase, the collected data is analyzed to find out people’s opinions with the KTT’s concerning their satisfaction with the current housing status, floor plan organization, community, the relationship between the KTT’s dedicated public spaces with the flea market and their usage. Simultaneously, the master plan and gathered information regarding current architectural characteristics of the complex are also inspected. On the third phase, the analyses’ results will provide information regarding the issues, positive trends and significant historical features of the complex’s architecture in order to generate suitable proposals for the redesigning project of Nguyen Cong Tru KTT, a design focused on vitalizing modern apartments’ communities.Keywords: collective house community, collective house public space, community-focused, redesigning Nguyen Cong Tru KTT, sociological investigation
Procedia PDF Downloads 3634294 Content Based Video Retrieval System Using Principal Object Analysis
Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham
Abstract:
Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM
Procedia PDF Downloads 3014293 Adaptive Reuse of Lost Urban Space
Authors: Rana Sameeh
Abstract:
The city is the greatest symbol of human civilization and has been built for safety and comfort. However, uncontrolled urban growth caused some anonymous and unsightly images of the cities such as unused or abandoned spaces. When social interaction is missed in a public space it means the public space is lost since public spaces reflect the social life and interaction of people. Accordingly; this space became one of the most meaningless parts of the cities and has broken the continuity of the urban fabric. Lost urban spaces are the leftover unstructured landscape within the urban fabric. They are generally the unrecognized urban areas that are in need of redesign, since they have a great value that can add to their surrounding urban context. The research significance lies within the importance of urban open spaces, their value and their impact on the urban fabric. The research also addresses the reuse and reclamation of lost urban spaces in order to increase the percentage of green areas along the urban fabric, provide urban open spaces, develop a sustainable approach towards urban landscape and enhance the quality of the public open space and user experience. In addition, the reuse of lost space will give it the identity and function it lacks while also providing places for presence, spending time and observing. Creating continuity in a broken urban fabric represents an exploratory process in the relationship between infrastructure and the urban fabric and seeks to establish an architectural solution to leftover space within the city. In doing so, the research establishes a framework (criteria) for adaptive reuse of lost urban space throughout inductive and deductive methodology, analytical methodology; by analyzing some relevant examples and similar cases of lost spaces and finally through field methodology; by applying the achieved criteria on a case study in Alexandria and carrying on SWOT analysis and evaluation of the potentials of this case study.Keywords: adaptive reuse, lost urban space, quality of public open space, urban fabric
Procedia PDF Downloads 6464292 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation
Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders
Abstract:
Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.Keywords: digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas
Procedia PDF Downloads 2724291 Preparation and Size Control of Sub-100 Nm Pure Nanodrugs
Authors: Jinfeng Zhang, Chun-Sing Lee
Abstract:
Pure nanodrugs (PNDs) – nanoparticles consisting entirely of drug molecules, have been considered as promising candidates for the next-generation nanodrugs. However, the traditional preparation method via reprecipitation faces critical challenges including low production rates, relatively large particle sizes and batch-to-batch variations. Here, for the first time, we successfully developed a novel, versatile and controllable strategy for preparing PNDs via an anodized aluminium oxide (AAO) template-assisted method. With this approach, we prepared PNDs of an anti-cancer drug (VM-26) with precisely controlled sizes reaching the sub-20 nm range. This template-assisted approach has much higher feasibility for mass production comparing to the conventional reprecipitation method and is beneficial for future clinical translation. The present method is further demonstrated to be easily applicable for a wide range of hydrophobic biomolecules without the need of custom molecular modifications and can be extended for preparing all-in-one nanostructures with different functional agents.Keywords: drug delivery, pure nanodrugs, size control, template
Procedia PDF Downloads 3074290 99mTc Scintimammography in an Equivocal Breast Lesion
Authors: Malak Shawky Matter Elyas
Abstract:
Introduction: Early detection of breast cancer is the main tool to decrease morbidity and mortality rates. Many diagnostic tools are used, such as mammograms, ultrasound and magnetic resonance imaging, but none of them is conclusive, especially in very small sizes, less than 1 cm. So, there is a need for more accurate tools. Patients and methods: This study involved 13 patients with different breast lesions. 6 Patients had breast cancer, and one of them had metastatic axillary lymph nodes without clinically nor mammographically detected breast mass proved by biopsy and histopathology. Of the other 7 Patients, 4 of them had benign breast lesions proved by biopsy and histopathology, and 3 Patients showed Equivocal breast lesions on a mammogram. A volume of 370-444Mbq of (99m) Tc/ bombesin was injected. Dynamic 1-min images by Gamma Camera were taken for 20 minutes immediately after injection in the anterior view. Thereafter, two static images in anterior and prone lateral views by Gamma Camera were taken for 5 minutes. Finally, single-photon emission computed tomography images were taken for each patient. The definitive diagnosis was based on biopsy and histopathology. Results: 6 Patients with breast cancer proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography). 1 out of 4 Patients with benign breast lesions proved by biopsy and histopathology showed Positive findings on Sestamibi (Scintimammography) while the other 3 Patients showed Negative findings on Sestamibi. 3 Patients out of 3 Patients with equivocal breast findings on mammogram showed Positive Findings on Sestamibi (Scintimammography) and proved by biopsy and histopathology. Conclusions: While we agree that Scintimammography will not replace mammograms as a mass screening tool, we believe that many patients will benefit from Scintimammography, especially women with dense breast tissues and in the presence of breast implants that are difficult to diagnose by mammogram, wherein its sensitivity is low and in women with metastatic axillary lymph nodes without clinically nor mammographically findings. We can use Scintimammography in sentinel lymph node mapping as a more accurate tool, especially since it is non-invasive.Keywords: breast., radiodiagnosis, lifestyle, surgery
Procedia PDF Downloads 314289 Robust Data Image Watermarking for Data Security
Authors: Harsh Vikram Singh, Ankur Rai, Anand Mohan
Abstract:
In this paper, we propose secure and robust data hiding algorithm based on DCT by Arnold transform and chaotic sequence. The watermark image is scrambled by Arnold cat map to increases its security and then the chaotic map is used for watermark signal spread in middle band of DCT coefficients of the cover image The chaotic map can be used as pseudo-random generator for digital data hiding, to increase security and robustness .Performance evaluation for robustness and imperceptibility of proposed algorithm has been made using bit error rate (BER), normalized correlation (NC), and peak signal to noise ratio (PSNR) value for different watermark and cover images such as Lena, Girl, Tank images and gain factor .We use a binary logo image and text image as watermark. The experimental results demonstrate that the proposed algorithm achieves higher security and robustness against JPEG compression as well as other attacks such as addition of noise, low pass filtering and cropping attacks compared to other existing algorithm using DCT coefficients. Moreover, to recover watermarks in proposed algorithm, there is no need to original cover image.Keywords: data hiding, watermarking, DCT, chaotic sequence, arnold transforms
Procedia PDF Downloads 5154288 Wireless Capsule Endoscope - Antenna and Channel Characterization
Authors: Mona Elhelbawy, Mac Gray
Abstract:
Traditional wired endoscopy is an intrusive process that requires a long flexible tube to be inserted through the patient’s mouth while intravenously sedated. Only images of the upper 4 feet of stomach, colon, and rectum can be captured, leaving the remaining 20 feet of small intestines. Wireless capsule endoscopy offers a painless, non-intrusive, efficient and effective alternative to traditional endoscopy. In wireless capsule endoscopy (WCE), ingestible vitamin-pill-shaped capsules with imaging capabilities, sensors, batteries, and antennas are designed to send images of the gastrointestinal (GI) tract in real time. In this paper, we investigate the radiation performance and specific absorption rate (SAR) of a miniature conformal capsule antenna operating at the Medical Implant Communication Service (MICS) frequency band in the human body. We perform numerical simulations using the finite element method based commercial software, high-frequency structure simulator (HFSS) and the ANSYS human body model (HBM). We also investigate the in-body channel characteristics between the implantable capsule and an external antenna placed on the surface of the human body.Keywords: IEEE 802.15.6, MICS, SAR, WCE
Procedia PDF Downloads 1274287 Digi-Buddy: A Smart Cane with Artificial Intelligence and Real-Time Assistance
Authors: Amaladhithyan Krishnamoorthy, Ruvaitha Banu
Abstract:
Vision is considered as the most important sense in humans, without which leading a normal can be often difficult. There are many existing smart canes for visually impaired with obstacle detection using ultrasonic transducer to help them navigate. Though the basic smart cane increases the safety of the users, it does not help in filling the void of visual loss. This paper introduces the concept of Digi-Buddy which is an evolved smart cane for visually impaired. The cane consists for several modules, apart from the basic obstacle detection features; the Digi-Buddy assists the user by capturing video/images and streams them to the server using a wide-angled camera, which then detects the objects using Deep Convolutional Neural Network. In addition to determining what the particular image/object is, the distance of the object is assessed by the ultrasonic transducer. The sound generation application, modelled with the help of Natural Language Processing is used to convert the processed images/object into audio. The object detected is signified by its name which is transmitted to the user with the help of Bluetooth hear phones. The object detection is extended to facial recognition which maps the faces of the person the user meets in the database of face images and alerts the user about the person. One of other crucial function consists of an automatic-intimation-alarm which is triggered when the user is in an emergency. If the user recovers within a set time, a button is provisioned in the cane to stop the alarm. Else an automatic intimation is sent to friends and family about the whereabouts of the user using GPS. In addition to safety and security by the existing smart canes, the proposed concept devices to be implemented as a prototype helping visually-impaired visualize their surroundings through audio more in an amicable way.Keywords: artificial intelligence, facial recognition, natural language processing, internet of things
Procedia PDF Downloads 3544286 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3324285 A Distributed Smart Battery Management System – sBMS, for Stationary Energy Storage Applications
Authors: António J. Gano, Carmen Rangel
Abstract:
Currently, electric energy storage systems for stationary applications have known an increasing interest, namely with the integration of local renewable energy power sources into energy communities. Li-ion batteries are considered the leading electric storage devices to achieve this integration, and Battery Management Systems (BMS) are decisive for their control and optimum performance. In this work, the advancement of a smart BMS (sBMS) prototype with a modular distributed topology is described. The system, still under development, has a distributed architecture with modular characteristics to operate with different battery pack topologies and charge capacities, integrating adaptive algorithms for functional state real-time monitoring and management of multicellular Li-ion batteries, and is intended for application in the context of a local energy community fed by renewable energy sources. This sBMS system includes different developed hardware units: (1) Cell monitoring units (CMUs) for interfacing with each individual cell or module monitoring within the battery pack; (2) Battery monitoring and switching unit (BMU) for global battery pack monitoring, thermal control and functional operating state switching; (3) Main management and local control unit (MCU) for local sBMS’s management and control, also serving as a communications gateway to external systems and devices. This architecture is fully expandable to battery packs with a large number of cells, or modules, interconnected in series, as the several units have local data acquisition and processing capabilities, communicating over a standard CAN bus and will be able to operate almost autonomously. The CMU units are intended to be used with Li-ion cells but can be used with other cell chemistries, with output voltages within the 2.5 to 5 V range. The different unit’s characteristics and specifications are described, including the different implemented hardware solutions. The developed hardware supports both passive and active methods for charge equalization, considered fundamental functionalities for optimizing the performance and the useful lifetime of a Li-ion battery package. The functional characteristics of the different units of this sBMS system, including different process variables data acquisition using a flexible set of sensors, can support the development of custom algorithms for estimating the parameters defining the functional states of the battery pack (State-of-Charge, State-of-Health, etc.) as well as different charge equalizing strategies and algorithms. This sBMS system is intended to interface with other systems and devices using standard communication protocols, like those used by the Internet of Things. In the future, this sBMS architecture can evolve to a fully decentralized topology, with all the units using Wi-Fi protocols and integrating a mesh network, making unnecessary the MCU unit. The status of the work in progress is reported, leading to conclusions on the system already executed, considering the implemented hardware solution, not only as fully functional advanced and configurable battery management system but also as a platform for developing custom algorithms and optimizing strategies to achieve better performance of electric energy stationary storage devices.Keywords: Li-ion battery, smart BMS, stationary electric storage, distributed BMS
Procedia PDF Downloads 1004284 Linkage between Trace Element Distribution and Growth Ring Formation in Japanese Red Coral (Paracorallium japonicum)
Authors: Luan Trong Nguyen, M. Azizur Rahman, Yusuke Tamenori, Toshihiro Yoshimura, Nozomu Iwasaki, Hiroshi Hasegawa
Abstract:
This study investigated the distribution of magnesium (Mg), phosphorus (P), sulfur (S) and strontium (Sr) using micro X-ray fluorescence (µ-XRF) along the annual growth rings in the skeleton of Japanese red coral Paracorallium japonicum. The Mg, P and S distribution in µ-XRF mapping images correspond to the dark and light bands along the annual growth rings observed in microscopic images of the coral skeleton. The µ-XRF mapping data showed a positive correlation (r = 0.6) between P and S distribution in the coral skeleton. A contrasting distribution pattern of S and Mg along the axial skeleton of P. japonicum indicates a weak negative correlation (r = -0.2) between these two trace elements. The distribution pattern of S, P and Mg reveals linkage between their distributions and the formation of dark/light bands along the annual growth rings in the axial skeleton of P. japonicum. Sulfur and P were distributed in the organic matrix rich dark bands, while Mg was distributed in the light bands of the annual growth rings.Keywords: µ-XRF, trace element, precious coral, Paracorallium japonicum
Procedia PDF Downloads 4424283 Design and Emotion: The Value of 1970s French Children’s Books in the Middle East
Authors: Tina Sleiman
Abstract:
In the early 1970s, a graphics revolution - in quantity and quality - marked the youth publications sector in France. The increased interest in youth publications was supported with the emergence of youth libraries and major publishing houses. In parallel, the 'Agence de Cooperation Culturelle et Technique' (currently the International Organization of the Francophonie) was created, and several Arab countries had joined as members. In spite of political turmoil in the Middle East, French schools in Arab countries were still functioning and some even flourishing. This is a testament that French culture was, and still is, a major export to the region. This study focuses on the aesthetic value of the graphic styles that characterize French children’s books from the 1970s, and their personal value to Francophone people who have consumed these artifacts, in the Middle East. The first part of the study looks at the artifact itself: starting from the context of creation and consumption of these books, and continuing to the preservation and remaining collections. The aesthetic value is studied and compared to similar types of visuals of juxtaposed time periods. The second part examines the audience’s response to the visuals in terms of style recognition or identification, along with emotional significance or associations, and the personal value the artifacts might hold to their consumers. The methods of investigation consist of a literature review, a survey of book collections, and a visual questionnaire, supported by personal interviews. As an outcome, visual patterns will be identified: elements from 1970s children’s books reborn in contemporary youth-based publications. Results of the study shall inform us directly on the aesthetic and personal value of illustrated French children’s books in the Middle East, and indirectly on the capacity of youth-targeted design to create a long-term emotional response from its audience.Keywords: children’s books, French visual culture, graphic style, publication design, revival
Procedia PDF Downloads 1704282 Effects of Closed-Caption Programs on EFL Learners' Listening Comprehension and Vocabulary Learning
Authors: Bahman Gorjian
Abstract:
This study investigated the effects of closed-captioning on vocabulary learning and listening comprehension of English-language movies. Captioning is thus an effective language-learning tool for persons learning English as a second language. Because students may learn a foreign language "passively," utilizing subtitles on television could make learning English enjoyable for them. Closed captioning is an electrical technique that converts spoken words from a television program's audio into written text that mimics subtitles in another language. The findings of this study showed the importance of using closed-captioning software when learning a foreign language. As a result, these must be considered when teaching EFL/ESL. The influence of watching movies with closed captions on vocabulary and hearing is compared in this study. This goal can be reached by employing a closed-captioned movie as a teaching tool in the classroom. This research was critical because it demonstrates the advantages of closed-captioning programs in EFL classrooms for both teachers and students. The study's findings assisted teachers in better understanding how to employ closed captioning as a teaching tool in the classroom. The effects will be seen as even more significant for language learners who use the method.Keywords: closed-captions, listening, comprehension, vcabulary
Procedia PDF Downloads 894281 Digital Memory in Motion: (Re) Creating and (Re) Posting of “Gaja-gamini walk” Reels as a Collective Feminist Practices on Instagram
Authors: Gazal Khan
Abstract:
This paper investigates the phenomenon of (re) creating and (re) posting of what is popularly known as "gaja-gamini walk" on instagram as a form of digital feminism, examining how these reels (short videos) make meaning in digital spaces. The study analyzes xyz “gaja- gamini walk” reels created by Indian influencers and instagram users, employing qualitative textual analysis, close readings, and digital ethnography to analyze the interplay between media, memory and digital spaces. The research highlights how “gaja-gamini walk” reels, characterized by an assertive presentation, redefines female body aesthetics, re (orients) sexual gaze to provide layered, interwoven and contested narratives. These reels facilitate a unique form of engagement by allowing users to re-share and participate in feminist discourse and allowing reels to function as sites of memory. The paper also discusses the social dynamics of these reels, their intertextuality with cultural narratives, and the limitations of the format for sustained feminist action. Through this analysis, the paper contributes to understanding the role of digital memory in contemporary feminist movements in context of Indian feminism.Keywords: instagram, gaja-gamni walk, female gaze, digital feminism
Procedia PDF Downloads 334280 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 674279 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues
Authors: Ali Ben Abbes, Imed Riadh Farah
Abstract:
Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban
Procedia PDF Downloads 3544278 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach
Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista
Abstract:
The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.Keywords: depth, deep learning, geovisualisation, satellite images
Procedia PDF Downloads 104277 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4054276 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 904275 The Morphing Avatar of Startup Sales - Destination Virtual Reality
Authors: Sruthi Kannan
Abstract:
The ongoing covid pandemic has accelerated digital transformation like never before. The physical barriers brought in as a result of the pandemic are being bridged by digital alternatives. While basic collaborative activities like voice, video calling, screen sharing have been replicated in these alternatives, there are several others that require a more intimate setup. Pitching, showcasing, and providing demonstrations are an integral part of selling strategies for startups. Traditionally these have been in-person engagements, enabling a depth of understanding of the startups’ offerings. In the new normal scenario of virtual-only connects, startups are feeling the brunt of the lack of in-person connections with potential customers and investors. This poster demonstrates how a virtual reality platform has been conceptualized and custom-built for startups to engage with their stakeholders and redefine their selling strategies. This virtual reality platform is intended to provide an immersive experience for startup showcases and offers the nearest possible alternative to physical meetings for the startup ecosystem, thereby opening newer frontiers for entrepreneurial collaborations.Keywords: collaboration, sales, startups, strategy, virtual reality
Procedia PDF Downloads 3054274 Derivation of Bathymetry Data Using Worldview-2 Multispectral Images in Shallow, Turbid and Saline Lake Acıgöl
Authors: Muhittin Karaman, Murat Budakoglu
Abstract:
In this study, derivation of lake bathymetry was evaluated using the high resolution Worldview-2 multispectral images in the very shallow hypersaline Lake Acıgöl which does not have a stable water table due to the wet-dry season changes and industrial usage. Every year, a great part of the lake water budget has been consumed for the industrial salt production in the evaporation ponds, which are generally located on the south and north shores of Lake Acıgöl. Therefore, determination of the water level changes from a perspective of remote sensing-based lake water by bathymetry studies has a great importance in the sustainability-control of the lake. While the water table interval is around 1 meter between dry and wet season, dissolved ion concentration, salinity and turbidity also show clear differences during these two distinct seasonal periods. At the same time, with the satellite data acquisition (June 9, 2013), a field study was conducted to collect the salinity values, Secchi disk depths and turbidity levels. Max depth, Secchi disk depth and salinity were determined as 1,7 m, 0,9 m and 43,11 ppt, respectively. Eight-band Worldview-2 image was corrected for atmospheric effects by ATCOR technique. For each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 pixel reflectance neighborhoods were calculated separately. A unique image has been derivated for each matrix resolution. Spectral values and depth relation were evaluated for these distinct resolution images. Correlation coefficients were determined for the 1x1 matrix: 0,98, 0,96, 0,95 and 0,90 for the 724 nm, 831 nm, 908 nm and 659 nm, respectively. While 15x5 matrix characteristics with 0,98, 0,97 and 0,97 correlation values for the 724 nm, 908 nm and 831 nm, respectively; 51x51 matrix shows 0,98, 0,97 and 0,96 correlation values for the 724 nm, 831 nm and 659 nm, respectively. Comparison of all matrix resolutions indicates that RedEdge band (724 nm) of the Worldview-2 satellite image has the best correlation with the saline shallow lake of Acıgöl in-situ depth.Keywords: bathymetry, Worldview-2 satellite image, ATCOR technique, Lake Acıgöl, Denizli, Turkey
Procedia PDF Downloads 4474273 Immersive and Interactive Storytelling: Exploring Narratives and Online Multisensory Experience for Cultural Memory and Collective Awareness through Graphic Novel
Authors: Cristina Greco
Abstract:
The spread of the digital and we-based technologies has led to a transformation process, which has coincided with an increase in the number of cases who are beyond the mainstream storytelling and its codes on the interaction with the user. On the base of a previous research on i-docs and virtual museums, this study analyses interactive and immersive online Graphic Novel – one-page, animated, illustrated, and hybrid – to reflect on the transformational implications of this expressive form on the user perception, remembrance, and awareness. The way in which the user experiences a certain level of interaction with the story and immersion in the semantic and figurative universe would bring user’s attention, activating introspection and self-reflection processes, perception, imagination, and creativity. This would have to do with the involvement of different senses – visual, proprioceptive, tactile, auditory, and vestibular – and the activation of a phenomenon of synaesthesia (involuntary cross-modal sensory association) – where, for example, the aural reconnect the user to another sense, providing a multisensory experience. The case studies show specific forms of interactive and immersive graphic novel and reflect on application that has sought to engage innovative ways to communicate different messages and stimulate cultural memory and collective awareness. The visual semiotic and narrative analysis of the distinctive traits of such a complex textuality, along with a study of the user’s experience through observation in naturalistic settings and interviews, allows us to question the functioning of these configurations, with regard to the relationships between the figurative dimension, the perceptive activity, and their impact on the user’s engagement.Keywords: collective awareness, cultural memory, graphic novel, interactive and immersive storytelling
Procedia PDF Downloads 1494272 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 1444271 Comparison between Photogrammetric and Structure from Motion Techniques in Processing Unmanned Aerial Vehicles Imageries
Authors: Ahmed Elaksher
Abstract:
Over the last few years, significant progresses have been made and new approaches have been proposed for efficient collection of 3D spatial data from Unmanned aerial vehicles (UAVs) with reduced costs compared to imagery from satellite or manned aircraft. In these systems, a low-cost GPS unit provides the position, velocity of the vehicle, a low-quality inertial measurement unit (IMU) determines its orientation, and off-the-shelf cameras capture the images. Structure from Motion (SfM) and photogrammetry are the main tools for 3D surface reconstruction from images collected by these systems. Unlike traditional techniques, SfM allows the computation of calibration parameters using point correspondences across images without performing a rigorous laboratory or field calibration process and it is more flexible in that it does not require consistent image overlap or same rotation angles between successive photos. These benefits make SfM ideal for UAVs aerial mapping. In this paper, a direct comparison between SfM Digital Elevation Models (DEM) and those generated through traditional photogrammetric techniques was performed. Data was collected by a 3DR IRIS+ Quadcopter with a Canon PowerShot S100 digital camera. Twenty ground control points were randomly distributed on the ground and surveyed with a total station in a local coordinate system. Images were collected from an altitude of 30 meters with a ground resolution of nine mm/pixel. Data was processed with PhotoScan, VisualSFM, Imagine Photogrammetry, and a photogrammetric algorithm developed by the author. The algorithm starts with performing a laboratory camera calibration then the acquired imagery undergoes an orientation procedure to determine the cameras’ positions and orientations. After the orientation is attained, correlation based image matching is conducted to automatically generate three-dimensional surface models followed by a refining step using sub-pixel image information for high matching accuracy. Tests with different number and configurations of the control points were conducted. Camera calibration parameters estimated from commercial software and those obtained with laboratory procedures were comparable. Exposure station positions were within less than few centimeters and insignificant differences, within less than three seconds, among orientation angles were found. DEM differencing was performed between generated DEMs and few centimeters vertical shifts were found.Keywords: UAV, photogrammetry, SfM, DEM
Procedia PDF Downloads 2944270 Electrode Performance of Carbon Coated Nanograined LiFePO4 in Lithium Batteries
Authors: Princess Stephanie P. Llanos, Rinlee Butch M. Cervera
Abstract:
Lithium iron phosphate (LiFePO4) is a potential cathode material for lithium-ion batteries due to its promising characteristics. In this study, carbon-coated nanograined LiFePO4 is synthesized via wet chemistry method at a low temperature of 400 °C and investigated its performance as a cathode in Lithium battery. The X-ray diffraction pattern of the synthesized samples can be indexed to an orthorhombic LiFePO4 structure. Agglomerated particles that range from 200 nm to 300 nm are observed from scanning electron microscopy images. Transmission electron microscopy images confirm the crystalline structure of LiFePO4 and coating of amorphous carbon layer. Elemental mapping using Energy dispersive spectroscopy analysis revealed the homogeneous dispersion of Fe, P, O, and C elements. On the other hand, the electrochemical performances of the synthesized cathodes were investigated using cyclic voltammetry, galvanostatic charge/discharge tests with different C-rates, and cycling performances. Galvanostatic charge and discharge measurements revealed that the sample sintered at 400 °C for 3 hours with carbon coating demonstrated the highest capacity among the samples which reaches up to 160 mAhg⁻¹ at 0.1C rate.Keywords: cathode, charge-discharge, electrochemical, lithium batteries
Procedia PDF Downloads 3314269 Automatic Differentiation of Ultrasonic Images of Cystic and Solid Breast Lesions
Authors: Dmitry V. Pasynkov, Ivan A. Egoshin, Alexey A. Kolchev, Ivan V. Kliouchkin
Abstract:
In most cases, typical cysts are easily recognized at ultrasonography. The specificity of this method for typical cysts reaches 98%, and it is usually considered as gold standard for typical cyst diagnosis. However, it is necessary to have all the following features to conclude the typical cyst: clear margin, the absence of internal echoes and dorsal acoustic enhancement. At the same time, not every breast cyst is typical. It is especially characteristic for protein-contained cysts that may have significant internal echoes. On the other hand, some solid lesions (predominantly malignant) may have cystic appearance and may be falsely accepted as cysts. Therefore we tried to develop the automatic method of cystic and solid breast lesions differentiation. Materials and methods. The input data were the ultrasonography digital images with the 256-gradations of gray color (Medison SA8000SE, Siemens X150, Esaote MyLab C). Identification of the lesion on these images was performed in two steps. On the first one, the region of interest (or contour of lesion) was searched and selected. Selection of such region is carried out using the sigmoid filter where the threshold is calculated according to the empirical distribution function of the image brightness and, if necessary, it was corrected according to the average brightness of the image points which have the highest gradient of brightness. At the second step, the identification of the selected region to one of lesion groups by its statistical characteristics of brightness distribution was made. The following characteristics were used: entropy, coefficients of the linear and polynomial regression, quantiles of different orders, an average gradient of brightness, etc. For determination of decisive criterion of belonging to one of lesion groups (cystic or solid) the training set of these characteristics of brightness distribution separately for benign and malignant lesions were received. To test our approach we used a set of 217 ultrasonic images of 107 cystic (including 53 atypical, difficult for bare eye differentiation) and 110 solid lesions. All lesions were cytologically and/or histologically confirmed. Visual identification was performed by trained specialist in breast ultrasonography. Results. Our system correctly distinguished all (107, 100%) typical cysts, 107 of 110 (97.3%) solid lesions and 50 of 53 (94.3%) atypical cysts. On the contrary, with the bare eye it was possible to identify correctly all (107, 100%) typical cysts, 96 of 110 (87.3%) solid lesions and 32 of 53 (60.4%) atypical cysts. Conclusion. Automatic approach significantly surpasses the visual assessment performed by trained specialist. The difference is especially large for atypical cysts and hypoechoic solid lesions with the clear margin. This data may have a clinical significance.Keywords: breast cyst, breast solid lesion, differentiation, ultrasonography
Procedia PDF Downloads 269