Search results for: epoxy matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2430

Search results for: epoxy matrix

1260 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients

Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga

Abstract:

In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.

Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence

Procedia PDF Downloads 855
1259 Study of Transport Phenomena in Photonic Crystals with Correlated Disorder

Authors: Samira Cherid, Samir Bentata, Feyza Zahira Meghoufel, Yamina Sefir, Sabria Terkhi, Fatima Bendahma, Bouabdellah Bouadjemi, Ali Zitouni

Abstract:

Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in random dimer model (RDM) on transmission properties of light in one dimension photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers appears in pairs. It is shown that the one-dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

Keywords: photonic crystals, disorder, correlation, transmission

Procedia PDF Downloads 467
1258 Preparation and Properties of Chloroacetated Natural Rubber Rubber Foam Using Corn Starch as Curing Agent

Authors: Ploenpit Boochathum, Pitchayanad Kaolim, Phimjutha Srisangkaew

Abstract:

In general, rubber foam is produced based on the sulfur curing system. However, the remaining sulfur in the rubber product waste is burned to sulfur dioxide gas causing the environment pollution. To avoid using sulfur as curing agent in the rubber foam products, this research work proposes non-sulfur curing system by using corn starch as a curing agent. The ether crosslinks were proposed to be produced via the functional bonding between hydroxyl groups of the starch molecules and chloroacetate groups added on the natural rubber molecules. The chloroacetated natural rubber (CNR) latex was prepared via the epoxidation reaction of the concentrated natural rubber latex, subsequently, epoxy rings were attacked by chloroacetic acid to produce hydroxyl groups and chloroacetate groups on the rubber molecules. Foaming agent namely NaHCO3 was selected to add in the CNR latex due to the low decomposition temperature at about 50°C. The appropriate curing temperature was assigned to be 90°C that is above gelatinization temperature; 60-70°C, of starch. The effect of weight ratio of starch, i.e., 0 phr, 3 phr and 5 phr, on the physical properties of CNR rubber foam was investigated. It was found that density reduced from 0.81 g/cm3 for 0 phr to 0.75 g/cm3 for 3 phr and 0.79 g/cm3 for 5 phr. The ability to return to its original thickness after prolonged compressive stresses of CNR rubber foam cured with starch loading of 5 phr was found to be considerably better than that of CNR rubber foam cured with starch 3 phr and CNR rubber foam without addition of starch according to the compression set that was determined to decrease from 66.67% to 40% and 26.67% with the increase loading of starch. The mechanical properties including tensile strength and modulus of CNR rubber foams cured using starch were determined to increase except that the elongation at break was found to decrease. In addition, all mechanical properties of CNR rubber foams cured with the starch 3 phr and 5 phr were found to be slightly different and drastically higher than those of CNR rubber foam without the addition of starch. This research work indicates that starch can be applicable as a curing agent for CNR rubber. This is confirmed by the increase of the elastic modulus (G') of CNR rubber foams that was cured with the starch over the CNR rubber foam without curing agent. This type of rubber foam is believed to be one of the biodegradable and environment-friendly product that can be cured at low temperature of 90°C.

Keywords: chloroacetated natural rubber, corn starch, non-sulfur curing system, rubber foam

Procedia PDF Downloads 302
1257 Speciation of Iron(III) Oxide Nanoparticles and other Paramagnetic Intermediates during High-Temperature Oxidative Pyrolysis of 1-Methylnaphthalene

Authors: M. Paul Herring, Lavrent Khachatryan, Barry Dellinger

Abstract:

Low Temperature Matrix Isolation - Electron Paramagnetic Resonance (LTMI-EPR) Spectroscopy was utilized to identify the species of iron oxide nanoparticles generated during the oxidative pyrolysis of 1-methylnaphthalene (1-MN). The otherwise gas-phase reactions of 1-MN were impacted by a polypropylenimine tetra-hexacontaamine dendrimer complexed with iron(III) nitrate nonahydrate diluted in air under atmospheric conditions. The EPR fine structure of Fe (III)2O3 nanoparticles clusters, characterized by g-factors of 2.00, 2.28, 3.76 and 4.37 were detected on a cold finger maintained at 77K after accumulation over a multitude of experiments. Additionally, a high valence Fe(IV) paramagnetic intermediate and superoxide anion-radicals, O2•- adsorbed on nanoparticle surfaces in the form of Fe(IV)---O2•- were detected from the quenching area of Zone 1 in the gas-phase.

Keywords: cryogenic trapping, EPFRs, dendrimer, Fe2O3 doped silica, soot

Procedia PDF Downloads 400
1256 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: process map, drilling loss matrix, SIPOC, productivity, percussion rate

Procedia PDF Downloads 205
1255 The Influence of Alginate Microspheres Modified with DAT on the Proliferation and Adipogenic Differentiation of ASCs

Authors: Shin-Yi Mao, Jiashing Yu

Abstract:

Decellularized adipose tissue (DAT) has received lots of attention as biological scaffolds recently. DAT that extracted from the extracellular matrix (ECM) of adipose tissues holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. In our study, 2-D DATsol film was fabricated to enhance cell adhesion, proliferation, and differentiation of ASCs in vitro. DAT was also used to modify alginate for improvement of cell adhesion. Alginate microspheres modified with DAT were prepared by Nisco. These microspheres could provide a highly supportive 3-D environment for ASCs. In our works, ASCs were immobilized in alginate microspheres modified with DAT to promoted cell adhesion and adipogenic differentiation. Accordingly, we hypothesize that tissue regeneration in vivo could be promoted with the aid of modified microspheres in future.

Keywords: adipose stem cells, decellularize adipose tissue, Alginate, microcarries

Procedia PDF Downloads 435
1254 The Numerical and Experimental Analysis of Compressed Composite Plate in Asymmetrical Arrangement of Layers

Authors: Katarzyna Falkowicz

Abstract:

The work focused on the original concept of a thin-walled plate element with a cut-out, for use as a spring or load-bearing element. The subject of the study were rectangular plates with a cut-out with variable geometrical parameters and with a variable angle of fiber arrangement, made of a carbon-epoxy composite with high strength properties in an asymmetrical arrangement, subjected to uniform compression. The influence of geometrical parameters of the cut-out and the angle of fiber arrangement on the value of critical load of the structure and buckling form was investigated. Uniform thin plates are relatively cheap to manufacture, however due to their low bending stiffness; they can carry relatively small loads. The lowest form of loss of plate stability, which is the bending form, leads to its rapid destruction due to high deflection increases, with a slight increase in compressive load - low rigidity of the structure. However, the stiffness characteristics of the structure change significantly when the work of plate is forcing according to the higher flexural-torsional form of buckling. The plate is able to carry a much higher compressive load while maintaining much stiffer work characteristics in the post-critical range. The calculations carried out earlier show that plates with forced higher form of buckling are characterized by stable, progressive paths of post-critical equilibrium, enabling their use as elastic elements. The characteristics of such elements can be designed in a wide range by changing the geometrical parameters of the cut-out, i.e. height and width as well as by changing the angle of fiber arrangement The commercial ABAQUS program using the finite element method was used to develop the discrete model and perform numerical calculations. The obtained results are of significant practical importance in the design of structures with elastic elements, allowing to achieve the required maintenance characteristics of the device.

Keywords: buckling mode, numerical method, unsymmetrical laminates, thin-walled elastic elements

Procedia PDF Downloads 99
1253 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins

Authors: Haiyang Su, Kun Qian

Abstract:

We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.

Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins

Procedia PDF Downloads 203
1252 Study of Nanocrystalline Scintillator for Alpha Particles Detection

Authors: Azadeh Farzaneh, Mohammad Reza Abdi, A. Quaranta, Matteo Dalla Palma, Seyedshahram Mortazavi

Abstract:

We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored.

Keywords: nanoparticles, luminescence, sol gel, scintillator

Procedia PDF Downloads 587
1251 The Effect of Technology on Skin Development and Progress

Authors: Haidy Weliam Megaly Gouda

Abstract:

Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification

Procedia PDF Downloads 47
1250 Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy

Authors: Jing Zhang, Yongqin Chang, Yongwei Wang, Xiaolin Li, Shaoning Jiang, Farong Wan, Yi Long

Abstract:

Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases.

Keywords: irradiation, Fe-0.2wt.%V alloy, microstructures, hardness

Procedia PDF Downloads 377
1249 Approach on Conceptual Design and Dimensional Synthesis of the Linear Delta Robot for Additive Manufacturing

Authors: Efrain Rodriguez, Cristhian Riano, Alberto Alvares

Abstract:

In recent years, robots manipulators with parallel architectures are used in additive manufacturing processes – 3D printing. These robots have advantages such as speed and lightness that make them suitable to help with the efficiency and productivity of these processes. Consequently, the interest for the development of parallel robots for additive manufacturing applications has increased. This article deals with the conceptual design and dimensional synthesis of the linear delta robot for additive manufacturing. Firstly, a methodology based on structured processes for the development of products through the phases of informational design, conceptual design and detailed design is adopted: a) In the informational design phase the Mudge diagram and the QFD matrix are used to aid a set of technical requirements, to define the form, functions and features of the robot. b) In the conceptual design phase, the functional modeling of the system through of an IDEF0 diagram is performed, and the solution principles for the requirements are formulated using a morphological matrix. This phase includes the description of the mechanical, electro-electronic and computational subsystems that constitute the general architecture of the robot. c) In the detailed design phase, a digital model of the robot is drawn on CAD software. A list of commercial and manufactured parts is detailed. Tolerances and adjustments are defined for some parts of the robot structure. The necessary manufacturing processes and tools are also listed, including: milling, turning and 3D printing. Secondly, a dimensional synthesis method applied on design of the linear delta robot is presented. One of the most important key factors in the design of a parallel robot is the useful workspace, which strongly depends on the joint space, the dimensions of the mechanism bodies and the possible interferences between these bodies. The objective function is based on the verification of the kinematic model for a prescribed cylindrical workspace, considering geometric constraints that possibly lead to singularities of the mechanism. The aim is to determine the minimum dimensional parameters of the mechanism bodies for the proposed workspace. A method based on genetic algorithms was used to solve this problem. The method uses a cloud of points with the cylindrical shape of the workspace and checks the kinematic model for each of the points within the cloud. The evolution of the population (point cloud) provides the optimal parameters for the design of the delta robot. The development process of the linear delta robot with optimal dimensions for additive manufacture is presented. The dimensional synthesis enabled to design the mechanism of the delta robot in function of the prescribed workspace. Finally, the implementation of the robotic platform developed based on a linear delta robot in an additive manufacturing application using the Fused Deposition Modeling (FDM) technique is presented.

Keywords: additive manufacturing, delta parallel robot, dimensional synthesis, genetic algorithms

Procedia PDF Downloads 179
1248 Characteristic Matrix Faults for Flight Control System

Authors: Thanh Nga Thai

Abstract:

A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.

Keywords: fault detection and identification, sensor faults, actuator faults, flight control system

Procedia PDF Downloads 410
1247 Optimization of Hydrogel Conductive Nanocomposite as Solar Cell

Authors: Shimaa M. Elsaeed, Reem K. Farag, Ibrahim M. Nassar

Abstract:

Hydrogel conductive polymer nanocomposite fabricated via in-situ polymerization of polyaniline (PANI) inside thermosensitive hydrogels based on hydroxy ethyl meth acrylate (HEMA) copolymer with 2-acrylamido-2-methyl propane sulfonic acid (AMPS). SEM micrographs show the nanometric size of the conductive material (polyaniline, PANI) dispersed in the hydrogel matrix. The swelling parameters of hydrogel are measured. The incorporation of PANI improves the mechanical properties and swelling up to 30,000% without breaking. X-ray diffraction shows that typical polyaniline crystallization is formed in composite, which is advantageous to increase the electrical conductivity of the composite hydrogel. Open-circuit voltage (I-V) curve fill factor of the highest photo-conversion efficiency and enhanced to use in solar cell.

Keywords: hydrogel, solar cell, conductive polymer, nanocomposite

Procedia PDF Downloads 392
1246 Predicting and Optimizing the Mechanical Behavior of a Flax Reinforced Composite

Authors: Georgios Koronis, Arlindo Silva

Abstract:

This study seeks to understand the mechanical behavior of a natural fiber reinforced composite (epoxy/flax) in more depth, utilizing both experimental and numerical methods. It is attempted to identify relationships between the design parameters and the product performance, understand the effect of noise factors and reduce process variations. Optimization of the mechanical performance of manufactured goods has recently been implemented by numerous studies for green composites. However, these studies are limited and have explored in principal mass production processes. It is expected here to discover knowledge about composite’s manufacturing that can be used to design artifacts that are of low batch and tailored to niche markets. The goal is to reach greater consistency in the performance and further understand which factors play significant roles in obtaining the best mechanical performance. A prediction of response function (in various operating conditions) of the process is modeled by the DoE. Normally, a full factorial designed experiment is required and consists of all possible combinations of levels for all factors. An analytical assessment is possible though with just a fraction of the full factorial experiment. The outline of the research approach will comprise of evaluating the influence that these variables have and how they affect the composite mechanical behavior. The coupons will be fabricated by the vacuum infusion process defined by three process parameters: flow rate, injection point position and fiber treatment. Each process parameter is studied at 2-levels along with their interactions. Moreover, the tensile and flexural properties will be obtained through mechanical testing to discover the key process parameters. In this setting, an experimental phase will be followed in which a number of fabricated coupons will be tested to allow for a validation of the design of the experiment’s setup. Finally, the results are validated by performing the optimum set of in a final set of experiments as indicated by the DoE. It is expected that after a good agreement between the predicted and the verification experimental values, the optimal processing parameter of the biocomposite lamina will be effectively determined.

Keywords: design of experiments, flax fabrics, mechanical performance, natural fiber reinforced composites

Procedia PDF Downloads 195
1245 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive

Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu

Abstract:

Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.

Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings

Procedia PDF Downloads 119
1244 Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture

Authors: Endalkachew Abebe Kebede, Bojin Bojinov, Andon Vasilev Andonov, Orhan Dengiz

Abstract:

Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study.

Keywords: landsat 9, leaf spectrometer, sentinel 2, UAV

Procedia PDF Downloads 93
1243 Pension Reform in Georgia: Challenges, International Practice and Opportunities for Development

Authors: Manana Lobzhanidze

Abstract:

Reforming the pension system is urgent in Georgia due to socio-economic problems. Replacing the current pension system with a new one requires, on the one hand, an assessment of the challenges in this field and, on the other hand, a study of the best practices of foreign experience. Objectives: The aim of the research is to identify challenges in the pension reform process in Georgia, to study international experience, and to develop recommendations for the implementation of an effective pension system. Methodologies: A desk study was conducted, and methods of analysis, comparison, grouping, matrix charts, and scenario analysis were used. Findings: The advantages of accumulative pension compared to the current pension system are identified. The main challenge is the non-targeting of the pension contributions and the ineffective investment policy; the public's attitude towards the cumulative pension system is determined.

Keywords: pension reform, challenges, international practice, opportunity for development

Procedia PDF Downloads 56
1242 Improved Mechanical and Electrical Properties and Thermal Stability of Post-Consumer Polyethylene Terephthalate Glycol Containing Hybrid System of Nanofillers

Authors: Iman Taraghi, Sandra Paszkiewicz, Daria Pawlikowska, Anna Szymczyk, Izabela Irska, Rafal Stanik, Amelia Linares, Tiberio A. Ezquerra, Elżbieta Piesowicz

Abstract:

Currently, the massive use of thermoplastic materials in industrial applications causes huge amounts of polymer waste. The poly (ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PET-G) has been widely used in food packaging and polymer foils. In this research, the PET-G foils have been recycled and reused as a matrix to combine with different types of nanofillers such as carbon nanotubes, graphene nanoplatelets, and nanosized carbon black. The mechanical and electrical properties, as well as thermal stability and thermal conductivity of the PET-G, improved along with the addition of the aforementioned nanofillers and hybrid system of them.

Keywords: polymer hybrid nanocomposites, carbon nanofillers, recycling, physical performance

Procedia PDF Downloads 113
1241 Synthesis of CeF3:Sm3+ Nanophosphor for Biological Applications

Authors: Mayuri Gandhi, Nayan Agrawal, Harshita Bhatia

Abstract:

In the present work, cerium fluoride (CeF3) was selected as the host material because of its high density, fast response and high radiation resistance, efficient absorption and energy transfer by host (to activator). For the synthesis of CeF3 nanoparticles doped with Sm3+ ion, co-precipitation route was employed. Thus for optimum results, concentration dependent studies of the fluorescence of Sm3+ was carried out. The photoluminescence gave emissions in both visible as well as the NIR region and therefore it can have its application in solar cells, where it can absorb a large spectrum of energy. CeF3:Sm3+ nanoparticles were carefully incorporated in a suitable polymer matrix in order to demonstrate a variety of applications to improve the performance of the polymer materials and use it to develop high grade optoelectronic devices such as LEDs, security labelling, lasers, displays, biological imaging, etc.

Keywords: bioimaging, cerium fluoride, NIR emission, samarium

Procedia PDF Downloads 400
1240 Impact of Climatic Hazards on the Jamuna River Fisheries and Coping and Adaptation Strategies

Authors: Farah Islam, Md. Monirul Islam, Mosammat Salma Akter, Goutam Kumar Kundu

Abstract:

The continuous variability of climate and the risk associated with it have a significant impact on the fisheries leading to a global concern for about half a billion fishery-based livelihoods. Though in the context of Bangladesh mounting evidence on the impacts of climate change on fishery-based livelihoods or their socioeconomic conditions are present, the country’s inland fisheries sector remains in a negligible corner as compared to the coastal areas which are spotted on the highlight due to its higher vulnerability to climatic hazards. The available research on inland fisheries, particularly river fisheries, has focussed mainly on fish production, pollution, fishing gear, fish biodiversity and livelihoods of the fishers. This study assesses the impacts of climate variability and changes on the Jamuna (a transboundary river called Brahmaputra in India) River fishing communities and their coping and adaptation strategies. This study has used primary data collected from Kalitola Ghat and Debdanga fishing communities of the Jamuna River during May, August and December 2015 using semi-structured interviews, oral history interviews, key informant interviews, focus group discussions and impact matrix as well as secondary data. This study has found that both communities are exposed to storms, floods and land erosions which impact on fishery-based livelihood assets, strategies, and outcomes. The impact matrix shows that human and physical capitals are more affected by climate hazards which in turn affect financial capital. Both communities have been responding to these exposures through multiple coping and adaptation strategies. The coping strategies include making dam with soil, putting jute sac on the yard, taking shelter on boat or embankment, making raised platform or ‘Kheua’ and involving with temporary jobs. While, adaptation strategies include permanent migration, change of livelihood activities and strategies, changing fishing practices and making robust houses. The study shows that migration is the most common adaptation strategy for the fishers which resulted in mostly positive outcomes for the migrants. However, this migration has impacted negatively on the livelihoods of existing fishers in the communities. In sum, the Jamuna river fishing communities have been impacted by several climatic hazards and they have traditionally coped with or adapted to the impacts which are not sufficient to maintain sustainable livelihoods and fisheries. In coming decades, this situation may become worse as predicted by latest scientific research and an enhanced level of response would be needed.

Keywords: climatic hazards, impacts and adaptation, fisherfolk, the Jamuna River

Procedia PDF Downloads 305
1239 2D Monte Carlo Simulation of Grain Growth under Transient Conditions

Authors: K. R. Phaneesh, Anirudh Bhat, G. Mukherjee, K. T. Kashyap

Abstract:

Extensive Monte Carlo Potts model simulations were performed on 2D square lattice to investigate the effects of simulated higher temperatures effects on grain growth kinetics. A range of simulation temperatures (KTs) were applied on a matrix of size 10002 with Q-state 64, dispersed with a wide range of second phase particles, ranging from 0.001 to 0.1, and then run to 100,000 Monte Carlo steps. The average grain size, the largest grain size and the grain growth exponent were evaluated for all particle fractions and simulated temperatures. After evaluating several growth parameters, the critical temperature for a square lattice, with eight nearest neighbors, was found to be KTs = 0.4.

Keywords: average grain size, critical temperature, grain growth exponent, Monte Carlo steps

Procedia PDF Downloads 516
1238 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon

Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer

Abstract:

Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.

Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation

Procedia PDF Downloads 90
1237 Numerical Simulation of Fiber Bragg Grating Spectrum for Mode-І Delamination Detection

Authors: O. Hassoon, M. Tarfoui, A. El Malk

Abstract:

Fiber Bragg optic sensor embedded in composite material to detect and monitor the damage which is occur in composite structure. In this paper we deal with the mode-Ι delamination to determine the resistance of material to crack propagation, and use the coupling mode theory and T-matrix method to simulating the FBGs spectrum for both uniform and non-uniform strain distribution. The double cantilever beam test which is modeling in FEM to determine the Longitudinal strain, there are two models which are used, the first is the global half model, and the second the sub-model to represent the FBGs with refine mesh. This method can simulate the damage in the composite structure and converting the strain to wavelength shifting of the FBG spectrum.

Keywords: fiber bragg grating, delamination detection, DCB, FBG spectrum, structure health monitoring

Procedia PDF Downloads 355
1236 Poly(ε-Caprolactone)-Based Bilayered Scaffolds Prepared by Electrospinning for Tissue Engineering of Small-Diameter Vascular Grafts

Authors: Mohammed Fayez Al Rez

Abstract:

Nowadays, there is an unmet clinical need for new small-diameter vascular grafts to overcome the drawbacks of traditional methods used for treatment of widespread cardiovascular diseases. Vascular tissue engineering (VTE) is a promising approach that can be utilized to develop viable vascular grafts by in vitro seeding of functional cells onto a scaffold allowing them to attach, proliferate and differentiate. To achieve this purpose, the scaffold should provide cells with the initial necessary extracellular matrix environment and structure until being able to reconstruct the required vascular tissue. Therefore, producing scaffolds with suitable features is crucial for guiding cells properly to develop the desired tissue-engineered vascular grafts for clinical applications. The main objective of this work is fabrication and characterization of tubular small-diameter ( < 6 mm) bilayered scaffolds for VTE. The scaffolds were prepared via mixing electrospinning approach of biodegradable poly(ε-caprolactone) (PCL) polymer – due to its favorable physicochemical properties – to mimic the natural environment-extracellular matrix. Firstly, tubular nanofibrous construct with inner diameter of 3, 4 or 5 mm was electrospun as inner layer, and secondly, microfibrous construct was electrospun as outer layer directly on the first produced inner layer. To improve the biological properties of PCL, a group of the electrospun scaffolds was immersed in type-1 collagen solution. The morphology and structure of the resulting fibrous scaffolds were investigated by scanning electron microscope. The electrospun nanofibrous inner layer contained fibers measuring 219±35 nm in diameter, while the electrospun microfibrous outer layer contained fibers measuring 1011 ± 150 nm. Furthermore, mechanical, thermal and physical tests were conducted with both electrospun bilayered scaffold types where revealed improved properties. Biological investigations using endothelial, smooth muscle and fibroblast cell line showed good biocompatibility of both tested electrospun scaffolds. Better attachment and proliferation were obviously found when cells were cultured on the scaffolds immersed with collagen due to increasing the hydrophilicity of the PCL. The easy, inexpensive and versatile electrospinning approach used in this work was able to successfully produce double layered tubular elastic structures containing both nanofibers and microfibers to imitate the native vascular structure. The PCL – as a suitable and approved biomaterial for many biomedical and tissue engineering applications – can ensure favorable mechanical properties of scaffolds used for VTE. The VTE approach using electrospun bilayered scaffolds offers optimal solutions and holds significant promises for treatment of many cardiovascular diseases.

Keywords: electrospinning, poly(ε-caprolactone) (PCL), tissue-engineered vascular graft, tubular bilayered scaffolds, vascular cells

Procedia PDF Downloads 282
1235 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory

Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi

Abstract:

The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.

Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation

Procedia PDF Downloads 456
1234 MONDO Neutron Tracker Characterisation by Means of Proton Therapeutical Beams and MonteCarlo Simulation Studies

Authors: G. Traini, V. Giacometti, R. Mirabelli, V. Patera, D. Pinci, A. Sarti, A. Sciubba, M. Marafini

Abstract:

The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims a precise characterisation of the secondary fast and ultrafast neutrons produced in particle therapy treatments. The detector is composed of a matrix of scintillating fibres (250 um) readout by CMOS Digital-SPAD based sensors. Recoil protons from n-p elastic scattering are detected and used to track neutrons. A prototype was tested with proton beams (Trento Proton Therapy Centre): efficiency, light yield, and track-reconstruction capability were studied. The results of a MonteCarlo FLUKA simulation used to evaluated double scattering efficiency and expected backgrounds will be presented.

Keywords: secondary neutrons, particle therapy, tracking, elastic scattering

Procedia PDF Downloads 255
1233 Mechanical Properties of the Sugarcane Bagasse Reinforced Polypropylene Composites

Authors: R. L. M. Paiva, M. R. Capri, D. R. Mulinari, C. F. Bandeira, S. R. Montoro

Abstract:

Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non renewable resources. The present study investigates the tensile, flexural and impact behaviors of sugarcane bagasse fibers-polypropylene composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar polypropylene. The treatment characterization was obtained by infrared spectroscopy and scanning electron microscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/PP composites when compared to the pure PP and unmodified fibers reinforced composites.

Keywords: sugarcane bagasse, polymer composites, mechanical properties, fibers

Procedia PDF Downloads 615
1232 Lecture Video Indexing and Retrieval Using Topic Keywords

Authors: B. J. Sandesh, Saurabha Jirgi, S. Vidya, Prakash Eljer, Gowri Srinivasa

Abstract:

In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users.

Keywords: video indexing and retrieval, lecture videos, content based video search, multimodal indexing

Procedia PDF Downloads 244
1231 Glass and Polypropylene Combinations for Thermoplastic Preforms

Authors: Hireni Mankodi

Abstract:

The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates.

Keywords: thermoplastic, preform, laminates, hybrid yarn, glass

Procedia PDF Downloads 572