Search results for: deep convolutional features
4580 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric
Authors: Geetika Barman, B. S. Daya Sagar
Abstract:
In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology
Procedia PDF Downloads 874579 Performance, Scalability and Reliability Engineering: Shift Left and Shift Right Approach
Authors: Jyothirmayee Pola
Abstract:
Ideally, a test-driven development (TDD) or agile or any other process should be able to define and implement performance, scalability, and reliability (PSR) of the product with a higher quality of service (QOS) and should have the ability to fix any PSR issues with lesser cost before it hits the production. Most PSR test strategies for new product introduction (NPI) include assumptions about production load requirements but never accurate. NPE (New product Enhancement) include assumptions for new features that are being developed whilst workload distribution for older features can be derived by analyzing production transactions. This paper talks about how to shift left PSR towards design phase of release management process to get better QOS w.r.t PSR for any product under development. It also explains the ROI for future customer onboarding both for Service Oriented Architectures (SOA) and Microservices architectures and how to define PSR requirements.Keywords: component PSR, performance engineering, performance tuning, reliability, return on investment, scalability, system PSR
Procedia PDF Downloads 754578 Clinical and Radiological Features of Radicular Cysts: Case Series
Authors: Recep Duzsoz, Elif Bilgir, Derya Yildirim, Ozlem Gormez
Abstract:
Radicular cysts develop in the root apex of tooth that is devitalized. Cysts are pathologic lesions with an epithelial lining encapsulated by connective tissue. Radicular cysts originate from epithelial remnants of the periodontal ligament in the root apex as a result of inflammation. They are most commonly observed in the maxillary anterior region, among men and in the third decade of life. Radiographically, they are seen as ovoid radiolucent lesions surrounded by a thin radioopaque margin. In this case, series was carried out in 15 radicular cysts of the jaws diagnosed in individuals. The cysts were evaluated age, sex, and localization. 12 of the cysts were localized in the maxillae, 3 of them were localised in the mandible. The female/male ratio of the lesions was 1/2. In conclusion, we evaluated age, localization and sex distribution of radicular cysts in this study. The knowledge of the features of the jaw cysts is a basic aspect to achieve diagnosis, complications and proper treatment.Keywords: radicular cyst, jaws, CBCT, treatment
Procedia PDF Downloads 2874577 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria
Authors: Mairo Musa Galadima, Phoebe Mshelia
Abstract:
In Nigeria, the national policy of education stipulates that the kindergarten primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5(five) selected secondary school in Bauchi. It was discover that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequate qualified teachers and relevant materials including text-books. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.Keywords: kindergarten, stress, phonetic and intonation, Nigeria
Procedia PDF Downloads 3004576 The Prospective Assessment of Zero-Energy Dwellings
Authors: Jovana Dj. Jovanovic, Svetlana M. Stevovic
Abstract:
The highest priority of so called, projected passive houses is to meet the appropriate energy demand. Every single material and layer which is injected into a dwelling has a certain energy quantity stored. The passive houses include optimized insulation levels with minimal thermal bridges, minimum of air leakage through the building, utilization of passive solar and internal gains, and good circulation of air which leans on mechanical ventilation system. The focus of this paper is on passive house features, benefits and targets, their feasibility and energy demands which are set up during each project. Numerous passive house-standards outline the very significant role of zero-energy dwellings towards the modern label of sustainable development. It is clear that the performance of both built and existing housing stock must be addressed if the population across the world sets out the energy objectives. This scientific article examines passive house features since the many passive house cases are launched.Keywords: benefits, energy demands, passive houses, sustainable development
Procedia PDF Downloads 3374575 Digital Forensics Showdown: Encase and FTK Head-to-Head
Authors: Rida Nasir, Waseem Iqbal
Abstract:
Due to the constant revolution in technology and the increase in anti-forensic techniques used by attackers to remove their traces, professionals often struggle to choose the best tool to be used in digital forensic investigations. This paper compares two of the most well-known and widely used licensed commercial tools, i.e., Encase & FTK. The comparison was drawn on various parameters and features to provide an authentic evaluation of licensed versions of these well-known commercial tools against various real-world scenarios. In order to discover the popularity of these tools within the digital forensic community, a survey was conducted publicly to determine the preferred choice. The dataset used is the Computer Forensics Reference Dataset (CFReDS). A total of 70 features were selected from various categories. Upon comparison, both FTK and EnCase produce remarkable results. However, each tool has some limitations, and none of the tools is declared best. The comparison drawn is completely unbiased, based on factual data.Keywords: digital forensics, commercial tools, investigation, forensic evaluation
Procedia PDF Downloads 194574 Using Assessment Criteria as a Pedagogic Tool to Develop Argumentative Essay Writing
Authors: Sruti Akula
Abstract:
Assessment criteria are mostly used for assessing skills like writing and speaking. However, they could be used as a pedagogic tool to develop writing skills. A study was conducted with higher secondary learners (Class XII Kendriya Vidyalaya) to investigate the effectiveness of assessment criteria to develop argumentative essay writing. In order to raise awareness about the features of argumentative essay, assessment criteria were shared with the learners. Along with that, self-evaluation checklists were given to the learners to guide them through the writing process. During the study learners wrote multiple drafts with the help of assessment criteria, self-evaluation checklists and teacher feedback at different stages of their writing. It was observed that learners became more aware of the features of argumentative essay which in turn improved their argumentative essay writing. In addition the self evaluation checklists imporved their ability to reflect on their work there by increasing learner autonomy in the class. Hence, it can be claimed that both assessment criteria and self evaluation checklists are effective pedagogic tools to develop argumentative essay writing. Thus, teachers can be trained to create and use tools like assessment criteria and self-evaluation checklists to develop learners’ writing skills in an effective way. The presentation would discuss the approach adopted in the study to teach argumentative essay writing along with the rationale. The tools used in the study would be shared and the data collected in the form of written scripts, self-evaluation checklists and student interviews will be analyzed to validate the claims. Finally, the practical implication of the study like the ways of using assessment criteria and checklists to raise learner awareness and autonomy, using such tools to keep the learners informed about the task requirements and genre features, and the like will be put forward.Keywords: argumentative essay writing, assessment criteria, self evaluation checklists, pedagogic
Procedia PDF Downloads 5104573 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone
Authors: Zhuang Hou, Xiaolei Cao
Abstract:
The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program
Procedia PDF Downloads 1344572 Using Computer Vision to Detect and Localize Fractures in Wrist X-ray Images
Authors: John Paul Q. Tomas, Mark Wilson L. de los Reyes, Kirsten Joyce P. Vasquez
Abstract:
The most frequent type of fracture is a wrist fracture, which often makes it difficult for medical professionals to find and locate. In this study, fractures in wrist x-ray pictures were located and identified using deep learning and computer vision. The researchers used image filtering, masking, morphological operations, and data augmentation for the image preprocessing and trained the RetinaNet and Faster R-CNN models with ResNet50 backbones and Adam optimizers separately for each image filtering technique and projection. The RetinaNet model with Anisotropic Diffusion Smoothing filter trained with 50 epochs has obtained the greatest accuracy of 99.14%, precision of 100%, sensitivity/recall of 98.41%, specificity of 100%, and an IoU score of 56.44% for the Posteroanterior projection utilizing augmented data. For the Lateral projection using augmented data, the RetinaNet model with an Anisotropic Diffusion filter trained with 50 epochs has produced the highest accuracy of 98.40%, precision of 98.36%, sensitivity/recall of 98.36%, specificity of 98.43%, and an IoU score of 58.69%. When comparing the test results of the different individual projections, models, and image filtering techniques, the Anisotropic Diffusion filter trained with 50 epochs has produced the best classification and regression scores for both projections.Keywords: Artificial Intelligence, Computer Vision, Wrist Fracture, Deep Learning
Procedia PDF Downloads 734571 Function of Fractals: Application of Non-Linear Geometry in Continental Architecture
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the '70s until today and has generated significant styles such as deconstructivism and parametrism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials, and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties
Procedia PDF Downloads 2574570 Nitrogen Uptake of Different Safflower (Carthamus tinctorius L.) Genotypes at Different Growth Stages in Semi-Arid Conditions
Authors: Zehra Aytac, Nurdilek Gulmezoglu
Abstract:
Safflower has been grown for centuries for many purposes worldwide. Especially it is important for the orange-red dye from its petal and for its high-quality oil obtained from the seeds. The crop is high adaptable to areas with insufficient rainfall and poor soil conditions. The plant has a deep taproot that can draw moisture and plant nutrients from deep to the subsoil. The research was carried out to study the nitrogen (N) uptake of different safflower cultivars and lines at different stages of growth and different plant parts in the experimental field of Faculty of Agriculture, Eskişehir Osmangazi University under semi-arid conditions. Different safflower cultivars and lines of varied origins were used as the material. The cultivars and lines were planted in a Randomized Complete Block Design with three replications. Two different growth stages (flowering and harvest) and three different plant parts (head, stem+leaf and seed) were determined. The nitrogen concentration of different plant parts was determined by the Kjeldahl method. Statistical analysis were performed by analysis of variance for each growth stage and plant parts taking a level of p < 0.05 and p < 0.01 as significant according to the LSD test. As a result, N concentration showed significant differences among different plant parts and different growth stages for different safflower genotypes of varied origins.Keywords: Carthamus tinctorius L., growth stages, head N, leaf N, N uptake, seed N, Safflower
Procedia PDF Downloads 2244569 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier
Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui
Abstract:
Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM
Procedia PDF Downloads 3934568 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 484567 The Integration of Iranian Traditional Architecture in the Contemporary Housing Design: A Case Study
Authors: H. Nejadriahi
Abstract:
Traditional architecture is a valuable source of inspiration, which needs to be studied and integrated in the contemporary designs for achieving an identifiable contemporary architecture. Traditional architecture of Iran is among the distinguished examples of being contextually responsive, not only by considering the environmental conditions of a region, but also in terms of respecting the socio-cultural values of its context. In order to apply these valuable features to the current designs, they need to be adapted to today's condition, needs and desires. In this paper, the main features of the traditional architecture of Iran are explained to interrogate them in the formation of a contemporary house in Tehran, Iran. Also a table is provided to compare the utilization of the traditional design concepts in the traditional houses and the contemporary example of it. It is believed that such study would increase the awareness of contemporary designers by providing them some clues on maintaining the traditional values in the current design layouts particularly in the residential sector that would ultimately improve the quality of space in the contemporary architecture.Keywords: contemporary housing design, Iran, Tehran, traditional architecture
Procedia PDF Downloads 4704566 High Responsivity of Zirconium boride/Chromium Alloy Heterostructure for Deep and Near UV Photodetector
Authors: Sanjida Akter, Ambali Alade Odebowale, Andrey E. Miroshnichenko, Haroldo T. Hattori
Abstract:
Photodetectors (PDs) play a pivotal role in optoelectronics and optical devices, serving as fundamental components that convert light signals into electrical signals. As the field progresses, the integration of advanced materials with unique optical properties has become a focal point, paving the way for the innovation of novel PDs. This study delves into the exploration of a cutting-edge photodetector designed for deep and near ultraviolet (UV) applications. The photodetector is constructed with a composite of Zirconium Boride (ZrB2) and Chromium (Cr) alloy, deposited onto a 6H nitrogen-doped silicon carbide substrate. The determination of the optimal alloy thickness is achieved through Finite-Difference Time-Domain (FDTD) simulation, and the synthesis of the alloy is accomplished using radio frequency (RF) sputtering. Remarkably, the resulting photodetector exhibits an exceptional responsivity of 3.5 A/W under an applied voltage of -2 V, at wavelengths of 405 nm and 280 nm. This heterostructure not only exemplifies high performance but also provides a versatile platform for the development of near UV photodetectors capable of operating effectively in challenging conditions, such as environments characterized by high power and elevated temperatures. This study contributes to the expanding landscape of photodetector technology, offering a promising avenue for the advancement of optoelectronic devices in demanding applications.Keywords: responsivity, silicon carbide, ultraviolet photodetector, zirconium boride
Procedia PDF Downloads 664565 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique
Authors: Jaturong Som-ard
Abstract:
The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings
Procedia PDF Downloads 1924564 Using Blockchain Technology to Promote Sustainable Supply Chains: A Survey of Previous Studies
Authors: Saleh Abu Hashanah, Abirami Radhakrishnan, Dessa David
Abstract:
Sustainable practices in the supply chain have been an area of focus that require consideration of environmental, economic, and social sustainability practices. This paper aims to examine the use of blockchain as a disruptive technology to promote sustainable supply chains. Content analysis was used to analyze the uses of blockchain technology in sustainable supply chains. The results showed that blockchain technology features such as traceability, transparency, smart contracts, accountability, trust, immutability, anti-fraud, and decentralization promote sustainable supply chains. It is found that these features have impacted organizational efficiency in operations, transportation, and production, minimizing costs and reducing carbon emissions. In addition, blockchain technology has been found to elicit customer trust in the products.Keywords: blockchain technology, sustainability, supply chains, economic sustainability, environmental sustainability, social sustainability
Procedia PDF Downloads 1064563 The Tendon Reflexes on the Performance of Flanker Task in the Subjects of Cerebrovascular Accidents
Authors: Harshdeep Singh, Kuljeet Singh Anand
Abstract:
Background: Cerebrovascular Accidents (CVA) cause abnormal or asymmetrical tendon reflexes contributing to motor impairments. Since the tendon reflexes are mediated by the spinal cord, their effects on cognitive performances are overlooked. This study aims to find the contributions of tendon reflexes on the performance of the Flanker task. Methods: A total population of 46 mixed subjects with movement disorders were recruited for the study. Deep tendon reflexes (DTR) of the biceps, triceps and brachioradialis were assessed for both upper extremities. Later, the Flanker task was performed on all the subjects, and the mean Reaction Time (RT) along with both the congruent and incongruent stimuli were evaluated. For the final analysis, the Kruskal Wallis test was performed to see the difference between the DTR and the performance of the Flanker Task. Results: The Kruskal Wallis test results showed a significant difference between the DTR scores, X²(2) = 11.328, p= 0.023 with the mean RT of the flanker task and X²(2) = 9.531, p= 0.049 with mean RT of the Incongruent Stimuli. Whereas the result found a non-significant difference in the mean RT of the Congruent Stimuli. Conclusion: Each DTR score is distributed differently with the mean RT of the flanker task and for the incongruent stimuli as well. Therefore, the tendon reflexes in PD may be contributing to the performance of the Flanker Task and may be an indicator of abnormal cognitive performance. Further research is needed to evaluate how the RTs are distributed with each DTR score.Keywords: cerebrovascular accidents, deep tendon reflexes, flanker task, reaction time, congruent stimuli, incongruent stimuli
Procedia PDF Downloads 1024562 The Sociology of the Facebook: An Exploratory Study
Authors: Liana Melissa E. de la Rosa, Jayson P. Ada
Abstract:
This exploratory study was conducted to determine the sociology of the Facebook. Specifically, it aimed to know the socio-demographic profile of the respondents in terms of age, sex, year level and monthly allowance; find out the common usage of Facebook to the respondents; identify the features of Facebook that are commonly used by the respondents; understand the benefits and risks of using the Facebook; determine how frequent the respondents use the Facebook; and find out if there is a significant relationship between socio-demographic profile of the respondents and their Facebook usage. This study used the exploratory research design and correlational design employing research survey questionnaire as its main data gathering instrument. Students of the University of Eastern Philippines were selected as the respondents of this study through quota sampling. Ten (10) students were randomly selected from each college of the university. Based on the findings of this study, the following conclusion were drawn: The majority of the respondents are aged 18 and 21 old, female, are third year students, and have monthly allowance of P 2,000 above. On the respondents’ usage of Facebook, the majority of use the Facebook on a daily basis for one to two (1-2) hours everyday. And most users used Facebook by renting a computer in an internet cafe. On the use of Facebook, most users have created their profiles mainly to connect with people and gain new friends. The most commonly used features of Facebook, are: photos application, like button, wall, notification, friend, chat, network, groups and “like” pages status updates, messages and inbox and events. While the other Facebook features that are seldom used by the respondents are games, news feed, user name, video sharing and notes. And the least used Facebook features are questions, poke feature, credits and the market place. The respondents stated that the major benefit that the Facebook has given to its users is its ability to keep in touch with family members or friends while the main risk identified is that the users can become addicted to the Internet. On the tests of relationships between the respondents’ use of Facebook and the four (4) socio-demographic profile variables: age, sex, year level, and month allowance, were found to be not significantly related to the respondents’ use of the Facebook. While the variable found to be significantly related was gender.Keywords: Facebook, sociology, social networking, exploratory study
Procedia PDF Downloads 2894561 Narrative Identity Predicts Borderline Personality Disorder Features in Inpatient Adolescents up to Six Months after Admission
Authors: Majse Lind, Carla Sharp, Salome Vanwoerden
Abstract:
Narrative identity is the dynamic and evolving story individuals create about their personal pasts, presents, and presumed futures. This storied sense of self develops in adolescence and is crucial for fostering a sense of self-unity and purpose in life. A growing body of work has shown that several characteristics of narrative identity are disturbed in adults suffering from borderline personality disorder (BPD). Very little research, however, has explored the stories told by adolescents with BPD features. Investigating narrative identity early in the lifespan and in relation to personality pathology is crucial; BPD is a developmental disorder with early signs appearing already in adolescence. In the current study, we examine narrative identity (focusing on themes of agency and communion) coded from self-defining memories derived from the child attachment interview in 174 inpatient adolescents (M = 15.12, SD = 1.52) at the time of admission. The adolescents’ social cognition was further assessed on the basis of their reactions to movie scenes (i.e., the MASC movie task). They also completed a trauma checklist and self-reported BPD features at three different time points (i.e., at admission, at discharge, and 6 months after admission). Preliminary results show that adolescents who told stories containing themes of agency and communion evinced better social cognition, and lower emotional abuse on the trauma checklist. In addition, adolescents who disclosed stories containing lower levels of agency and communion demonstrated more BPD symptoms at all three time points, even when controlling for the occurrence of traumatic life events. Surprisingly, social cognitive abilities were not significantly associated with BPD features. These preliminary results underscore the importance of narrative identity as an indicator, and potential cause, of incipient personality pathology. Thus, focusing on diminished themes of narrative-based agency and communion in early adolescence could be crucial in preventing the development of personality pathology over time.Keywords: borderline personality disorder, inpatient adolescents, narrative identity, follow-ups
Procedia PDF Downloads 1574560 AI-Driven Forecasting Models for Anticipating Oil Market Trends and Demand
Authors: Gaurav Kumar Sinha
Abstract:
The volatility of the oil market, influenced by geopolitical, economic, and environmental factors, presents significant challenges for stakeholders in predicting trends and demand. This article explores the application of artificial intelligence (AI) in developing robust forecasting models to anticipate changes in the oil market more accurately. We delve into various AI techniques, including machine learning, deep learning, and time series analysis, that have been adapted to analyze historical data and current market conditions to forecast future trends. The study evaluates the effectiveness of these models in capturing complex patterns and dependencies in market data, which traditional forecasting methods often miss. Additionally, the paper discusses the integration of external variables such as political events, economic policies, and technological advancements that influence oil prices and demand. By leveraging AI, stakeholders can achieve a more nuanced understanding of market dynamics, enabling better strategic planning and risk management. The article concludes with a discussion on the potential of AI-driven models in enhancing the predictive accuracy of oil market forecasts and their implications for global economic planning and strategic resource allocation.Keywords: AI forecasting, oil market trends, machine learning, deep learning, time series analysis, predictive analytics, economic factors, geopolitical influence, technological advancements, strategic planning
Procedia PDF Downloads 354559 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring
Procedia PDF Downloads 5554558 Isolation and Identification of Novel Escherichia Marmotae Spp.: Their Enzymatic Biodegradation of Zearalenone and Deep-oxidation of Deoxynivalenol
Authors: Bilal Murtaza, Xiaoyu Li, Liming Dong, Muhammad Kashif Saleemi, Gen Li, Bowen Jin, Lili Wang, Yongping Xu
Abstract:
Fusarium spp. produce numerous mycotoxins, such as zearalenone (ZEN), deoxynivalenol (DON), and its acetylated compounds, 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) (15-ADON). In a co-culture system, the soil-derived Escherichia marmotae strain degrades ZEN and DON into 3-keto-DON and DOM-1 via enzymatic deep-oxidation. When pure mycotoxins were subjected to Escherichia marmotae in culture flasks, degradation, and detoxification were also attained. DON and ZEN concentrations, ambient pH, incubation temperatures, bacterium concentrations, and the impact of acid treatment on degradation were all evaluated. The results of the ELISA and high-performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (HPLC-ESI-HRMS) tests demonstrated that the concentration of mycotoxins exposed to Escherichia marmotae was significantly lower than the control. ZEN levels were reduced by 43.9%, while zearalenone sulfate ([M/z 397.1052 C18H21O8S1) was discovered as a derivative of ZEN converted by microbes to a less toxic molecule. Furthermore, Escherichia marmotae appeared to metabolize DON 35.10% into less toxic derivatives (DOM-1 at m/z 281 of [DON - O]+ and 3-keto-DON at m/z 295 of [DON - 2H]+). These results show that Escherichia marmotae can reduce Fusarium mycotoxins production, degrade pure mycotoxins, and convert them to less harmful compounds, opening up new possibilities for study and innovation in mycotoxin detoxification.Keywords: mycotoxins, zearalenone, deoxynivalenol, bacterial degradation
Procedia PDF Downloads 994557 Manifestations of Tuberculosis in Otorhinolaryngology Practice: A Retrospective Study Conducted in a Coastal City of South India
Authors: Rithika Sriram, Kiran M. Bhojwani
Abstract:
Introduction : Tuberculosis of the head and neck has proved to be a diagnostic challenge for otorhinolarynologists around the world. These lesions are often misdiagnosed as cancer. So in order to contribute to a better understanding of these lesions, we have conducted our study among patients affected by TB in the head and neck region with the objective of assessing the various manifestations, presentations, diagnostic techniques, risk factors such as smoking and alcohol consumption, coexisting illnesses and treatment modalities. Materials and Methods: This was a retrospective study conducted over a three year period (2012-2014) in 2 hospitals affliated to Kasturba Medical College in Mangalore, South India. A semi structured proforma was used to capture information from the medical records pertaining to the various objectives of the study such as clinical features and history of smoking. Data was analysed using SPSS version 16.0 and results obtained were depicted as percentages. Chi square test was used to find association between the variables and p<0.05 was considered statistically significant. Results: 104 patients were found to have TB of the head and neck and among them,the most common manifestation was found to be Tubercular Lymphadenitis (86.53%), followed by laryngeal TB (4.8%), submandibular gland TB (3.8%), deep neck space abscess(3.8%) and adenotonsillar TB. FNAC was found to be the gold standard for the diagnosis of TB disease of the lymph node.26% of the patients had coexisting HIV infection and 16.3% of the patients had associated pulmonary TB. More than 20% of the patients were smokers. Most patients were treated using ATT. Conclusion: Tuberculosis affecting regions of head and neck is no longer uncommon. Sufficient knowledge and appropriate diagnostic means is required while dealing with these lesions and must be included in the differential diagnosis of pathological lesions of head and neck.Keywords: FNAC, Mangalore, smoking, tuberculosis
Procedia PDF Downloads 2784556 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 1344555 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics
Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni
Abstract:
The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection
Procedia PDF Downloads 2904554 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 1374553 The EAO2 in Essouabaa, Tebessa, Algeria: An Example of Facies to Organic Matter
Authors: Sihem Salmi Laouar, Khoudair Chabane, Rabah Laouar, Adrian J. Boyce et Anthony E. Fallick
Abstract:
The solid mass of Essouabaa belongs paléogéography to the field téthysian and belonged to the area of the Mounts of Mellègue. This area was not saved by the oceanic-2 event anoxic (EAO-2) which was announced, over one short period, around the limit cénomanian-turonian. In the solid mass of Essouabba, the dominant sediments, pertaining to this period, are generally fine, dark, laminated and sometimes rolled deposits. They contain a rather rich planktonic microfaune, pyrite, and grains of phosphate, thus translating an environment rather deep and reducing rather deep and reducing. For targeting well the passage Cénomanian-Turonian (C-T) in the solid mass of Essouabaa, of the studies lithological and biostratigraphic were combined with the data of the isotopic analyses carbon and oxygen like with the contents of CaCO3. The got results indicate that this passage is marked by a biological event translated by the appearance of the "filaments" like by a positive excursion of the δ13C and δ18O. The cénomanian-turonian passage in the solid mass of Essouabaa represents a good example where during the oceanic event anoxic a facies with organic matter with contents of COT which can reach 1.36%. C E massive presents biostratigraphic and isotopic similarities with those obtained as well in the areas bordering (ex: Tunisia and Morocco) that throughout the world.Keywords: limit cénomanian-turonian (C-T), COT, filaments, event anoxic 2 (EAO-2), stable isotopes, mounts of Mellègue, Algeria
Procedia PDF Downloads 5154552 Preserving Urban Cultural Heritage with Deep Learning: Color Planning for Japanese Merchant Towns
Authors: Dongqi Li, Yunjia Huang, Tomo Inoue, Kohei Inoue
Abstract:
With urbanization, urban cultural heritage is facing the impact and destruction of modernization and urbanization. Many historical areas are losing their historical information and regional cultural characteristics, so it is necessary to carry out systematic color planning for historical areas in conservation. As an early focus on urban color planning, Japan has a systematic approach to urban color planning. Hence, this paper selects five merchant towns from the category of important traditional building preservation areas in Japan as the subject of this study to explore the color structure and emotion of this type of historic area. First, the image semantic segmentation method identifies the buildings, roads, and landscape environments. Their color data were extracted for color composition and emotion analysis to summarize their common features. Second, the obtained Internet evaluations were extracted by natural language processing for keyword extraction. The correlation analysis of the color structure and keywords provides a valuable reference for conservation decisions for this historic area in the town. This paper also combines the color structure and Internet evaluation results with generative adversarial networks to generate predicted images of color structure improvements and color improvement schemes. The methods and conclusions of this paper can provide new ideas for the digital management of environmental colors in historic districts and provide a valuable reference for the inheritance of local traditional culture.Keywords: historic districts, color planning, semantic segmentation, natural language processing
Procedia PDF Downloads 884551 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph
Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao
Abstract:
As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning
Procedia PDF Downloads 170