Search results for: Deep Jyoti Singh
2064 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate
Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly
Abstract:
ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)
Procedia PDF Downloads 3992063 Impact of Corporate Social Responsibility on the Organisational Performance
Authors: Jagbir Singh Kadyan, C. A. Suman Kadyan
Abstract:
The researchers attempts to establish whether a relationship exists between the social activities undertaken & the funds that has been spent by the selected corporate organisations. Corporate listed on the (NSE) National Stock Exchange of India, under different categories shall be selected as a sample for the purpose of this study. The researches shall also study the dynamics of corporate social responsibility funding, financing & management of corporate social responsibility funds by the above selected organisations in the Indian context. The rationale behind selecting & undertaking specific corporate social responsibility activities shall be analysed & interpreted to discover the real drivers of corporate social responsibility. Besides above, an attempt shall further make an effort to understand & analyse the nature of impact on the selected corporate organisations on its overall performances due to the activities undertaken under their specific corporate social responsibility programs.Keywords: corporate social responsibility, organisational performance, national stock exchange, sustainability, society, health, education, sanitation, environment
Procedia PDF Downloads 6002062 Code Refactoring Using Slice-Based Cohesion Metrics and AOP
Authors: Jagannath Singh, Durga Prasad Mohapatra
Abstract:
Software refactoring is very essential for maintaining the software quality. It is an usual practice that we first design the software and then go for coding. But after coding is completed, if the requirement changes slightly or our expected output is not achieved, then we change the codes. For each small code change, we cannot change the design. In course of time, due to these small changes made to the code, the software design decays. Software refactoring is used to restructure the code in order to improve the design and quality of the software. In this paper, we propose an approach for performing code refactoring. We use slice-based cohesion metrics to identify the target methods which requires refactoring. After identifying the target methods, we use program slicing to divide the target method into two parts. Finally, we have used the concepts of Aspects to adjust the code structure so that the external behaviour of the original module does not change.Keywords: software refactoring, program slicing, AOP, cohesion metrics, code restructure, AspectJ
Procedia PDF Downloads 5142061 Structure of Grain Boundaries in α-Zirconium and Niobium
Authors: Divya Singh, Avinash Parashar
Abstract:
Due to superior mechanical, creep and nuclear cross section, zirconium and niobium (Zr-Nb) based alloys are commonly used as nuclear materials for the manufacturing of fuel cladding and pressure tubes in nuclear power plants. In this work, symmetrical tilt grain boundary (STGB) structures in α-Zr are studied for their structure and energies along two tilt axes- [0001] and [0-110] using MD based simulations. Tilt grain boundaries are obtained along [0001] tilt axis, and special twin structures are obtained along [0-110] tilt axis in α-Zr. For Nb, STGBs are constructed along [100] and [110] axis using atomistic simulations. The correlation between GB structures and their energies is subsequently examined. A close relationship is found to exist between individual GB structure and its energy in both α-Zr and Nb. It is also concluded that the energies of the more coherent twin grain boundaries are lower than the symmetrical tilt grain boundaries.Keywords: grain boundaries, molecular dynamics, grain boundary energy, hcp crystal
Procedia PDF Downloads 2642060 The Study of Security Techniques on Information System for Decision Making
Authors: Tejinder Singh
Abstract:
Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data
Procedia PDF Downloads 3082059 Data Management and Analytics for Intelligent Grid
Authors: G. Julius P. Roy, Prateek Saxena, Sanjeev Singh
Abstract:
Power distribution utilities two decades ago would collect data from its customers not later than a period of at least one month. The origin of SmartGrid and AMI has subsequently increased the sampling frequency leading to 1000 to 10000 fold increase in data quantity. This increase is notable and this steered to coin the tern Big Data in utilities. Power distribution industry is one of the largest to handle huge and complex data for keeping history and also to turn the data in to significance. Majority of the utilities around the globe are adopting SmartGrid technologies as a mass implementation and are primarily focusing on strategic interdependence and synergies of the big data coming from new information sources like AMI and intelligent SCADA, there is a rising need for new models of data management and resurrected focus on analytics to dissect data into descriptive, predictive and dictatorial subsets. The goal of this paper is to is to bring load disaggregation into smart energy toolkit for commercial usage.Keywords: data management, analytics, energy data analytics, smart grid, smart utilities
Procedia PDF Downloads 7802058 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1312057 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1262056 Stationary Gas Turbines in Power Generation: Past, Present and Future Challenges
Authors: Michel Moliere
Abstract:
In the next decades, the thermal power generation segment will survive only if it achieves deep mutations, including drastical abatements of CO2 emissions and strong efficiency gains. In this challenging perspective, stationary gas turbines appear as serious candidates to lead the energy transition. Indeed, during the past decades, these turbomachines have made brisk technological advances in terms of efficiency, reliability, fuel flex (including the combustion of hydrogen), and the ability to hybridize with regenrables. It is, therefore, timely to summarize the progresses achieved by gas turbines in the recent past and to examine what are their assets to face the challenges of the energy transition.Keywords: energy transition, gas turbines, decarbonization, power generation
Procedia PDF Downloads 2102055 Chitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery
Authors: S. S. Pati, L. Herojit Singh, A. C. Oliveira, V. K. Garg
Abstract:
Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two step wet chemical approach using NaBH4 as reducing agent for formation of Au inethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chitosan has been confirmed using Fourier transform infrared spectroscopy along with signatures of octahedral and tetrahedral sites of Fe3O4 below 600cm-1. Mössbauer spectroscopy shows decrease in particle-particle interaction in presence of Au shell (72% sextet) than pure oleic coated Fe3O4 nanoparticles (88% sextet) at room temperature. At 80K, oleic acid coated Fe3O4 shows only sextets whereas the Chitosan functionalized Fe3O4 and Chitosan functionalized Fe3O4@Au core shell show presence of 5 and 11% doublet, respectively.Keywords: core shell, drug delivery, gold nanoparticles, magnetic nanoparticles
Procedia PDF Downloads 3762054 Effect of Post Hardening on PVD Coated Tools
Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli
Abstract:
In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing
Procedia PDF Downloads 3562053 Segmented Pupil Phasing with Deep Learning
Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan
Abstract:
Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.Keywords: wavefront sensing, deep learning, deployable telescope, space telescope
Procedia PDF Downloads 1062052 Numerical Model to Study Calcium and Inositol 1,4,5-Trisphosphate Dynamics in a Myocyte Cell
Authors: Nisha Singh, Neeru Adlakha
Abstract:
Calcium signalling is one of the most important intracellular signalling mechanisms. A lot of approaches and investigators have been made in the study of calcium signalling in various cells to understand its mechanisms over recent decades. However, most of existing investigators have mainly focussed on the study of calcium signalling in various cells without paying attention to the dependence of calcium signalling on other chemical ions like inositol-1; 4; 5 triphosphate ions, etc. Some models for the independent study of calcium signalling and inositol-1; 4; 5 triphosphate signalling in various cells are present but very little attention has been paid by the researchers to study the interdependence of these two signalling processes in a cell. In this paper, we propose a coupled mathematical model to understand the interdependence of inositol-1; 4; 5 triphosphate dynamics and calcium dynamics in a myocyte cell. Such studies will provide the deeper understanding of various factors involved in calcium signalling in myocytes, which may be of great use to biomedical scientists for various medical applications.Keywords: calcium signalling, coupling, finite difference method, inositol 1, 4, 5-triphosphate
Procedia PDF Downloads 2942051 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier
Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur
Abstract:
In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing
Procedia PDF Downloads 912050 An ANOVA Approach for the Process Parameters Optimization of Al-Si Alloy Sand Casting
Authors: Manjinder Bajwa, Mahipal Singh, Manish Nagpal
Abstract:
This research paper aims to propose a novel approach using ANOVA technique for the strategic investigation of process parameters and their effects on the mechanical properties of Aluminium alloy cast. The two process parameters considered here were permeability of sand and pouring temperature of aluminium alloy. ANOVA has been employed for the first time to determine the effects of these selected parameters on the impact strength of alloy. The experimental results show that this proposed technique has great potential for analyzing sand casting process. Using this approach we have determined the treatment mean square, response mean square and mean square of error as 8.54, 8.255 and 0.435 respectively. The research concluded that at the 5% level of significance, permeability of sand is the more significant parameter influencing the impact strength of cast alloy.Keywords: aluminium alloy, pouring temperature, permeability of sand, impact strength, ANOVA
Procedia PDF Downloads 4482049 Intelligent Electric Vehicle Charging System (IEVCS)
Authors: Prateek Saxena, Sanjeev Singh, Julius Roy
Abstract:
The security of the power distribution grid remains a paramount to the utility professionals while enhancing and making it more efficient. The most serious threat to the system can be maintaining the transformers, as the load is ever increasing with the addition of elements like electric vehicles. In this paper, intelligent transformer monitoring and grid management has been proposed. The engineering is done to use the evolving data from the smart meter for grid analytics and diagnostics for preventive maintenance. The two-tier architecture for hardware and software integration is coupled to form a robust system for the smart grid. The proposal also presents interoperable meter standards for easy integration. Distribution transformer analytics based on real-time data benefits utilities preventing outages, protects the revenue loss, improves the return on asset and reduces overall maintenance cost by predictive monitoring.Keywords: electric vehicle charging, transformer monitoring, data analytics, intelligent grid
Procedia PDF Downloads 7912048 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment
Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha
Abstract:
The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding
Procedia PDF Downloads 2032047 Motion of a Dust Grain Type Particle in Binary Stellar Systems
Authors: Rajib Mia, Badam Singh Kushvah
Abstract:
In this present paper, we use the photogravitational version of the restricted three body problem (RTBP) in binary systems. In the photogravitational RTBP, an infinitesimal particle (dust grain) is moving under the gravitational attraction and radiation pressure from the two bigger primaries. The third particle does not affect the motion of two bigger primaries. The zero-velocity curves, zero-velocity surfaces and their projections on the plane are studied. We have used existing analytical method to solve the equations of motion. We have obtained the Lagrangian points in some binary stellar systems. It is found that mass reduction factor affects the Lagrangian points. The linear stability of Lagrangian points is studied and found that these points are unstable. Moreover, trajectories of the infinitesimal particle at the triangular points are studied.Keywords: binary systems, Lagrangian points, linear stability, photogravitational RTBP, trajectories
Procedia PDF Downloads 2572046 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.Keywords: biometrics, deep learning, handwriting, signature forgery
Procedia PDF Downloads 842045 Discussion of Blackness in Wrestling
Authors: Jason Michael Crozier
Abstract:
The wrestling territories of the mid-twentieth century in the United States are widely considered the birthplace of modern professional wrestling, and by many professional wrestlers, to be a beacon of hope for the easing of racial tensions during the civil rights era and beyond. The performers writing on this period speak of racial equality but fail to acknowledge the exploitation of black athletes as a racialized capital commodity who suffered the challenges of systemic racism, codified by a false narrative of aspirational exceptionalism and equality measured by audience diversity. The promoters’ ability to equate racial and capital exploitation with equality leads to a broader discussion of the history of Muscular Christianity in the United States and the exploitation of black bodies. Narratives of racial erasure that dominate the historical discourse when examining athleticism and exceptionalism redefined how blackness existed and how physicality and race are conceived of in sport and entertainment spaces. When discussing the implications of race and professional wrestling, it is important to examine the role of promotions as ‘imagined communities’ where the social agency of wrestlers is defined and quantified based on their ‘desired elements’ as a performer. The intentionally vague nature of this language masks a deep history of racialization that has been perpetuated by promoters and never fully examined by scholars. Sympathetic racism and the omission of cultural identity are also key factors in the limitations and racial barriers placed upon black athletes in the squared circle. The use of sympathetic racism within professional wrestling during the twentieth century defined black athletes into two distinct categorizations, the ‘black savage’ or the ‘black minstrel’. Black wrestlers of the twentieth century were defined by their strength as a capital commodity and their physicality rather than their knowledge of the business and in-ring skill. These performers had little agency in their ability to shape their own character development inside and outside the ring. Promoters would often create personas that heavily racialized the performer by tying them to a regional past or memory, such as that of slavery in the deep south using dog collar matches and adoring black characters in chains. Promoters softened cultural memory by satirizing the historic legacy of slavery and the black identity.Keywords: sympathetic racism, social agency, racial commodification, stereotyping
Procedia PDF Downloads 1352044 Framework Development of Carbon Management Software Tool in Sustainable Supply Chain Management of Indian Industry
Authors: Sarbjit Singh
Abstract:
This framework development explored the status of GSCM in manufacturing SMEs and concluded that there was a significant gap w.r.t carbon emissions measurement in the supply chain activities. The measurement of carbon emissions within supply chains is important green initiative toward its reduction. The majority of the SMEs were facing the problem to quantify the green house gas emissions in its supply chain & to make it a low carbon supply chain or GSCM. Thus, the carbon management initiatives were amalgamated with the supply chain activities in order to measure and reduce the carbon emissions, confirming the GHG protocol scopes. Henceforth, it covers the development of carbon management software (CMS) tool to quantify carbon emissions for effective carbon management. This tool is cheap and easy to use for the industries for the management of their carbon emissions within the supply chain.Keywords: w.r.t carbon emissions, carbon management software, supply chain management, Indian Industry
Procedia PDF Downloads 4692043 Genetic Divergence of Life History Traits in Indian Populations of Drosophila bipectinata
Authors: Manvender Singh
Abstract:
Temperature is one of the most important climatic parameter for explaining the geographic distribution of ectothermic species. Empirical investigations on norms of the reaction according to developmental temperatures are helpful in analyzing the adapture capacity of a species which may be related to its ecological niche. In the present investigation, we have compared the effects of developmental temperatures on fecundity, hatchability, viability, and duration of development in five natural populations of Drosophila bipectinata along the latitudinal range. The clinal patterns for fecundity, as well as ovariole number, were observed which showed significant positive correlation (r=0.97). Similarly, hatchability and duration of development also revealed a positive correlation with latitude. Hence, suggesting the role of natural selection in maintaining the genetic divergence for life history traits along the north-south transect of the Indian Subcontinent.Keywords: growth temperature, fecundity, hatchability, viability, duration of development, Drosophila
Procedia PDF Downloads 2442042 COVID-19 Impact: How the Pandemic Changed the Fashion Industry
Authors: Akshata Patel, Reenu Singh
Abstract:
This paper focuses on current and upcoming fashion trends and global impact on the fashion industry due to the COVID-19 pandemic. The pandemic has had a major impact on the fashion industry worldwide. At the same time, the fashion market also faces challenges in consumer demand. As the supply chain and distribution channels are interconnected, this outbreak has a global impact due to travel restrictions and raw materials shortages. Given that this particular period represents an unprecedented market situation with almost no prior research on how the industry will recover from such a crisis and mold back to its original form, this research aims to propose new possibilities by evaluating the framework of specific segments. Based on the analysis and extensive literature review, the study develops a conceptual model that will illustrate the various connections among the different segments of the fashion industry. The findings provide actionable considerations for fashion industry pupils when implementing appropriate strategies to prevent unfavourable outcomes during times of crisis, such as the COVID-19 outbreak.Keywords: COVID-19, fashion industry, global impact, new possibilities, pandemic
Procedia PDF Downloads 2872041 Effects of Turbulence Penetration on Valve Leakage in Nuclear Reactor Coolant System
Authors: Gupta Rajesh, Paudel Sagar, Sharma Utkarsh, Singh Amit Kumar
Abstract:
Thermal stratification has drawn much attention because of the malfunctions at various nuclear plants in U.S.A that raised significant safety concerns. The concerns due to this phenomenon relate to thermal stresses in branch pipes connected to the reactor coolant system piping. This stress limits the lifetime of the piping system, and even leading to penetrating cracks. To assess origin of valve damage in the pipeline, it is essential to determine the effect of turbulence penetration on valve leakage; since stratified flow is generally generated by turbulent penetration or valve leakage. As a result, we concluded with the help of coupled fluent-structural analysis that the pipe with less turbulence has less chance of failure there by requiring less maintenance.Keywords: nuclear reactor coolant system, thermal stratification, turbulent penetration, coupled fluent-structural analysis, Von-Misses stress
Procedia PDF Downloads 2932040 COVID-19 Impact on Online Digital Marketing Business Activities
Authors: Balwinder Singh, Veerpaul Kaur Mann
Abstract:
The COVID-19 had a dramatic impact on several countries across the world. National governments have imposed widespread restrictions to prevent the growth of this pandemic. The new health competitive scenario induced by the COVID-19 crisis raised many issues on how business activities should be reorganized due to the difficulties of physical interactions with distributors, suppliers and customers. The pandemic has particularly affected the whole marketing processes because of the relevant issues emerged in managing physical sale channels and interactions with one another, both in the Business-to-Consumer and in the Business-to-Business markets. Recent research about the appropriate actions and strategies that could help firms overcome the crisis has highlighted the key role of digital technologies that may ensure connections and, thus, help business activities to run smoothly. This could be true, especially with the emergence of strong limitations on physical interactions during the COVID-19 pandemic. In such a scenario, the online channel becomes the most important conducive for online customers to get in contact with the firm and carry out online purchasing activities.Keywords: COVID-19, business, digital marketing, online customers
Procedia PDF Downloads 572039 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 412038 Effect of Welding Parameters on Penetration and Bead Width for Variable Plate Thickness in Submerged Arc Welding
Authors: Harish K. Arya, Kulwant Singh, R. K. Saxena
Abstract:
The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on penetration and bead width. The penetration reduces with increase in plate thickness due to heat loss in thickness direction for same heat input, while bead width increases for thicker plate due to faster cooling.Keywords: submerged arc welding, plate thickness, bead geometry, cooling rate
Procedia PDF Downloads 3332037 Area Efficient Carry Select Adder Using XOR Gate Design
Authors: Mahendrapal Singh Pachlaniya, Laxmi Kumre
Abstract:
The AOI (AND – OR- INVERTER) based design of XOR gate is proposed in this paper with less number of gates. This new XOR gate required four basic gates and basic gate include only AND, OR, Inverter (AOI). Conventional XOR gate required five basic gates. Ripple Carry Adder (RCA) used in parallel addition but propagation delay time is large. RCA replaced with Carry Select Adder (CSLA) to reduce propagation delay time. CSLA design with dual RCA considering carry = ‘0’ and carry = ‘1’, so it is not an area efficient adder. To make area efficient, modified CSLA is designed with single RCA considering carry = ‘0’ and another RCA considering carry = ‘1’ replaced with Binary to Excess 1 Converter (BEC). Now replacement of conventional XOR gate by new design of XOR gate in modified CSLA reduces much area compared to regular CSLA and modified CSLA.Keywords: CSLA, BEC, XOR gate, area efficient
Procedia PDF Downloads 3622036 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow
Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian
Abstract:
In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.Keywords: bio-heat, boussinesq, conduction, convection, eye
Procedia PDF Downloads 3452035 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics
Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh
Abstract:
Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity
Procedia PDF Downloads 144