Search results for: violation data discovery
25709 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants
Authors: Lamis Naddaf, Yuval Tabach
Abstract:
In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles
Procedia PDF Downloads 9725708 Unprecedented Bioactive Naturally-occurring Compounds from the Rare and Endangered Plants Endemic to China
Authors: Jin-Feng Hu
Abstract:
Over the past decades, the global biodiversity has continued to decline. The threats to the terrestrial plant species have increased under anthropogenic activities and other massive ecological change impacts. The situation is much more serious in China, the third richest countries regarding plant biodiversity in the world. It was not until 1992 that the first volume of the China Plant Red Data Book was published. Nowadays, a significant number of Chinese endemic plants have been threatened (The IUCN Red List). Nevertheless, plant-originated natural products (NPs) have continued to play a crucial role in the drug discovery and development process. The opportunity for identifying new chemical entities for emerging and malignant diseases depends on a diversity of drug-producing species. Several statistical surveys unveiled that the rare and endangered plants (REPs) have proven to be better sources for drug discovery than other botanic sources. The identification of bioactive NPs from REPs reveals the importance of conservation efforts in preventing species diversity loss and addressing human diseases at the same time. Thus, there is an urgent need to investigate these fragile REPs. Since 2013, our group has initially launched a special program to systematically identify bioactive/novel NPs from REPs native to China. The selected plant species were generally collected from the remote Mountain areas, and have never been chemically or pharmacologically investigated. Due to the difficult collection of the mass-limited samples of REPs, studies on the secondary metabolites of REPs-associated endophytes would provide a promising alternative potential solution. This presentation details the achievements that related to a series of “Phytochemical and biological studies on rare and endangered plants endemic to China”.Keywords: bioactive naturally-occrring compounds, rare and endengered plants (REPs), plant endophytes, drug discovery
Procedia PDF Downloads 3825707 Women Students’ Management of Alcohol- Related Sexual Risk at a South African University
Authors: Shakila Singh
Abstract:
This research was conducted at a selected South African university campus with women students who drink alcohol. The purpose of the study was to examine their perspectives on the role of alcohol in their lives, their understandings about women’s vulnerability to alcohol-related sexual risk and their strategies against these. The study draws on feminist principles and practices to challenge gendered inequalities that legitimate and facilitate violence against women. Recognising the danger of focusing on risk management in ways that place the burden of responsibility entirely on young women to prevent their violation, this article focuses on women students’ agency in managing risk while taking up opportunities for self-discovery. Participation was voluntary, and a student-researcher administered an open-ended questionnaire to 55 participants. The findings suggest that young women position alcohol- use as a common activity at university, and that it gives them much pleasure. They recognise that it is riskier for women and articulate valuable strategies to manage the risk to their sexual safety when drinking. These include drinking within supportive networks, avoiding financial dependence, and managing their alcohol intake. This article argues that alcohol at university is an integral part of expressions of gender and sexuality and that risk-taking is a normal part of university students’ lives. Consequently, arguments about equality need to consider risk-taking as part of young people’s lives and promote ways of managing alcohol-related risks, rather than imagining that alcohol can be avoided entirely.Keywords: alcohol-related sexual risk, drinking at university, managing risk, women students
Procedia PDF Downloads 10625706 Using Textual Pre-Processing and Text Mining to Create Semantic Links
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.Keywords: semantic links, data mining, linked data, SKOS
Procedia PDF Downloads 18125705 The Different Learning Path Analysis of Students with Different Learning Attitudes and Styles in Arts Creation
Authors: Tracy Ho, Huann-Shyang Lin, Mina Lin
Abstract:
This study investigated the different learning path of students with different learning attitude and learning styles in Arts Creation. Based on direct instruction, guided-discovery learning, and discovery learning theories, a tablet app including the following three learning areas were developed for students: (1) replication and remix practice area, (2) guided creation area, and (3) free creation area. Thirty. students with different learning attitude and learning styles were invited to use this app. Students’ learning behaviors were categorized and defined. The results will provide both educators and researchers with insights that can form a useful foundation for designing different content and strategy with the application of new technologies in school teaching. It also sheds light on how an educational App can be designed to enhance Arts Creation.Keywords: App, arts creation, learning attitude, learning style, tablet
Procedia PDF Downloads 27825704 Protection of Minor's Privacy in Bosnian Herzegovinian Media (Legal Regulation and Current Media Reporting)
Authors: Ilija Musa
Abstract:
Positive legal regulation of juvenile privacy protection, current state of showing a child in BH media and possibilities of a child’s privacy protection by more adequate media legislature which should be arranged in accordance to recommendations of the UN Committee on the Rights of the Child for Bosnia and Herzegovina. Privacy of the minors in Bosnian-Herzegovinian media is insufficiently legally arranged. Due to the fact that there is no law on media area arrangement at the state level, electronic media are under jurisdiction of Communications regulatory agency, which at least partially, regulated the sector of radio and television broadcasting by adequate protection of child’s privacy. However, print and online media are under jurisdiction of non-governmental association Print and online media council in B&H which is not authorized to punish violators of this body’s Codex, what points out the necessity of passing the unique media law which would enable sanctioning the child’s privacy violation. The analysis of media content, which is a common violation of the child's privacy, analysis of positive legislation which regulates the media, confirmed the working hypothesis by which the minor’s protection policy in BH media is not protected at the appropriate level. Taking this into consideration, in the conclusion of this article the author gives recommendations for the regulation of legal protection of minor’s privacy in BH media.Keywords: children, media, legislation, privacy protection, Bosnia Herzegovina
Procedia PDF Downloads 49325703 The Association of Southeast Asian Nations (ASEAN) and the Dynamics of Resistance to Sovereignty Violation: The Case of East Timor (1975-1999)
Authors: Laura Southgate
Abstract:
The Association of Southeast Asian Nations (ASEAN), as well as much of the scholarship on the organisation, celebrates its ability to uphold the principle of regional autonomy, understood as upholding the norm of non-intervention by external powers in regional affairs. Yet, in practice, this has been repeatedly violated. This dichotomy between rhetoric and practice suggests an interesting avenue for further study. The East Timor crisis (1975-1999) has been selected as a case-study to test the dynamics of ASEAN state resistance to sovereignty violation in two distinct timeframes: Indonesia’s initial invasion of the territory in 1975, and the ensuing humanitarian crisis in 1999 which resulted in a UN-mandated, Australian-led peacekeeping intervention force. These time-periods demonstrate variation on the dependent variable. It is necessary to observe covariation in order to derive observations in support of a causal theory. To establish covariation, my independent variable is therefore a continuous variable characterised by variation in convergence of interest. Change of this variable should change the value of the dependent variable, thus establishing causal direction. This paper investigates the history of ASEAN’s relationship to the norm of non-intervention. It offers an alternative understanding of ASEAN’s history, written in terms of the relationship between a key ASEAN state, which I call a ‘vanguard state’, and selected external powers. This paper will consider when ASEAN resistance to sovereignty violation has succeeded, and when it has failed. It will contend that variation in outcomes associated with vanguard state resistance to sovereignty violation can be best explained by levels of interest convergence between the ASEAN vanguard state and designated external actors. Evidence will be provided to support the hypothesis that in 1999, ASEAN’s failure to resist violations to the sovereignty of Indonesia was a consequence of low interest convergence between Indonesia and the external powers. Conversely, in 1975, ASEAN’s ability to resist violations to the sovereignty of Indonesia was a consequence of high interest convergence between Indonesia and the external powers. As the vanguard state, Indonesia was able to apply pressure on the ASEAN states and obtain unanimous support for Indonesia’s East Timor policy in 1975 and 1999. However, the key factor explaining the variance in outcomes in both time periods resides in the critical role played by external actors. This view represents a serious challenge to much of the existing scholarship that emphasises ASEAN’s ability to defend regional autonomy. As these cases attempt to show, ASEAN autonomy is much more contingent than portrayed in the existing literature.Keywords: ASEAN, east timor, intervention, sovereignty
Procedia PDF Downloads 35925702 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System
Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal
Abstract:
Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks
Procedia PDF Downloads 39625701 An Ethnographic Study on How Namibian Sex Workers Experience Their Violation of Rights
Authors: Tessa Verhallen, Mama Africa
Abstract:
By co-constructing personal narratives of sex workers in Namibia this paper represents how sex workers experience their violation of rights in Namibia. It is written from an emic (as an advisor for a sex worker-led organization named Rights not Rescue Trust) and an etic (as an ethnographer) point of view, in collaboration with the staff of the organization Rights not Rescue Trust. This organization represents circa 3000 members. The paper describes the current deplorable situation of sex workers in Namibia, encompassing the stigma and discrimination they face, their struggle to have their work decriminalized and their urge to advocate for human rights and the end of violations. Based on a triangular research design (ethnography, narratives, literature study, human rights’ training and counseling sessions) the authors show that sex workers, particularly LGBTI sex workers, are extremely vulnerable to emotional, physical, and sexual violence in Namibia. The main perpetrators of violence turn out to be not only clients and intimate partners but also law enforcement officers and health care workers who are supposed to protect and support sex workers. The sex workers’ narratives voice their disgraceful circumstances regarding how their rights are violated. It also highlights their importance to fight for their rights and access to health care, legal services and education in order to improve the sexual reproductive health of sex workers.Keywords: HIV/aids, LGBTI, methodological innovative, sex work
Procedia PDF Downloads 31225700 Educating Empathy: Combining Active Listening and Moral Discovery to Facilitate Prosocial Connection
Authors: Erika Price, Lisa Johnson
Abstract:
Cognitive and dispositional empathy is decreasing among students worldwide, particularly those at university. This paper looks at the effects of encouraging empathetic positioning in divisive topics by teaching listening skills and moral discovery to university students. Two groups of university students were given the assignment to interview individuals they disagreed with on social issues (e.g. abortion, gun control, legalization of drugs, involvement in Ukraine, etc.). One group completed the assignment with no other instruction. The second group completed the assignment after receiving instruction in active listening and Jonathan Haidt’s theory of moral foundations in politics. Results show that when students are given both active listening techniques and awareness of moral foundations, they are significantly more likely to have socially positive interactions with those they disagree with on issues as compared to those who listen passively to ideological opponents. As students interacted with those they disagreed with, they evidenced prosocial behaviors of acknowledgement, validation, and even commonalities with their opponents’ viewpoints, signifying a heartening trend of empathetic connection that is waning in students. The research suggests that empathy is a skill that can be nurtured by active listening but that it is more fully cultivated when paired with the concept of moral foundations underpinning political ideologies. These findings shed light on how to create more effective pedagogies for social and emotional learning, as well as inclusion.Keywords: empathy, listening skills, moral discovery, pedagogy, prosocial behavior
Procedia PDF Downloads 6925699 The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery
Authors: Khadidja Belbachir, Hafida Belbachir
Abstract:
subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm.Keywords: association rules, distributed data mining, partition, parallel algorithms
Procedia PDF Downloads 42125698 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets
Authors: Basiru Amuneni
Abstract:
Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality
Procedia PDF Downloads 9425697 Exploring the History of Chinese Music Acoustic Technology through Data Fluctuations
Abstract:
The study of extant musical sites can provide a side-by-side picture of historical ethnomusicological information. In their data collection on Chinese opera houses, researchers found that one Ming Dynasty opera house reached a width of nearly 18 meters, while all opera houses of the same period and after it was far from such a width, being significantly smaller than 18 meters. The historical transient fluctuations in the data dimension of width that caused Chinese theatres to fluctuate in the absence of construction scale constraints have piqued the interest of researchers as to why there is data variation in width. What factors have contributed to the lack of further expansion in the width of theatres? To address this question, this study used a comparative approach to conduct a venue experiment between this theater stage and another theater stage for non-heritage opera performances, collecting the subjective perceptions of performers and audiences at different theater stages, as well as combining BK Connect platform software to measure data such as echo and delay. From the subjective and objective results, it is inferred that the Chinese ancients discovered and understood the acoustical phenomenon of the Haas effect by exploring the effect of stage width on musical performance and appreciation of listening states during the Ming Dynasty and utilized this discovery to serve music in subsequent stage construction. This discovery marked a node of evolution in Chinese architectural acoustics technology driven by musical demands. It is also instructive to note that, in contrast to many of the world's "unsuccessful civilizations," China can use a combination of heritage and intangible cultural research to chart a clear, demand-driven course for the evolution of human music technology, and that the findings of such research will complete the course of human exploration of music acoustics. The findings of such research will complete the journey of human exploration of music acoustics, and this practical experience can be applied to the exploration and understanding of other musical heritage base data.Keywords: Haas effect, musical acoustics, history of acoustical technology, Chinese opera stage, structure
Procedia PDF Downloads 18525696 Helping the Development of Public Policies with Knowledge of Criminal Data
Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno
Abstract:
The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.Keywords: social data analysis, criminal records, computational techniques, data mining, big data
Procedia PDF Downloads 8625695 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 17125694 Combating Malaria: A Drug Discovery Approach Using Thiazole Derivatives Against Prolific Parasite Enzyme PfPKG
Authors: Hari Bezwada, Michelle Cheon, Ryan Divan, Hannah Escritor, Michelle Kagramian, Isha Korgaonkar, Maya MacAdams, Udgita Pamidigantam, Richard Pilny, Eleanor Race, Angadh Singh, Nathan Zhang, LeeAnn Nguyen, Fina Liotta
Abstract:
Malaria is a deadly disease caused by the Plasmodium parasite, which continues to develop resistance to current antimalarial drugs. In this research project, the effectiveness of numerous thiazole derivatives was explored in inhibiting the PfPKG, a crucial part of the Plasmodium life cycle. This study involved the synthesis of six thiazole-derived amides to inhibit the PfPKG pathway. Nuclear Magnetic Resonance (NMR) spectroscopy and Infrared (IR) spectroscopy were used to characterize these compounds. Furthermore, AutoDocking software was used to predict binding affinities of these thiazole-derived amides in silico. In silico, compound 6 exhibited the highest predicted binding affinity to PfPKG, while compound 5 had the lowest affinity. Compounds 1-4 displayed varying degrees of predicted binding affinity. In-vitro, it was found that compound 4 had the best percent inhibition, while compound 5 had the worst percent inhibition. Overall, all six compounds had weak inhibition (approximately 30-39% at 10 μM), but these results provide a foundation for future drug discovery experiments.Keywords: Medicinal Chemistry, Malaria, drug discovery, PfPKG, Thiazole, Plasmodium
Procedia PDF Downloads 9825693 Realistic Study Discover Some Posture Deformities According to Some Biomechanical Variables for Schoolchildren
Authors: Basman Abdul Jabbar
Abstract:
The researchers aimed to improve the importance of the good posture without any divisions & deformities. The importance of research lied in the discovery posture deformities early so easily treated before its transformation into advanced abnormalities difficult to treat and may need surgical intervention. Research problem was noting that some previous studies were based on the discovery of posture deformities, which was dependent on the (self-evaluation) which this type did not have accuracy to discover deformities. The Samples were (500) schoolchildren aged (9-11 years, males) at Baghdad al Karak. They were students at primary schools. The measure included all posture deformities. The researcher used video camera to analyze the posture deformities according to biomechanical variables by Kinovea software for motion analysis. The researcher recommended the need to use accurate scientific methods for early detection of posture deformities in children which contribute to the prevention and reduction of distortions.Keywords: biomechanics, children, deformities, posture
Procedia PDF Downloads 28525692 A Photoredox (C)sp³-(C)sp² Coupling Method Comparison Study
Authors: Shasline Gedeon, Tiffany W. Ardley, Ying Wang, Nathan J. Gesmundo, Katarina A. Sarris, Ana L. Aguirre
Abstract:
Drug discovery and delivery involve drug targeting, an approach that helps find a drug against a chosen target through high throughput screening and other methods by way of identifying the physical properties of the potential lead compound. Physical properties of potential drug candidates have been an imperative focus since the unveiling of Lipinski's Rule of 5 for oral drugs. Throughout a compound's journey from discovery, clinical phase trials, then becoming a classified drug on the market, the desirable properties are optimized while minimizing/eliminating toxicity and undesirable properties. In the pharmaceutical industry, the ability to generate molecules in parallel with maximum efficiency is a substantial factor achieved through sp²-sp² carbon coupling reactions, e.g., Suzuki Coupling reactions. These reaction types allow for the increase of aromatic fragments onto a compound. More recent literature has found benefits to decreasing aromaticity, calling for more sp³-sp² carbon coupling reactions instead. The objective of this project is to provide a comparison between various sp³-sp² carbon coupling methods and reaction conditions, collecting data on production of the desired product. There were four different coupling methods being tested amongst three cores and 4-5 installation groups per method; each method ran under three distinct reaction conditions. The tested methods include the Photoredox Decarboxylative Coupling, the Photoredox Potassium Alkyl Trifluoroborate (BF3K) Coupling, the Photoredox Cross-Electrophile (PCE) Coupling, and the Weix Cross-Electrophile (WCE) Coupling. The results concluded that the Decarboxylative method was very difficult in yielding product despite the several literature conditions chosen. The BF3K and PCE methods produced competitive results. Amongst the two Cross-Electrophile coupling methods, the Photoredox method surpassed the Weix method on numerous accounts. The results will be used to build future libraries.Keywords: drug discovery, high throughput chemistry, photoredox chemistry, sp³-sp² carbon coupling methods
Procedia PDF Downloads 14425691 A Study of Various Ontology Learning Systems from Text and a Look into Future
Authors: Fatima Al-Aswadi, Chan Yong
Abstract:
With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web
Procedia PDF Downloads 52525690 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 36025689 Performance Analysis with the Combination of Visualization and Classification Technique for Medical Chatbot
Authors: Shajida M., Sakthiyadharshini N. P., Kamalesh S., Aswitha B.
Abstract:
Natural Language Processing (NLP) continues to play a strategic part in complaint discovery and medicine discovery during the current epidemic. This abstract provides an overview of performance analysis with a combination of visualization and classification techniques of NLP for a medical chatbot. Sentiment analysis is an important aspect of NLP that is used to determine the emotional tone behind a piece of text. This technique has been applied to various domains, including medical chatbots. In this, we have compared the combination of the decision tree with heatmap and Naïve Bayes with Word Cloud. The performance of the chatbot was evaluated using accuracy, and the results indicate that the combination of visualization and classification techniques significantly improves the chatbot's performance.Keywords: sentimental analysis, NLP, medical chatbot, decision tree, heatmap, naïve bayes, word cloud
Procedia PDF Downloads 7725688 Psychosocial Consequences of Discovering Misattributed Paternity in Adulthood: Insider Action Research
Authors: Alyona Cerfontyne, Levita D'Souza, Lefteris Patlamazoglou
Abstract:
Unlike adoption and donor-assisted reproduction, misattributed paternity occurring within the context of spontaneous conception and outside of formally recognised practices of having a child remains largely an understudied phenomenon. In adulthood, to discover misattributed paternity, i.e., that the man you call your father is not related to you genetically, can have profound implications for everyone affected. Until the advent of direct-to-consumer DNA testing 20 years ago, such discoveries were relatively rare. Despite the growing number of individuals uncovering their biogenetic paternity through genetic testing, there is very limited research on misattributed paternity from the perspective of adult children affected by it. No research exists on how to support these individuals through counselling post-discovery. Framed as insider action research, this study aimed to explore the perceived psychosocial consequences of misattributed paternity discoveries and coping strategies used by individuals who discover their misattributed paternity status in adulthood. In total, 12 individuals with misattributed paternity participated in semi-structured interviews in July-August 2022. The collected data was analysed using reflexive thematic analysis. The study’s results indicate that discovering misattributed paternity in adulthood can be likened to a watershed moment forever changing the trajectory of one’s life. Psychological experiences consistent with trauma, as well as grief and loss, re-evaluation of close family relationships, reestablishment of one’s identity, as well as experiencing a profound need to belong are the key themes emerging from the analysis of psychosocial experiences. Post-discovery, individuals with misattributed paternity employ a wide range of emotional and problem-focused coping strategies, amongst which seeking connection with those who understand, searching for information on the new biogenetic family and finding new meanings to life are most prominent. The study contributes both to the academic and practical knowledge of experiences of misattributed paternity and highlights the importance of further research on the topic.Keywords: discovery of misattributed paternity, misattributed paternity, paternal discrepancy, psychosocial consequences, coping
Procedia PDF Downloads 9125687 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction
Authors: Yumeng Ma, Fang Wang, Jinxia Huang
Abstract:
Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base
Procedia PDF Downloads 16325686 Fraud in the Higher Educational Institutions in Assam, India: Issues and Challenges
Authors: Kalidas Sarma
Abstract:
Fraud is a social problem changing with social change and it has a regional and global impact. Introduction of private domain in higher education along with public institutions has led to commercialization of higher education which encourages unprecedented mushrooming of private institutions resulting in fraudulent activities in higher educational institutions in Assam, India. Presently, fraud has been noticed in in-service promotion, fake entry qualification by teachers in different levels of work-place by using fake master degrees, master of philosophy and doctor of philosophy degree certificates. The aim and objective of the study are to identify grey areas in maintenance of quality in higher educational institutions in Assam and also to draw the contour for planning and implementation. This study is based on both primary and secondary data collected through questionnaire and seeking information through Right to Information Act 2005. In Assam, there are 301 undergraduate and graduate colleges distributed in 27 (Twenty seven) administrative districts with 11000 (Eleven thousand) college teachers. Total 421 (Four hundred twenty one) college teachers from the 14 respondent colleges have been taken for analysis. Data collected has been analyzed by using 'Hypertext Pre-processor' (PhP) application with My Sequel Structure Query Language (MySQL) and Google Map Application Programming Interface (APIs). Graph has been generated by using open source tool Chart.js. Spatial distribution maps have been generated with the help of geo-references of the colleges. The result shows: (i) the violation of University Grants Commission's (UGCs) Regulation for the awards of M. Phil/Ph.D. clearly exhibits. (ii) There is a gap between apex regulatory bodies of higher education at national and as well as state level to check fraud. (iii) Mala fide 'No Objection Certificate' (NOC) issued by the Government of Assam have played pivotal role in the occurrence of fraudulent practices in higher educational institutions of Assam. (iv) Violation of verdict of the Hon'ble Supreme Court of India regarding territorial jurisdiction of Universities for the awards of Ph.D. and M. Phil degrees in distance mode/study centre is also a responsible factor for the spread of these academic frauds in Assam and other states. The challenges and mitigation of these issues have been discussed.Keywords: Assam, fraud, higher education, mitigation
Procedia PDF Downloads 16925685 Machine Learning Application in Shovel Maintenance
Authors: Amir Taghizadeh Vahed, Adithya Thaduri
Abstract:
Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.Keywords: maintenance, machine learning, shovel, conditional based monitoring
Procedia PDF Downloads 22225684 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence
Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi
Abstract:
Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements
Procedia PDF Downloads 31425683 An Enhanced Connectivity Aware Routing Protocol for Vehicular Ad Hoc Networks
Authors: Ahmadu Maidorawa, Kamalrulnizam Abu Bakar
Abstract:
This paper proposed an Enhanced Connectivity Aware Routing (ECAR) protocol for Vehicular Ad hoc Network (VANET). The protocol uses a control broadcast to reduce the number of overhead packets needed in a route discovery process. It is also equipped with an alternative backup route that is used whenever a primary path to destination failed, which highly reduces the frequent launching and re-launching of the route discovery process that waste useful bandwidth and unnecessarily prolonging the average packet delay. NS2 simulation results show that the performance of ECAR protocol outperformed the original connectivity aware routing (CAR) protocol by reducing the average packet delay by 28%, control overheads by 27% and increased the packet delivery ratio by 22%.Keywords: alternative path, primary path, protocol, routing, VANET, vehicular ad hoc networks
Procedia PDF Downloads 40425682 Root Causes of Child Labour in Hargeisa, Somaliland
Authors: Abdikarim Yusuf
Abstract:
This study uses data from Somalia to analyse child labour using a descriptive and qualitative method. The study set out to identify root causes of child labour in Hargeisa and its implications for children. The study shows that poverty, droughts, family separation, and loss of properties are primary drivers of child labour in Hargeisa. The study found that children work in very difficult jobs such as car wash, casual work, and shoe shining for boys while girls work as housemaids, selling tea, Khat and sometimes are at risk of exploitation such as sexual abuse, rape and harassment. The majority of the parents responded that they don’t know any policy, act or law that protects children. Men showed greater awareness than the women respondents in recognizing child labour as a child rights violation.Keywords: abuse, child, violence, protection
Procedia PDF Downloads 15325681 Trafficking of Women in International Migration: Issues and Major Challenges in Present Scenario
Authors: Neha Singh, Anshuman Rana
Abstract:
Gender-Based Violence (GBV) is a violation of human rights and a form of discrimination which reinforces inequalities between men and women. It is defined as violence that is directed against a person on the basis of gender. There has been increased attention to human trafficking that has exposed to illegal migration. Trafficking is complex, but it generally takes place due to “push and pull factors”. India is both a source as well as a transit country for trafficking. Women are bought and sold with impunity and trafficked to other countries. They are forced to work as sex worker, forced labour and other practices of slavery. Trafficked victims often suffer from serious abuse and physical exhaustion. The effects of violence on women vary widely. GBV typically has physical, psychological and social effects. They face unwanted pregnancies, miscarriages, high rate of infertility and sexually transmitted disease. The social exclusion of women is so great that it constitutes a new form of apartheid. Women are considered as lesser value and deprived of their fundamental rights. Violation of human rights and fundamental freedom such as- trafficking of women, girls for sex trade, forced prostitution and sex tourism have become the focus of internationally organized crimes. My paper will analyse the impact of violence on society as well. Law alone cannot change the scenario and problem of gender-biasness. The whole issue of gender violence needs social awakening and change in attitude of masses, so that due respect and equal status is given to women.Keywords: gender-based violence, trafficking, migration, violence impact, social exclusion, law enforcement
Procedia PDF Downloads 28325680 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 161