Search results for: toxicity prediction
3088 Study on the Model Predicting Post-Construction Settlement of Soft Ground
Authors: Pingshan Chen, Zhiliang Dong
Abstract:
In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.Keywords: prediction, model, post-construction settlement, soft ground
Procedia PDF Downloads 4253087 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 913086 Identifying Knowledge Gaps in Incorporating Toxicity of Particulate Matter Constituents for Developing Regulatory Limits on Particulate Matter
Authors: Ananya Das, Arun Kumar, Gazala Habib, Vivekanandan Perumal
Abstract:
Regulatory bodies has proposed limits on Particulate Matter (PM) concentration in air; however, it does not explicitly indicate the incorporation of effects of toxicities of constituents of PM in developing regulatory limits. This study aimed to provide a structured approach to incorporate toxic effects of components in developing regulatory limits on PM. A four-step human health risk assessment framework consists of - (1) hazard identification (parameters: PM and its constituents and their associated toxic effects on health), (2) exposure assessment (parameters: concentrations of PM and constituents, information on size and shape of PM; fate and transport of PM and constituents in respiratory system), (3) dose-response assessment (parameters: reference dose or target toxicity dose of PM and its constituents), and (4) risk estimation (metric: hazard quotient and/or lifetime incremental risk of cancer as applicable). Then parameters required at every step were obtained from literature. Using this information, an attempt has been made to determine limits on PM using component-specific information. An example calculation was conducted for exposures of PM2.5 and its metal constituents from Indian ambient environment to determine limit on PM values. Identified data gaps were: (1) concentrations of PM and its constituents and their relationship with sampling regions, (2) relationship of toxicity of PM with its components.Keywords: air, component-specific toxicity, human health risks, particulate matter
Procedia PDF Downloads 3113085 The Relation Between Oxidative Stress, Inflammation, and Neopterin in the Paraquat-Induced Lung Toxicity
Authors: M. Toygar, I. Aydin, M. Agilli, F. N. Aydin, M. Oztosun, H. Gul, E. Macit, Y. Karslioglu, T. Topal, B. Uysal, M. Honca
Abstract:
Paraquat (PQ) is a well-known quaternary nitrogen herbicide. The major target organ in PQ poisoning is the lung. Reactive oxygen species (ROS) and inflammation play a crucial role in the development of PQ-induced pulmonary injury. Neopterin is synthesized in macrophage by interferon g and other cytokines. We aimed to evaluate the utility of neopterin as a diagnostic marker in PQ-induced lung toxicity. Sprague Dawley rats were randomly divided into two groups (sham and PQ), administered intraperitoneally 1 mL saline and PQ (15 mg/kg/mL) respectively. Blood samples and lungs were collected for analyses. Lung injury and fibrosis were seen in the PQ group. Serum total antioxidant capacity, lactate dehydrogenase (LDH), and lung transforming growth factor-1 (TGF-1) levels were significantly higher than the sham group (in all, p< 0.001). In addition, in the PQ group, serum neopterin and lung malondialdehyde (MDA) levels were also significantly higher than the sham group (in all, p 1/4 0.001). Serum neopterin levels were correlated with LDH activities, lung MDA, lung TGF-1 levels, and the degree of lung injury. These findings demonstrated that oxidative stress, reduction of antioxidant capacity, and inflammation play a crucial role in the PQ-induced lung injury. Elevated serum neopterin levels may be a prognostic parameter to determine extends of PQ-induced lung toxicity. Further studies may be performed to clarify the role of neopterin by different doses of PQ.Keywords: paraquat, inflammation, oxidative stress, neopterin, lung toxicity
Procedia PDF Downloads 3863084 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption
Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett
Abstract:
Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera
Procedia PDF Downloads 1483083 Artificial Neural Network in FIRST Robotics Team-Based Prediction System
Authors: Cedric Leong, Parth Desai, Parth Patel
Abstract:
The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)
Procedia PDF Downloads 5143082 Green Synthesis of Silver Nanoparticles, Their Toxicity and Biomedical Applications
Authors: Kiran Shehzadi, Yasmeen Akhtar, Mujahid Ameen, Tabinda Ijaz, Shoukat Siddique
Abstract:
Nanoparticles, due to their different sizes and morphologies, are employed in various fields such as the medical field, cosmetics, pharmaceutical, textile industry as well as in paints, adhesives, and electronics. Metal nanoparticles exhibit excellent antimicrobial activity, dye degradation and can be used as anti-cancerous drug loading agents. In this study, sZilver nanoparticles (Ag-NPs) were synthesized employing doxycycline (antibiotic) as a reducing and capping agent (biological/green synthesis). Produced Ag-NPS were characterized using UV/VIS spectrophotometry, XRD, SEM, and FTIR. Surface plasmon resonance (SPR) of silver nanoparticles was observed at 411nm with 90nm size with homogenized spherical shape. These particles revealed good inhibition zones for Fungi such as Candida albicans and Candida tropicalis. In this study, toxic properties of Ag-NPs were monitored by allowing them to penetrate in the cell, causing an abrupt increase in oxidative stress, which resulted ultimately in cell death. Histopathological analysis of mice organs was performed by administering definite concentrations of silver nanoparticles orally to mice for 14 days. Toxic properties were determined, and it was revealed that the toxicity of silver nanoparticles mainly depends on the size. Silver nanoparticles of this work presented mild toxicity for different organs (liver, kidney, spleen, heart, and stomach) of mice.Keywords: metal nanoparticles, green/biological methods, toxicity, Candida albicans, Candida tropicalis
Procedia PDF Downloads 1313081 Physiological and Molecular Characterizations of Ricinus Communis Genotypes under Cadmium Stress
Authors: Rini Rahul, Manoj Kumar
Abstract:
Cadmium (Cd) is a poisonous trace metal, which is responsible for excess reactive oxygen species generation (ROS) in plants, thereby adversely affecting their productivity and commercial potential. Ricinus communis (castor) is an industry-efficient non-edible bioenergy crop used for phytoremediation and re-vegetation. We have determined the total Cd content in castor genotypes and established a relationship between the Cd tolerance mechanism and physiological parameters like chlorophyll fluorescence, the total photosynthetic activity, chlorophyll and carotenoid content as well as ROS generation and malondialdehyde content. This study is an effort to comprehend the interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), nicotianamine synthase (NAS) and Natural resistance-associated macrophage protein (NRAMP) gene. The antioxidant enzyme activity increased for WM hence conferring Cd toxicity in this genotype. RcNRAMP genes showed differential expression in GCH2 and WM genotypes; this can also be one of the reasons for Cd toxicity and sensitivity in WM and GCH2, respectively. The cause of pronounced Cd tolerance in WM leaves can be because of enhanced expression of RcNAS1, RcNAS2 and RcNAS3 genes. Our results demonstrate that there is an interrelation between Cd toxicity (control, 250 µM and 500 µM), proline, various ROS scavenging enzymes (anti-oxidative in nature), NAS and NRAMP gene.Keywords: ricinus communis, cadmium, reactive oxygen species, nicotianamine synthase, NRAMP, malondialdehyde
Procedia PDF Downloads 773080 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 973079 Soccer Match Result Prediction System (SMRPS) Model
Authors: Ajayi Olusola Olajide, Alonge Olaide Moses
Abstract:
Predicting the outcome of soccer matches poses an interesting challenge for which it is realistically impossible to successfully do so for every match. Despite this, there are lots of resources that are being expended on the correct prediction of soccer matches weekly, and all over the world. Soccer Match Result Prediction System Model (SMRPSM) is a system that is proposed whereby the results of matches between two soccer teams are auto-generated, with the added excitement of giving users a chance to test their predictive abilities. Soccer teams from different league football are loaded by the application, with each team’s corresponding manager and other information like team location, team logo and nickname. The user is also allowed to interact with the system by selecting the match to be predicted and viewing of the results of completed matches after registering/logging in.Keywords: predicting, soccer match, outcome, soccer, matches, result prediction, system, model
Procedia PDF Downloads 4913078 Toxicity, Analgesic, and Anti-Pyretic Activities of Methanolic Extract from Hyoscyamus albus’ Leaves in Albinos Rats
Authors: Yahia Massinissa, Afaf Benhouda, Mouloud Yahia
Abstract:
Objective: The aim of this study was to investigate the toxicity; analgesic and anti-pyretic properties of standardized HA methanolic extract (HAMeOH) in vivo. Methods: The acute toxicity study was performed on rats while adopting the OECD-420 Guidelines (fixed dose procedure). Assessment of analgesic activity was performed in rats with two analgesic models. One was acetic acid induced writhing response and the other formalin-induced paw licking. The anti-pyretic effect was tested by Brewer’s yeast induced fever in rats. Results: For the acute toxicity test, the higher dose administration of 2000 mg/kg bw. of H.albus did not produce any toxic signs or deaths in rats. There were no significant differences (p>0.05) in the body and organ weights between control and treated groups. The (LD50) of 'H. albus' was higher than 2000 g/kg bw. In subacute toxicity study, no mortality and toxic signs were observed with the doses of 100 and 200 mg/kg bw. of extracts of for 28 consecutive days. These analgesic experimental results indicated that HAMeOH (100 mg/kg and 200 mg/kg) decreased the acetic acid-induced writhing responses and HAMeOH (100 mg/kg and 200 mg/kg) decreased the licking time in the second phase of the formalin test. Moreover, in the model of yeast-induced elevation of the body temperature HAMeOH showed dose-dependent lowering of the body temperature up to 3h at both the doses these results obtained, were comparable to that of paracetamol. Conclusion: The present findings indicate that the leaves of Hyoscyamus albus L. possess potent analgesic and antipyretic activity.Keywords: Hyoscyamus albus, Umbilicus rupestris, secondary metabolites, NMR with protons, pharmacobiologic activities, methanolic extract
Procedia PDF Downloads 4243077 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 1133076 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.Keywords: decision tree, genetic algorithm, machine learning, software defect prediction
Procedia PDF Downloads 3303075 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models
Authors: Rodrigo Aguiar, Adelino Ferreira
Abstract:
Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.Keywords: machine learning, artificial intelligence, frequency of accidents, road safety
Procedia PDF Downloads 893074 Persistent Toxicity of Imidacloprid to Aphis gossypii Glover and Amarasca biguttula biguttula Ishida on Okra
Authors: M. A. Pawar, C. S. Patil
Abstract:
Investigations were carried out to evaluate the persistent toxicity of imidacloprid, thiamethoxam and dimethoate to Aphis gossypii and Amrasca biguttula biguttula under laboratory condition during 2012. The experiment was conducted in a completely randomized block design with three replications in the glass house of department of Entomology M. P. K. V. Rahuri. Okra plants were raised in glass house following all recommended agronomic practices. The 21 days old plants were used for assessing the effect of insecticides on aphids and jassids. The insecticides were diluted with distilled water to make desired concentrations and used for foliar application. The insecticides included in the study were imidacloprid 17.8 SL, imidacloprid 70 WG, thiamethoxam 25 WG and dimethoate 30 EC. Untreated check was maintained by spraying with distilled water. The mortality of aphids and jassids on treated leaf were recorded at 1, 3, 5, 7, 9, 11, 13, 15, 17, 21, and 25 days after spray till zero per cent mortality observed for each treatment. Treated leaves from the glasshouse were brought to laboratory and were put in tube with moist cotton swab at the bottom of leaf and sucking apparatus was fit to the tube. Ten jassids were sucked in each tube from the plants in the field. Evaluated insecticides differed in their persistence and index of persistence toxicity against both insects of different treatments. Recommended dose of imidacloprid (25 g a.i/ha) persisted for 21 days against both aphids and jassids. However dimethoate, a conventional insecticide persisted for 11 days.Keywords: Amrasca biguttula biguttula, Aphis gossypii, imidacloprid, persistent toxicity
Procedia PDF Downloads 1923073 Gold Nanoparticle: Synthesis, Characterization, Clinico-Pathological, Pathological and Bio-Distribution Studies in Rabbits
Authors: M. M. Bashandy, A. R. Ahmed, M. El-Gaffary, Sahar S. Abd El-Rahman
Abstract:
This study evaluated the acute toxicity and tissue distribution of intravenously administered gold nanoparticles (AuNPs) in male rabbits. Rabbits were exposed to single dose of AuNPs (300 µg/ kg). Toxic effects were assessed via general behavior, hematological parameters, serum biochemical parameters and histopathological examination of various rabbits’ organs. Tissue distribution of AuNPs was evaluated at a dose of 300 µg/ kg in male rabbit. Inductively coupled plasma–mass spectrometry (ICP-MS) was used to determine gold concentrations in tissue samples collected at predetermined time intervals. After one week, AuNPs exerted no obvious acute toxicity in rabbits. However, inflammatory reactions in lung and liver cells were induced in rabbits treated at the300 µg/ kg dose level. The highest gold levels were found in the spleen, followed by liver, lungs and kidneys. These results indicated that AuNPs could be distributed extensively to various tissues in the body, but primarily in the spleen and liver.Keywords: gold nanoparticles, toxicity, pathology, hematology, liver function, kidney function
Procedia PDF Downloads 3363072 Size and Content of the Doped Silver Affected the Pulmonary Toxicity of Silver-Doped Nano-Titanium Dioxide Photocatalysts and the Optimization of These Two Parameters
Authors: Xiaoquan Huang, Congcong Li, Tingting Wei, Changcun Bai, Na Liu, Meng Tang
Abstract:
Silver is often doped on nano-titanium dioxide photocatalysts (Ag-TiO₂) by photodeposition method to improve their utilization of visible-light while increasing the toxicity of TiO₂。 However, it is not known what factors influence this toxicity and how to reduce toxicity while maintaining the maximum catalytic activity. In this study, Ag-TiO₂ photocatalysts were synthesized by the photodeposition method with different silver content (AgC) and photodeposition time (PDT). Characterization and catalytic experiments demonstrated that silver was well assembled on TiO₂ with excellent visible-light catalytic activity, and the size of silver increased with PDT. In vitro, the cell viability of lung epithelial cells A549 and BEAS-2B showed that the higher content and smaller size of silver doping caused higher toxicity. In vivo, Ag-TiO₂ catalysts with lower AgC or larger silver particle size obviously caused less pulmonary pro-inflammatory and pro-fibrosis responses. However, the visible light catalytic activity decreased with the increase in silver size. Therefore, in order to optimize the Ag-TiO₂ photocatalyst with the lowest pulmonary toxicity and highest catalytic performance, response surface methodology (RSM) was further performed to optimize the two independent variables of AgC and PDT. Visible-light catalytic activity was evaluated by the degradation rate of Rhodamine B, the antibacterial property was evaluated by killing log value for Escherichia coli, and cytotoxicity was evaluated by IC50 to BEAS-2B cells. As a result, the RSM model showed that AgC and PDT exhibited an interaction effect on catalytic activity in the quadratic model. AgC was positively correlated with antibacterial activity. Cytotoxicity was proportional to AgC while inversely proportional to PDT. Finally, the optimization values were AgC 3.08 w/w% and PDT 28 min. Under this optimal condition, the relatively high silver proportion ensured the visible-light catalytic and antibacterial activity, while the longer PDT effectively reduced the cytotoxicity. This study is of significance for the safe and efficient application of silver-doped TiO₂ photocatalysts.Keywords: Ag-doped TiO₂, cytotoxicity, inflammtion, fibrosis, response surface methodology
Procedia PDF Downloads 693071 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks
Procedia PDF Downloads 3883070 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant
Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács
Abstract:
Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy
Procedia PDF Downloads 3203069 Phytochemical Screening and Toxicological Studies of Aqueous Stem Bark Extract of Boswellia papyrifera (DEL) in Rats
Authors: Y. Abdulmumin, K. I. Matazu, A. M. Wudil, A. J. Alhassan, A. A. Imam
Abstract:
Phytochemical analysis of Boswellia papryfera confirms the presence of various phytochemicals such as alkaloids, flavonoids, tannins, saponins and cardiac glycosides in its aqueous stem bark extract at different concentration, with tannins being the highest (0.611 ± 0.002 g %). Acute toxicity test (LD50, oral, rat) of the extract showed no mortality at up to 5000 mg/kg and the animals were found active and healthy. The extract was declared as practically non-toxic, this suggest the safety of the extract in traditional medicine.Keywords: acute toxicity, aqueous extract, boswellia papryfera, phytochemicals and stem bark
Procedia PDF Downloads 4563068 Intelligent Earthquake Prediction System Based On Neural Network
Authors: Emad Amar, Tawfik Khattab, Fatma Zada
Abstract:
Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information of Earthquake Existed throughout history & Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.Keywords: BP neural network, prediction, RBF neural network, earthquake
Procedia PDF Downloads 4973067 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction
Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani
Abstract:
Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse
Procedia PDF Downloads 903066 Predicting Destination Station Based on Public Transit Passenger Profiling
Authors: Xuyang Song, Jun Yin
Abstract:
The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.Keywords: travel behavior, destination prediction, public transit, passenger profiling
Procedia PDF Downloads 213065 Protective Effect of Cow Urine against Chlorpyrifos Induced-Genotoxicity and Neurotoxicity in Albino Rats
Authors: Shelly Sharma, Pooja Chadha
Abstract:
Humans are exposed to pesticides and insecticides either directly or indirectly. Exposure to these pesticides may lead to acute toxicity to mammals and non-target organisms. Chlorpyrifos (CPF) is a broad spectrum organophosphate pesticide widely used in various countries of the world. The aim of the present study was to assess the toxicity associated with chlorpyrifos exposure and possible mitigating effect of cow urine against genotoxic and toxic effects in rat brain induced by chlorpyrifos. For this purpose LD50 was determined and rats were orally administered with 1/8th of LD50 (19mg/kg b.wt). Brain samples were taken after 24hrs, 48hrs and 72hrs of treatment. A significant increase in the % tail DNA was observed along with the increase in MDA levels of brain tissues in chlorpyrifos treated groups as compared to control. Cow urine treated groups show decrease in DNA damage and MDA levels as compared to CPF treated group. The study indicates that cow urine has ameliorative potential against neurotoxicity and genotoxicity induced by CPF. Cow urine is considered rich in vitamin A, E and volatile fatty acids which provide antioxidant potential to it. Thus, it can be used as a genoprotective agent.Keywords: comet assay, brain, cow urine, genotoxicity, toxicity
Procedia PDF Downloads 3833064 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 1643063 Comparison of Different Artificial Intelligence-Based Protein Secondary Structure Prediction Methods
Authors: Jamerson Felipe Pereira Lima, Jeane Cecília Bezerra de Melo
Abstract:
The difficulty and cost related to obtaining of protein tertiary structure information through experimental methods, such as X-ray crystallography or NMR spectroscopy, helped raising the development of computational methods to do so. An approach used in these last is prediction of tridimensional structure based in the residue chain, however, this has been proved an NP-hard problem, due to the complexity of this process, explained by the Levinthal paradox. An alternative solution is the prediction of intermediary structures, such as the secondary structure of the protein. Artificial Intelligence methods, such as Bayesian statistics, artificial neural networks (ANN), support vector machines (SVM), among others, were used to predict protein secondary structure. Due to its good results, artificial neural networks have been used as a standard method to predict protein secondary structure. Recent published methods that use this technique, in general, achieved a Q3 accuracy between 75% and 83%, whereas the theoretical accuracy limit for protein prediction is 88%. Alternatively, to achieve better results, support vector machines prediction methods have been developed. The statistical evaluation of methods that use different AI techniques, such as ANNs and SVMs, for example, is not a trivial problem, since different training sets, validation techniques, as well as other variables can influence the behavior of a prediction method. In this study, we propose a prediction method based on artificial neural networks, which is then compared with a selected SVM method. The chosen SVM protein secondary structure prediction method is the one proposed by Huang in his work Extracting Physico chemical Features to Predict Protein Secondary Structure (2013). The developed ANN method has the same training and testing process that was used by Huang to validate his method, which comprises the use of the CB513 protein data set and three-fold cross-validation, so that the comparative analysis of the results can be made comparing directly the statistical results of each method.Keywords: artificial neural networks, protein secondary structure, protein structure prediction, support vector machines
Procedia PDF Downloads 6223062 Acute Toxicity of Atrazine Herbicide on Caspian Kutum, Rutilus frisii kutum larvae
Authors: Zahra Khoshnood, Reza Khoshnood
Abstract:
Pesticides and drugs used in agriculture and veterinary medicine may end up in aquatic environments and bio-accumulate in the food chain, thus causing serious problems for fauna and human health. For determination of the toxic effects of atrazine herbicide on Caspian kutum, Rutilus frisii kutum larvae, the 96-h LC50 of atrazine was measured for newly hatched larvae as 18.53 ppm. Toxicity of atrazine herbicide on Caspian kutum larvae was investigated using concentrations: 9.25 ppm, 4.62 ppm and 2.31 ppm for 7 days. Comparison of the length, weight and condition factor showed that no significant differences between atrazine exposed and control groups. The concentration of Na+, K+, Ca2+, Mg2+, and Cl- in whole body of larvae in control and atrazine exposure groups were measured and the results showed that concentrations of all these ions is higher in atrazine exposure group than control group. It is obvious from this study that atrazine negatively affects osmoregulation process and changes ion compositions of the body even at sub-lethal concentration and acute exposure but have no effects on growth parameters of the body.Keywords: atrazine, caspian kutum, acute toxicity, body ions, lc50
Procedia PDF Downloads 2983061 The Effects of Root Zone Supply of Aluminium on Vegetative Growth of 15 Groundnut Cultivars Grown in Solution Culture
Authors: Mosima M. Mabitsela
Abstract:
Groundnut is preferably grown on light textured soils. Most of these light textured soils tend to be highly weathered and characterized by high soil acidity and low nutrient status. One major soil factor associated with infertility of acidic soils that can negatively depress groundnut yield is aluminium (Al) toxicity. In plants Al toxicity damages root cells, leading to inhibition of root growth as a result of the suppression of cell division, cell elongation and cell expansion in the apical meristem cells of the root. The end result is that roots become stunted and brittle, root hair development is poor, and the root apices become swollen. This study was conducted to determine the effects of aluminium (Al) toxicity on a range of groundnut varieties. Fifteen cultivars were tested in incremental aluminum (Al) supply in an ebb and flow solution culture laid out in a randomized complete block design. There were six aluminium (Al) treatments viz. 0 µM, 1 µM, 5.7 µM, 14.14 µM, 53.18 µM, and 200 µM. At 1 µM there was no inhibitory effect on the growth of groundnut. The inhibition of groundnut growth was noticeable from 5.7 µM to 200 µM, where the severe effect of aluminium (Al) stress was observed at 200 µM. The cultivars varied in their response to aluminium (Al) supply in solution culture. Groundnuts are one of the most important food crops in the world, and its supply is on a decline due to the light-textured soils that they thrive under as these soils are acidic and can easily solubilize aluminium (Al) to its toxic form. Consequently, there is a need to develop groundnut cultivars with high tolerance to soil acidity.Keywords: aluminium toxicity, cultivars, reduction, root growth
Procedia PDF Downloads 1523060 Impact of Two Xenobiotics in Mosquitofish: Gambusia affinis: Several Approaches
Authors: Chouahda Salima, Soltani Noureddine
Abstract:
The present study is a part of biological control against mosquitoes. It aims to assess the impact of two xenobiotics (a selective insect growth regulator: halofenozide and heavy metals: cadmium, more toxic and widespread in the region) in mosquitofish: Gambusia affinis. Several approaches were examined: Acute toxicity of cadmium and halofenozide: The acute toxicity of cadmium and halofenozide was examined in juvenile and adult males and females of G. affinis at different concentrations, cadmium causes mortality of the species studied with a relation dose-response. In laboratory conditions, the impact of cadmium was determined on two biomarkers of environmental stress: glutathione and acetylcholinesterase. The results show that the juvenile followed by adult males are more susceptible than adult females, while the halofenozide does not have any effect on the mortality of juvenile and adult males and females of G.affinis. Chronic toxicity of cadmium and halofenozide: both xenobiotics were added to the water fish raising at different doses tested in juveniles and adults males and females during two months of experience. Growth and metric indices; results show that halofenozide added to the water juveniles of G. affinis has no effect on their growth (length and weight). On the other side, the cadmium at the dose 5 µg/L shows a higher toxicity against juvenile, where he appears to reduce significantly their linear growth and weight. In females, the both xenobiotics have significant effects on metric indices, but these effects are more important on the hepatosomatic index that the gonadosomatic index and the coefficient of condition. Biomarkers; acetylcholinesterase (AChE), glutathione S-transferase (GST) and glutathione (GSH) used in assessing of environmental stress were measured in juveniles and adults males and females. The response of these biomarkers reveals an inhibition of AChE specific activity, an induction of GST activity, and decrease of GSH rates in juveniles in the end of experiment and during chronic treatment adult males and females. The effect of these biomarkers is more pronounced in females compared to males and juveniles. These different biomarkers have a similar profile for the duration of exposure.Keywords: gambusia affinis, insecticide, heavy metal, morphology, biomarkers, chronic toxicity, acute toxicity, pollution
Procedia PDF Downloads 3143059 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.Keywords: ANFIS, MGT, prediction modeling, rail track degradation
Procedia PDF Downloads 337