Search results for: stretched exponential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 421

Search results for: stretched exponential

331 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.

Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis

Procedia PDF Downloads 391
330 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates

Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery

Abstract:

Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.

Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop

Procedia PDF Downloads 71
329 Bayesian Approach for Moving Extremes Ranked Set Sampling

Authors: Said Ali Al-Hadhrami, Amer Ibrahim Al-Omari

Abstract:

In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS.

Keywords: Bayesian, efficiency, moving extreme ranked set sampling, ranked set sampling

Procedia PDF Downloads 489
328 Geosynthetic Tubes in Coastal Structures a Better Substitute for Shorter Planning Horizon: A Case Study

Authors: A. Pietro Rimoldi, B. Anilkumar Gopinath, C. Minimol Korulla

Abstract:

Coastal engineering structure is conventionally designed for a shorter planning horizon usually 20 years. These structures are subjected to different offshore climatic externalities like waves, tides, tsunamis etc. during the design life period. The probability of occurrence of these different offshore climatic externalities varies. The impact frequently caused by these externalities on the structures is of concern because it has a significant bearing on the capital /operating cost of the project. There can also be repeated short time occurrence of these externalities in the assumed planning horizon which can cause heavy damage to the conventional coastal structure which are mainly made of rock. A replacement of the damaged portion to prevent complete collapse is time consuming and expensive when dealing with hard rock structures. But if coastal structures are made of Geo-synthetic containment systems such replacement is quickly possible in the time period between two successive occurrences. In order to have a better knowledge and to enhance the predictive capacity of these occurrences, this study estimates risk of encounter within the design life period of various externalities based on the concept of exponential distribution. This gives an idea of the frequency of occurrences which in turn gives an indication of whether replacement is necessary and if so at what time interval such replacements have to be effected. To validate this theoretical finding, a pilot project has been taken up in the field so that the impact of the externalities can be studied both for a hard rock and a Geosynthetic tube structure. The paper brings out the salient feature of a case study which pertains to a project in which Geosynthetic tubes have been used for reformation of a seawall adjacent to a conventional rock structure in Alappuzha coast, Kerala, India. The effectiveness of the Geosystem in combatting the impact of the short-term externalities has been brought out.

Keywords: climatic externalities, exponential distribution, geosystems, planning horizon

Procedia PDF Downloads 216
327 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data

Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill

Abstract:

Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.

Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function

Procedia PDF Downloads 255
326 Reconstruction and Rejection of External Disturbances in a Dynamical System

Authors: Iftikhar Ahmad, A. Benallegue, A. El Hadri

Abstract:

In this paper, we have proposed an observer for the reconstruction and a control law for the rejection application of unknown bounded external disturbance in a dynamical system. The strategy of both the observer and the controller is designed like a second order sliding mode with a proportional-integral (PI) term. Lyapunov theory is used to prove the exponential convergence and stability. Simulations results are given to show the performance of this method.

Keywords: non-linear systems, sliding mode observer, disturbance rejection, nonlinear control

Procedia PDF Downloads 312
325 The Impact of β Nucleating Agents and Carbon-Based Nanomaterials on Water Vapor Permeability of Polypropylene Composite Films

Authors: Glykeria A. Visvini, George Ν. Mathioudakis, Amaia Soto Beobide, George A. Voyiatzis

Abstract:

Polymer nanocomposites are materials in which a polymer matrix is reinforced with nanoscale inclusions, such as nanoparticles, nanoplates, or nanofibers. These nanoscale inclusions can significantly enhance the mechanical, thermal, electrical, and other properties of the polymer matrix, making them attractive for a wide range of industrial applications. These properties can be tailored by adjusting the type and the concentration of the nanoinclusions, which provides a high degree of flexibility in their design and development. An important property that polymeric membranes can exhibit is water vapor permeability (WVP). This can be accomplished by various methods, including the incorporation of micro/nano-fillers into the polymer matrix. In this way, a micro/nano-pore network can be formed, allowing water vapor to permeate through the membrane. At the same time, the membrane can be stretched uni- or bi-axially, creating aligned or cross-linked micropores in the composite, respectively, which can also increase the WVP. Nowadays, in industry, stretched films reinforced with CaCO3 develop micro-porosity sufficient to give them breathability characteristics. Carbon-based nanomaterials, such as graphene oxide (GO), are tentatively expected to be able to effectively improve the WVP of corresponding composite polymer films. The presence in the GO structure of various functional oxidizing groups enhances its ability to attract and channel water molecules, exploiting the unique large surface area of graphene that allows the rapid transport of water molecules. Polypropylene (PP) is widely used in various industrial applications due to its desirable properties, including good chemical resistance, excellent thermal stability, low cost, and easy processability. The specific properties of PP are highly influenced by its crystalline behavior, which is determined by its processing conditions. The development of the β-crystalline phase in PP, in combination with stretching, is anticipating improving the microporosity of the polymer matrix, thereby enhancing its WVP. The aim of present study is to create breathable PP composite membranes using carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNPs). Unlike traditional methods that rely on the drawing process to enhance the WVP of PP, this study intents to develop a low-cost approach using melt mixing with β-nucleating agents and carbon fillers to create highly breathable PP composite membranes. The study aims to investigate how the concentration of these additives affects the water vapor transport properties of the resulting PP films/membranes. The presence of β-nucleating agents and carbon fillers is expected to enhance β-phase growth in PP, while an alternation between β- and α-phase is expected to lead to improved microporosity and WVP. Our ambition is to develop highly breathable PP composite films with superior performance and at a lower cost compared to the benchmark. Acknowledgment: This research has been co‐financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call «Special Actions "AQUACULTURE"-"INDUSTRIAL MATERIALS"-"OPEN INNOVATION IN CULTURE"» (project code: Τ6YBP-00337)

Keywords: carbon based nanomaterials, nanocomposites, nucleating agent, polypropylene, water vapor permeability

Procedia PDF Downloads 63
324 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop

Abstract:

The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 332
323 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 343
322 Automatic Vowel and Consonant's Target Formant Frequency Detection

Authors: Othmane Bouferroum, Malika Boudraa

Abstract:

In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.

Keywords: acoustic invariance, coarticulation, formant transition, locus equation

Procedia PDF Downloads 241
321 Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients

Authors: Elnaz Saeedi, Jamileh Abolaghasemi, Mohsen Nasiri Tousi, Saeedeh Khosravi

Abstract:

Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.

Keywords: frailty model, latent variables, liver cirrhosis, parametric distribution

Procedia PDF Downloads 242
320 An Experimental Study on the Effects of Aspect Ratio of a Rectangular Microchannel on the Two-Phase Frictional Pressure Drop

Authors: J. A. Louw Coetzee, Josua P. Meyer

Abstract:

The thermodynamic properties of different refrigerants in combination with the variation in geometrical properties (hydraulic diameter, aspect ratio, and inclination angle) of a rectangular microchannel determine the two-phase frictional pressure gradient. The effect of aspect ratio on frictional pressure drop had not been investigated enough during adiabatic two-phase flow and condensation in rectangular microchannels. This experimental study was concerned with measurement of the frictional pressure gradient in a rectangular microchannel, with hydraulic diameter of 900 μm. The aspect ratio of this microchannel was varied over a range that stretched from 0.3 to 3 in order to capture the effect of aspect ratio variation. A commonly used refrigerant, R134a, was used in the tests that spanned over a mass flux range of 100 to 1000 kg m-2 s-1 as well as the whole vapour quality range. This study formed part of a refrigerant condensation experiment and was therefore conducted at a saturation temperature of 40 °C. The study found that there was little influence of the aspect ratio on the frictional pressure drop at the test conditions. The data was compared to some of the well known micro- and macro-channel two-phase pressure drop correlations. Most of the separated flow correlations predicted the pressure drop data well at mass fluxes larger than 400 kg m-2 s-1 and vapour qualities above 0.2.

Keywords: aspect ratio, microchannel, two-phase, pressure gradient

Procedia PDF Downloads 345
319 Social Technology and Youth Justice: An Exploration of Ethical and Practical Challenges

Authors: Ravinder Barn, Balbir Barn

Abstract:

This paper outlines ethical and practical challenges in the building of social technology for use with socially excluded and marginalised groups. The primary aim of this study was to design, deploy and evaluate social technology that may help to promote better engagement between case workers and young people to help prevent recidivism, and support young people’s transition towards social inclusion in society. A total of 107 practitioners/managers (n=64), and young people (n=43) contributed to the data collection via surveys, focus groups and 1-1 interviews. Through a process of co-design where end-users are involved as key contributors to social technological design, this paper seeks to make an important contribution to the area of participatory methodologies by arguing that whilst giving ‘voice’ to key stakeholders in the research process is crucial, there is a risk that competing voices may lead to tensions and unintended outcomes. The paper is contextualized within a Foucauldian perspective to examine significant concepts including power, authority and surveillance. Implications for youth justice policy and practice are considered. The authors conclude that marginalized youth and over-stretched practitioners are better served when such social technology is perceived and adopted as a tool of empowerment within a framework of child welfare and child rights.

Keywords: youth justice, social technology, marginalization, participatory research, power

Procedia PDF Downloads 431
318 Predominance of Teaching Models Used by Math Teachers in Secondary Education

Authors: Verónica Diaz Quezada

Abstract:

This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.

Keywords: teaching models, math teachers, functions, secondary education

Procedia PDF Downloads 172
317 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain

Authors: Nizar Chaira

Abstract:

Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.

Keywords: date palm, fermentation, molasses, Saccharomyces, syrup

Procedia PDF Downloads 299
316 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property

Authors: Latika Choudhary

Abstract:

“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.

Keywords: intellectual property rights, information technology, algorithm, artificial intelligence

Procedia PDF Downloads 67
315 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods

Authors: Abdelkader Hocine, Abdelhakim Maizia

Abstract:

The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.

Keywords: composite, design, monte carlo, tubular structure, reliability

Procedia PDF Downloads 436
314 The Conjugated Polymers in improving the Organic Solar Cells Efficiency

Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.

Keywords: photovoltaic, cells, nanoparticles, organic

Procedia PDF Downloads 53
313 Camel Mortalities Due to Accidental Intoxcation with Ionophore

Authors: M. A. Abdelfattah, F. K. Waleed

Abstract:

Anticoccidials were utilized widely in veterinary practice for the avoidance of coccidiosis in poultry and assume a huge job as development promotants in ruminants. Ionophore harming is every now and again happens because of accidental access to medicated feed, errors in feed mixing, incorrect dosage calculation or misuse in non-recommended species. Camels on several farms in Eastern area of Saudi Arabia were accidently fed with a feed pellet containing 13 ppm salinomycin. One hundred and sixty-three camels died with mortality rate of 100%. The poisoning was clinically characterized by restlessness with tail lift to the top, jerk in the muscles of legs and thighs, excessive sweating, frequent setting and standing with body imbalance, lateral and sternal recumbences with the legs stretched back, eye tears with dilated pupil, vomiting of the stomach content, loss of consciousness and death of some of them. Feed analysis indicated the presence of salinomycin in pelleted feed in a range of 13 mg/kg-47 mg/kg. Necropsy findings and histopathological examinations were presented. Regulations and legal implications concerning with sale of contaminated feed in Saudi market are discussed in the light of feed law and by-law. The necessity for an effective implication of regulation concerning application of quality assurance systems based on the principles of Good Manufacturing Practice (GMP) and the application of Hazard Analysis of Critical Control Point (HACCP) during feed production is necessary to avoid feed accident.

Keywords: medicated feed, salinomycin, anticoccidial, camel, toxicity

Procedia PDF Downloads 90
312 Stochastic Repair and Replacement with a Single Repair Channel

Authors: Mohammed A. Hajeeh

Abstract:

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

Keywords: repairable models, imperfect, availability, exponential distribution

Procedia PDF Downloads 265
311 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth in Patients with Lymph Nodes Metastases

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This paper is devoted to mathematical modelling of the progression and stages of breast cancer. We propose Consolidated mathematical growth model of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases (CoM-III) as a new research tool. We are interested in: 1) modelling the whole natural history of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; 2) developing adequate and precise CoM-III which reflects relations between primary tumor and secondary distant metastases; 3) analyzing the CoM-III scope of application; 4) implementing the model as a software tool. Firstly, the CoM-III includes exponential tumor growth model as a system of determinate nonlinear and linear equations. Secondly, mathematical model corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for secondary distant metastases growth in patients with lymph nodes metastases; 3) ‘visible period’ for secondary distant metastases growth in patients with lymph nodes metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-III model and predictive software: a) detect different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes metastases; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoM-III: the number of doublings for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases. The CoM-III enables, for the first time, to predict the whole natural history of primary tumor and secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-III describes correctly primary tumor and secondary distant metastases growth of IA, IIA, IIB, IIIB (T1-4N1-3M0) stages in patients with lymph nodes metastases (N1-3); b) facilitates the understanding of the appearance period and inception of secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, primary tumor, secondary metastases, survival

Procedia PDF Downloads 284
310 Exponentiated Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution

Authors: Abd El Hady N. Ebraheim

Abstract:

This paper introduces a new generalization of the two parameter Weibull distribution. To this end, the quadratic rank transmutation map has been used. This new distribution is named exponentiated transmuted Weibull (ETW) distribution. The ETW distribution has the advantage of being capable of modeling various shapes of aging and failure criteria. Furthermore, eleven lifetime distributions such as the Weibull, exponentiated Weibull, Rayleigh and exponential distributions, among others follow as special cases. The properties of the new model are discussed and the maximum likelihood estimation is used to estimate the parameters. Explicit expressions are derived for the quantiles. The moments of the distribution are derived, and the order statistics are examined.

Keywords: exponentiated, inversion method, maximum likelihood estimation, transmutation map

Procedia PDF Downloads 548
309 Analysis of Big Data

Authors: Sandeep Sharma, Sarabjit Singh

Abstract:

As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.

Keywords: big data, unstructured data, volume, variety, velocity

Procedia PDF Downloads 524
308 Behaviour of an RC Circuit near Extreme Point

Authors: Tribhuvan N. Soorya

Abstract:

Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.

Keywords: charging, discharging, RC Circuit, capacitor

Procedia PDF Downloads 424
307 Comparison Between Tension Band Wiring Using K-Wires and Cannulated Screws in Transverse Patella Fracture Fixation

Authors: Daniel Francis, Mo Yassin

Abstract:

Transverse patella fractures are routinely fixed using tension band wiring (TBW) using Kirschner wires and a wire in the shape of a figure of 8. The idea of the study was to compare the outcomes of the traditional technique against the more recently used cannulated screws and fiber tape in the shape of a figure of 8. We performed a retrospective cohort study of all the surgically fixed patella fractures from the year 2019 to 2022. The patients were divided into two groups TBW group and cannulated screws group. The primary outcome measure was the failure of fixation and the need for the removal of metalwork. Twenty-six patellar fractures were studied. TBW was used in 14 (53.8%), and cannulated screws were used for fixation in 12 (46.2%). There was one incident of metalwork failure in the TBW and one incident in the cannulated screws group. Five (35.7%) of patients in the TBW needed symptomatic metal work removed and One (8.3%) in the cannulated screw group. In both groups, the rate of fixation failure was low. Symptomatic implants, the most common complication observed, were higher in the TBW group in our practice. Although the small numbers in both groups, the hope of this study is to shine the light on the use of cannulated screws for patella fractures as it would reduce the need for a second operation and reduce the load on the already stretched services as well as improving the patient experience by not requiring further surgery. Although this is not a brand-new technique, it is not commonly used as there have not yet been any studies that demonstrate the lower rates of second surgery needed.

Keywords: patella, tension band wiring, randomised, new technique

Procedia PDF Downloads 56
306 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 365
305 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Primary Distant Metastases Growth

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

Finding algorithms to predict the growth of tumors has piqued the interest of researchers ever since the early days of cancer research. A number of studies were carried out as an attempt to obtain reliable data on the natural history of breast cancer growth. Mathematical modeling can play a very important role in the prognosis of tumor process of breast cancer. However, mathematical models describe primary tumor growth and metastases growth separately. Consequently, we propose a mathematical growth model for primary tumor and primary metastases which may help to improve predicting accuracy of breast cancer progression using an original mathematical model referred to CoM-IV and corresponding software. We are interested in: 1) modelling the whole natural history of primary tumor and primary metastases; 2) developing adequate and precise CoM-IV which reflects relations between PT and MTS; 3) analyzing the CoM-IV scope of application; 4) implementing the model as a software tool. The CoM-IV is based on exponential tumor growth model and consists of a system of determinate nonlinear and linear equations; corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and primary metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for primary metastases; 3) ‘visible period’ for primary metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-IV model and predictive software: a) detect different growth periods of primary tumor and primary metastases; b) make forecast of the period of primary metastases appearance; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of BC and facilitate optimization of diagnostic tests. The following are calculated by CoM-IV: the number of doublings for ‘nonvisible’ and ‘visible’ growth period of primary metastases; tumor volume doubling time (days) for ‘nonvisible’ and ‘visible’ growth period of primary metastases. The CoM-IV enables, for the first time, to predict the whole natural history of primary tumor and primary metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-IV describes correctly primary tumor and primary distant metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or without regional metastases in lymph nodes (N0); b) facilitates the understanding of the appearance period and manifestation of primary metastases.

Keywords: breast cancer, exponential growth model, mathematical modelling, primary metastases, primary tumor, survival

Procedia PDF Downloads 317
304 FPGA Implementation of RSA Encryption Algorithm for E-Passport Application

Authors: Khaled Shehata, Hanady Hussien, Sara Yehia

Abstract:

Securing the data stored on E-passport is a very important issue. RSA encryption algorithm is suitable for such application with low data size. In this paper the design and implementation of 1024 bit-key RSA encryption and decryption module on an FPGA is presented. The module is verified through comparing the result with that obtained from MATLAB tools. The design runs at a frequency of 36.3 MHz on Virtex-5 Xilinx FPGA. The key size is designed to be 1024-bit to achieve high security for the passport information. The whole design is achieved through VHDL design entry which makes it a portable design and can be directed to any hardware platform.

Keywords: RSA, VHDL, FPGA, modular multiplication, modular exponential

Procedia PDF Downloads 368
303 Performance of the Strong Stability Method in the Univariate Classical Risk Model

Authors: Safia Hocine, Zina Benouaret, Djamil A¨ıssani

Abstract:

In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done.

Keywords: Marcov chain, regenerative process, risk model, ruin probability, strong stability

Procedia PDF Downloads 296
302 Analysis of the Statistical Characterization of Significant Wave Data Exceedances for Designing Offshore Structures

Authors: Rui Teixeira, Alan O’Connor, Maria Nogal

Abstract:

The statistical theory of extreme events is progressively a topic of growing interest in all the fields of science and engineering. The changes currently experienced by the world, economic and environmental, emphasized the importance of dealing with extreme occurrences with improved accuracy. When it comes to the design of offshore structures, particularly offshore wind turbines, the importance of efficiently characterizing extreme events is of major relevance. Extreme events are commonly characterized by extreme values theory. As an alternative, the accurate modeling of the tails of statistical distributions and the characterization of the low occurrence events can be achieved with the application of the Peak-Over-Threshold (POT) methodology. The POT methodology allows for a more refined fit of the statistical distribution by truncating the data with a minimum value of a predefined threshold u. For mathematically approximating the tail of the empirical statistical distribution the Generalised Pareto is widely used. Although, in the case of the exceedances of significant wave data (H_s) the 2 parameters Weibull and the Exponential distribution, which is a specific case of the Generalised Pareto distribution, are frequently used as an alternative. The Generalized Pareto, despite the existence of practical cases where it is applied, is not completely recognized as the adequate solution to model exceedances over a certain threshold u. References that set the Generalised Pareto distribution as a secondary solution in the case of significant wave data can be identified in the literature. In this framework, the current study intends to tackle the discussion of the application of statistical models to characterize exceedances of wave data. Comparison of the application of the Generalised Pareto, the 2 parameters Weibull and the Exponential distribution are presented for different values of the threshold u. Real wave data obtained in four buoys along the Irish coast was used in the comparative analysis. Results show that the application of the statistical distributions to characterize significant wave data needs to be addressed carefully and in each particular case one of the statistical models mentioned fits better the data than the others. Depending on the value of the threshold u different results are obtained. Other variables of the fit, as the number of points and the estimation of the model parameters, are analyzed and the respective conclusions were drawn. Some guidelines on the application of the POT method are presented. Modeling the tail of the distributions shows to be, for the present case, a highly non-linear task and, due to its growing importance, should be addressed carefully for an efficient estimation of very low occurrence events.

Keywords: extreme events, offshore structures, peak-over-threshold, significant wave data

Procedia PDF Downloads 245