Search results for: missing data imputation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25337

Search results for: missing data imputation

25247 A Review of Lortie’s Schoolteacher

Authors: Tsai-Hsiu Lin

Abstract:

Dan C. Lortie’s Schoolteacher: A sociological study is one of the best works on the sociology of teaching since W. Waller’s classic study. It is a book worthy of review. Following the tradition of symbolic interactionists, Lortie demonstrated the qualities who studied the occupation of teaching. Using several methods to gather effective data, Lortie has portrayed the ethos of the teaching profession. Therefore, the work is an important book on the teaching profession and teacher culture. Though outstanding, Lortie’s work is also flawed in that his perspectives and methodology were adopted largely from symbolic interactionism. First, Lortie in his work analyzed many points regarding teacher culture; for example, he was interested in exploring “sentiment,” “cathexis,” and “ethos.” Thus, he was more a psychologist than a sociologist. Second, symbolic interactionism led him to discern the teacher culture from a micro view, thereby missing the structural aspects. For example, he did not fully discuss the issue of gender and he ignored the issue of race. Finally, following the qualitative sociological tradition, Lortie employed many qualitative methods to gather data but only foucused on obtaining and presenting interview data. Moreover, he used measurement methods that were too simplistic for analyzing quantitative data fully.

Keywords: education reform, teacher culture, teaching profession, Lortie’s Schoolteacher

Procedia PDF Downloads 227
25246 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 128
25245 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 237
25244 AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining

Authors: Suelane Garcia Fontes, Silvio Luiz Stanzani, Pedro L. Pizzigatti Corrła Ronaldo G. Morato

Abstract:

Environmental changes and major natural disasters are most prevalent in the world due to the damage that humanity has caused to nature and these damages directly affect the lives of animals. Thus, the study of animal behavior and their interactions with the environment can provide knowledge that guides researchers and public agencies in preservation and conservation actions. Exploratory analysis of animal movement can determine the patterns of animal behavior and with technological advances the ability of animals to be tracked and, consequently, behavioral studies have been expanded. There is a lot of research on animal movement and behavior, but we note that a proposal that combines resources and allows for exploratory analysis of animal movement and provide statistical measures on individual animal behavior and its interaction with the environment is missing. The contribution of this paper is to present the framework AniMoveMineR, a unified solution that aggregates trajectory analysis and data mining techniques to explore animal movement data and provide a first step in responding questions about the animal individual behavior and their interactions with other animals over time and space. We evaluated the framework through the use of monitored jaguar data in the city of Miranda Pantanal, Brazil, in order to verify if the use of AniMoveMineR allows to identify the interaction level between these jaguars. The results were positive and provided indications about the individual behavior of jaguars and about which jaguars have the highest or lowest correlation.

Keywords: data mining, data science, trajectory, animal behavior

Procedia PDF Downloads 143
25243 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia PDF Downloads 381
25242 The Assessment of the Diabetes Mellitus Complications on Oral Health: A Longitudinal Study

Authors: Mimoza Canga, Irene Malagnino, Gresa Baboci, Edit Xhajanka, Vito Antonio Malagnino

Abstract:

Background: Diabetes mellitus is regarded as a very problematic chronic disease that has an effect on a considerable number of people around the world and it is straightforwardly associated with the oral health condition of the patients. Objective: The objective of this study is to analyze and evaluate the impact of diabetes mellitus on oral health. Materials and methods: In the present research were taken into consideration 300 patients with an age range of 11 to 80 years old. The study sample was composed of 191 males, respectively 63.7% of them and 109 females 36.3% of the participants. We divided them into seven age groups: 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, and 71-80 years.This descriptive and analytical research was designed as a longitudinal study. Statistical analysis was performed using IBM SPSS 23.0 statistics. Results: The majority of patients participating in the study belonged to the age range from 41 to 50 years old, precisely 20.7% of them, while 27% of the patients were from 51 to 60 years old. Based on the present research, it resulted that 24.4% of the participant had high blood sugar values 250-300 mg/dl, whereas 19 % of the patients had very high blood sugar values 300-350 mg/dl. Based on the results of the current study, it was observed that 83.7% of patients were affected by gingivitis. In the current study, the significant finding is that 22% of patients had more than 7 teeth with dental caries and 21% of them had 5-7 teeth with dental caries, whereas 29% of the patients had 4-5 dental caries and the remaining 28% of them had 1-3 dental caries. The present study showed that most of the patients, 27% of them had lost more than 7 teeth and 22% of the participants had lost 5-7 teeth, whereas 31% of the patients had lost 4-5 teeth and only 20 % of them had lost 1-3 teeth. This study proved that high blood sugar values had a direct impact on the manifestation of gingivitis and there it was a strong correlation between them with P-value = .001. A strong correlation was found out between dental caries and high blood sugar values with P-value ˂.001. Males with diabetes mellitus were more affected by dental caries and this was proved by the P-value= .02, in comparison to females P-value=.03. The impact of high blood sugar values affects missing teeth and the correlation between them was statistically significant with P-value ˂ .001. Conclusion: The results of this study suggest that diabetes mellitus is a possible risk factor in oral health for the reason that Albanian patients over 51 years old, respectively 43% of them have over 5 teeth with dental caries as compared with 49% of the patients who had over 5 missing teeth, whereas the majority 83.7% of them suffered from gingivitis. This study asserts that patients who do not have periodical check-ups of diabetes mellitus are at significant risk of oral diseases.

Keywords: dental caries, diabetes mellitus, gingivitis, missing teeth

Procedia PDF Downloads 205
25241 A Study of Level of Happiness in Orphans of Patna District

Authors: Riya Kartikee, Uday Shankar

Abstract:

Background –.Happiness refers to a range of the balance of positive and pleasant emotions of joy, pride, contentment, gratitude, and living with ethics. Happiness is an experience combined with a sense that one’s life is good, meaningful, and worth a while, but in the context of orphans who have lost their birthgivers, their parents who play an important role in bringing necessities and comfort to them, but many terms of the above phases are missing in the life of orphan So, stress increases because of lack of love, attention, sympathy, care, they experience many kind of trauma and also in some cases their lives get worst as they face some physiological abuse, sexual abuse, they are forced to have stress at a not only mentally but physically also in the context of Patna, Bihar where many people are below poverty line, lack of resources is a normal condition for the Orphanages.AIM- The present study was intended to study the level of Happiness among the orphans of Patna District, also it was attempted to find the role of happiness in their lives as an individual.Method- The sample of 70 Orphans in the age group of 12 to 18 years were taken from the orphanages of Patna district-Apnaghar, Rainbow homes, etc. Purposive sampling was used in the study, There has been one research tool used in the study, which is Happiness scale by Dr.R.L Bhardwaj and Dr.Poonam R Das. Results- Results have revealed that Orphans have possessed a very low level of happiness and unhappiness was related due to their living conditions in the orphanage.Conclusion-It can be stated that the Level of happiness is an important missing determinant in the lives of orphans.

Keywords: happiness, orphans, patna, orphanage

Procedia PDF Downloads 168
25240 Primary Analysis of a Randomized Controlled Trial of Topical Analgesia Post Haemorrhoidectomy

Authors: James Jin, Weisi Xia, Runzhe Gao, Alain Vandal, Darren Svirkis, Andrew Hill

Abstract:

Background: Post-haemorrhoidectomy pain is concerned by patients/clinicians. Minimizing the postoperation pain is highly interested clinically. Combinations of topical cream targeting three hypothesised post-haemorrhoidectomy pain mechanisms were developed and their effectiveness were evaluated. Specifically, a multi-centred double-blinded randomized clinical trial (RCT) was conducted in adults undergoing excisional haemorrhoidectomy. The primary analysis was conveyed on the data collected to evaluate the effectiveness of the combinations of topical cream targeting three hypothesized pain mechanisms after the operations. Methods: 192 patients were randomly allocated to 4 arms (each arm has 48 patients), and each arm was provided with pain cream 10% metronidazole (M), M and 2% diltiazem (MD), M with 4% lidocaine (ML), or MDL, respectively. Patients were instructed to apply topical treatments three times a day for 7 days, and record outcomes for 14 days after the operations. The primary outcome was VAS pain on day 4. Covariates and models were selected in the blind review stage. Multiple imputations were applied for the missingness. LMER, GLMER models together with natural splines were applied. Sandwich estimators and Wald statistics were used. P-values < 0.05 were considered as significant. Conclusions: The addition of topical lidocaine or diltiazem to metronidazole does not add any benefit. ML had significantly better pain and recovery scores than combination MDL. Multimodal topical analgesia with ML after haemorrhoidectomy could be considered for further evaluation. Further trials considering only 3 arms (M, ML, MD) might be worth exploring.

Keywords: RCT, primary analysis, multiple imputation, pain scores, haemorrhoidectomy, analgesia, lmer

Procedia PDF Downloads 116
25239 Data Mining Model for Predicting the Status of HIV Patients during Drug Regimen Change

Authors: Ermias A. Tegegn, Million Meshesha

Abstract:

Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) is a major cause of death for most African countries. Ethiopia is one of the seriously affected countries in sub Saharan Africa. Previously in Ethiopia, having HIV/AIDS was almost equivalent to a death sentence. With the introduction of Antiretroviral Therapy (ART), HIV/AIDS has become chronic, but manageable disease. The study focused on a data mining technique to predict future living status of HIV/AIDS patients at the time of drug regimen change when the patients become toxic to the currently taking ART drug combination. The data is taken from University of Gondar Hospital ART program database. Hybrid methodology is followed to explore the application of data mining on ART program dataset. Data cleaning, handling missing values and data transformation were used for preprocessing the data. WEKA 3.7.9 data mining tools, classification algorithms, and expertise are utilized as means to address the research problem. By using four different classification algorithms, (i.e., J48 Classifier, PART rule induction, Naïve Bayes and Neural network) and by adjusting their parameters thirty-two models were built on the pre-processed University of Gondar ART program dataset. The performances of the models were evaluated using the standard metrics of accuracy, precision, recall, and F-measure. The most effective model to predict the status of HIV patients with drug regimen substitution is pruned J48 decision tree with a classification accuracy of 98.01%. This study extracts interesting attributes such as Ever taking Cotrim, Ever taking TbRx, CD4 count, Age, Weight, and Gender so as to predict the status of drug regimen substitution. The outcome of this study can be used as an assistant tool for the clinician to help them make more appropriate drug regimen substitution. Future research directions are forwarded to come up with an applicable system in the area of the study.

Keywords: HIV drug regimen, data mining, hybrid methodology, predictive model

Procedia PDF Downloads 141
25238 Hidden Hot Spots: Identifying and Understanding the Spatial Distribution of Crime

Authors: Lauren C. Porter, Andrew Curtis, Eric Jefferis, Susanne Mitchell

Abstract:

A wealth of research has been generated examining the variation in crime across neighborhoods. However, there is also a striking degree of crime concentration within neighborhoods. A number of studies show that a small percentage of street segments, intersections, or addresses account for a large portion of crime. Not surprisingly, a focus on these crime hot spots can be an effective strategy for reducing community level crime and related ills, such as health problems. However, research is also limited in an important respect. Studies tend to use official data to identify hot spots, such as 911 calls or calls for service. While the use of call data may be more representative of the actual level and distribution of crime than some other official measures (e.g. arrest data), call data still suffer from the 'dark figure of crime.' That is, there is most certainly a degree of error between crimes that occur versus crimes that are reported to the police. In this study, we present an alternative method of identifying crime hot spots, that does not rely on official data. In doing so, we highlight the potential utility of neighborhood-insiders to identify and understand crime dynamics within geographic spaces. Specifically, we use spatial video and geo-narratives to record the crime insights of 36 police, ex-offenders, and residents of a high crime neighborhood in northeast Ohio. Spatial mentions of crime are mapped to identify participant-identified hot spots, and these are juxtaposed with calls for service (CFS) data. While there are bound to be differences between these two sources of data, we find that one location, in particular, a corner store, emerges as a hot spot for all three groups of participants. Yet it does not emerge when we examine CFS data. A closer examination of the space around this corner store and a qualitative analysis of narrative data reveal important clues as to why this store may indeed be a hot spot, but not generate disproportionate calls to the police. In short, our results suggest that researchers who rely solely on official data to study crime hot spots may risk missing some of the most dangerous places.

Keywords: crime, narrative, video, neighborhood

Procedia PDF Downloads 236
25237 The Impact of Human Resources Management on the Job Security of Self-Initiated Expatriates after the Brexit

Authors: Yllka Hysaj, Ylberina Hysaj Arifi

Abstract:

Recently, with BREXIT taking place, organizations and employees have been affected in the way of job and employment security. Career-oriented human resources management (HRM) practices are likely to facilitate self-initiated expatriates’ adjustment to the host country. This was related to the career security (job security and employment security), which were missing in their home country and seemed to be important elements to adjust to the host country. The aim of this study is to assess whether the perception of career security by Frances self-initiated expatriates (SIEs) have changed in the wake of the referendum result. Quantitative research method will be used, and the data will be collected through electronic questionnaires. Data will be analyzed through Statistical Package for the Social Sciences (SPSS). The study variables will include an adjustment to the host country, HRM practices, employability, and job security. Predicted results consist that career-oriented HRM practices are positively related to the adjustment to the host country, employability, and job security. However, with Brexit, there might be a negative relationship between career-oriented HRM practices and job security.

Keywords: migration, self-initiated expatriates, Brexit, job security

Procedia PDF Downloads 167
25236 The Effect of Expanding the Early Pregnancy Assessment Clinic and COVID-19 on Emergency Department and Urgent Care Visits for Early Pregnancy Bleeding

Authors: Harley Bray, Helen Pymar, Michelle Liu, Chau Pham, Tomislav Jelic, Fran Mulhall

Abstract:

Background: Our study assesses the impact of the COVID-19 pandemic on early pregnancy assessment clinic (EPAC) referrals and the use of virtual consultation in Winnipeg, Manitoba. Our clinic expanded to accept referrals from all Winnipeg Emergency Department (ED)/Urgent Care (UC) sites beginning November 2019 to April 2020. By May 2020, the COVID-19 pandemic reached Manitoba and EPAC virtual care was expanded by performing hCG remotely and reviewing blood and ED/UC ultrasound results by phone. Methods: Emergency Department Information Systems (EDIS) and EPAC data reviewed ED/UC visits for pregnancy <20 weeks and vaginal bleeding 1-year pre-COVID (March 12, 2019, to March 11, 2020) and during COVID (March 12, 2020 (first case in Manitoba) to March 11, 2021). Results: There were fewer patient visits for vaginal bleeding or pregnancy of <20 weeks (4264 vs. 5180), diagnoses of threatened abortion (1895 vs. 2283), and ectopic pregnancy (78 vs. 97) during COVID compared with pre-COVID, respectively. ICD 10 codes were missing in 849 (20%) and 1183 (23%) of patients during COVID and pre-COVID, respectively. Wait times for all patient visits improved during COVID-19 compared to pre-COVID (5.1 ± 4.4 hours vs. 5.5 ± 3.8 hours), more patients received obstetrical ultrasounds, 761 (18%) vs. 787 (15%), and fewer patients returned within 30 days (1360 (32%) vs. 1848 (36%); p<0.01). EPAC saw 708 patients (218; 31% new ED/UC) during COVID-19 compared to 552 (37; 7% new ED/UC) pre-COVID. Fewer operative interventions for pregnancy loss (346 vs. 456) and retained products (236 vs. 272) were noted. Surgeries to treat ectopic pregnancy (106 vs 113) remained stable during the study time interval. Conclusion: Accurate identification of pregnancy complications was difficult, with over 20% missing ICD-10 diagnostic codes. There were fewer ED/UC visits and surgical management for threatened abortion during COVID-19, but ectopic pregnancy operative management remained unchanged.

Keywords: early pregnancy, ultrasound, COVID-19, obstetrics

Procedia PDF Downloads 20
25235 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering

Authors: Emiel Caron

Abstract:

Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.

Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics

Procedia PDF Downloads 193
25234 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 120
25233 Robust Heart Rate Estimation from Multiple Cardiovascular and Non-Cardiovascular Physiological Signals Using Signal Quality Indices and Kalman Filter

Authors: Shalini Rankawat, Mansi Rankawat, Rahul Dubey, Mazad Zaveri

Abstract:

Physiological signals such as electrocardiogram (ECG) and arterial blood pressure (ABP) in the intensive care unit (ICU) are often seriously corrupted by noise, artifacts, and missing data, which lead to errors in the estimation of heart rate (HR) and incidences of false alarm from ICU monitors. Clinical support in ICU requires most reliable heart rate estimation. Cardiac activity, because of its relatively high electrical energy, may introduce artifacts in Electroencephalogram (EEG), Electrooculogram (EOG), and Electromyogram (EMG) recordings. This paper presents a robust heart rate estimation method by detection of R-peaks of ECG artifacts in EEG, EMG & EOG signals, using energy-based function and a novel Signal Quality Index (SQI) assessment technique. SQIs of physiological signals (EEG, EMG, & EOG) were obtained by correlation of nonlinear energy operator (teager energy) of these signals with either ECG or ABP signal. HR is estimated from ECG, ABP, EEG, EMG, and EOG signals from separate Kalman filter based upon individual SQIs. Data fusion of each HR estimate was then performed by weighing each estimate by the Kalman filters’ SQI modified innovations. The fused signal HR estimate is more accurate and robust than any of the individual HR estimate. This method was evaluated on MIMIC II data base of PhysioNet from bedside monitors of ICU patients. The method provides an accurate HR estimate even in the presence of noise and artifacts.

Keywords: ECG, ABP, EEG, EMG, EOG, ECG artifacts, Teager-Kaiser energy, heart rate, signal quality index, Kalman filter, data fusion

Procedia PDF Downloads 693
25232 Mothers, the Missing Link: A Critical Discourse Analysis of the Women-Centric Counterterrorism Measures

Authors: Bukola Solomon

Abstract:

In counterterrorism, policymakers typically design a confined role for women as family members and nurturers. In recent years, they have embraced the idea of mothers as the missing link to preventing and countering violent extremism. This ‘programmed’ role of women is derived from the convictions that women’s central roles in the family and community afford them the ‘unique set of skills’ to detect early signs of radicalization and extremism. This paper attempts to focus on the ‘mother’ narrative that frames women’s agency as mothers of ‘terrorists’ and ‘potential’ terrorists. The general underlying assumption of the ‘mother’ narrative is that naturally, every ‘terrorist’ has or once had a mother, and their radicalization is a maternal ‘oversight.’ By deconstructing the notion of motherhood as a social construct instead of an inherent female desire and ability, this paper argues that the assumption of ‘mothers know best’ is invalid. Also, this paper suggests that the ‘mother’ narrative is a deliberate effort to restrict women’s participation in counterterrorism as ‘preventers.’ Finally, this paper notes a global trend in which mothers are contesting the dominant view of women empowerment that restricts their agency by seeking alternative versions in terrorist organizations. And as such, they create parallel terror cells. Thus, the overemphasis on the role women plays as mothers in counterterrorism limits the scope and potential of counterterrorism programs by marginalizing gender issues and reinforcing gender disparities to the extent that the programs become counterproductive.

Keywords: countering violent extremism, counterterrorism, gender, gender roles, terrorism, women

Procedia PDF Downloads 115
25231 The Study of Periodontal Health Status in Menopausal Women with Osteoporosis Referred to Rheumatology Clinics in Yazd and Healthy People

Authors: Mahboobe Daneshvar

Abstract:

Introduction: Clinical studies on the effect of systemic conditions on periodontal diseases have shown that some systemic deficiencies may provide grounds for the onset of periodontal diseases. One of these systemic problems is osteoporosis, which may be a risk factor for the onset and exacerbation of periodontitis. This study tends to evaluate periodontal indices in osteoporotic menopausal women and compare them with healthy controls. Materials and Methods: In this case-control study, participants included 45-75-year-old menopausal women referred to rheumatology wards of the Khatamolanbia Clinic and Shahid Sadoughi Hospital in Yazd; Their bone density was determined by DEXA-scan and by imaging the femoral-lumbar bone. Thirty patients with osteoporosis and 30 subjects with normal BMD were selected. Then, informed consent was obtained for participation in the study. During the clinical examinations, tooth loss (TL), plaque index (PI), gingival recession, pocket probing depth (PPD), clinical attachment loss (CAL), and tooth mobility (TM) were measured to evaluate the periodontal status. These clinical examinations were performed to determine the periodontal status by catheter, mirror and probe. Results: During the evaluation, there was no significant difference in PPD, PI, TM, gingival recession, and CAL between case and control groups (P-value>0.05); that is, osteoporosis has no effect on the above factors. These periodontal factors are almost the same in both healthy and patient groups. In the case of missing teeth, the following results were obtained: the mean of missing teeth was 22.173% of the total teeth in the case group and 18.583% of the total teeth in the control group. In the study of the missing teeth in the case and control groups, there was a significant relationship between case and control groups (P-value = 0.025). Conclusion: In fact, since periodontal disease is multifactorial and microbial plaque is the main cause, osteoporosis is considered a predisposing factor in exacerbation or persistence of periodontal disease. In patients with osteoporosis, usually pathological fractures, hormonal changes, and aging lead to reduced physical activity and affect oral health, which leads to the manifestation of periodontal disease. But this disease increases tooth loss by changing the shape and structure of bone trabeculae and weakening them. Osteoporosis does not seem to be a deterministic factor in the incidence of periodontal disease, since it affects bone quality rather than bone quantity.

Keywords: plaque index, Osteoporosis, tooth mobility, periodontal packet

Procedia PDF Downloads 70
25230 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 199
25229 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 323
25228 Data Transformations in Data Envelopment Analysis

Authors: Mansour Mohammadpour

Abstract:

Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.

Keywords: data transformation, data envelopment analysis, undesirable data, negative data

Procedia PDF Downloads 19
25227 The Problematic Transfer of Classroom Creativity in Business to the Workplace

Authors: Kym Drady

Abstract:

This paper considers whether creativity is the missing link which would allow the evolution of organisational behaviour and profitability if it was ‘released’. It suggests that although many organisations try to engage their workforce and expect innovation they fail to provide the means for its achievement. The paper suggests that creative thinking is the ‘glue’ which links organisational performance to profitability. A key role of a university today, is to produce skilled and capable graduates. Increasing competition and internationalisation has meant that the employability agenda has never been more prominent within the field of education. As such it should be a key consideration when designing and developing a curriculum. It has been suggested that creativity is a valuable personal skill and perhaps should be the focus of an organisations business strategy in order for them to increase their competitive advantage in the twenty first century. Flexible and agile graduates are now required to become creative in their use of skills and resources in an increasingly complex and sophisticated global market. The paper, therefore, questions that if this is the case why then does creativity fail to appear as a key curriculum subject in many business schools. It also considers why policy makers continue to neglect this critical issue when it could offer the ‘key’ to economic prosperity. Recent literature does go some way to addressing by suggesting that small clusters of UK Universities have started including some creativity in their PDP work. However, this paper builds on this work and proposes that that creativity should become a central component of the curriculum. The paper suggests that creativity should appear in every area of the curriculum and that it should act as the link that connects productivity to profitability rather than being marginalised as an additional part of the curriculum. A range of data gathering methods have been used but each has been drawn from a qualitative base as it was felt that due to nature of the study individual’s thoughts and feelings needed to be examined and reflection was important. The author also recognises the importance of her own reflection both on the experiences of the students and their later working experiences as well as on the creative elements within the programme that she delivered. This paper has been drawn from research undertaken by the author in relation to her PhD study which explores the potential benefits of including creativity in the curriculum within business schools and the added value this could make to their employability. To conclude, creativity is, in the opinion of the author, the missing link to organisational profitability and as such should be prioritised especially by higher education providers.

Keywords: business curriculum, business curriculum, higher education, creative thinking and problem-solving, creativity

Procedia PDF Downloads 274
25226 3D Human Body Reconstruction Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information.

Keywords: 3D human reconstruction, multi-view, joint point, SMPL-X

Procedia PDF Downloads 67
25225 Dealing with the Spaces: Ultra Conservative Approach from Childhood to Adulthood

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Common reasons for early tooth loss are trauma, extraction due to caries or periodontal disease and congenital missing. The remaining space after tooth loss may cause functional and esthetic problems. Therefore restorative dentists should attempt to manage these spaces using conservative methods. The goal is to restore the lost esthetic and function, prevent phonetic, self-esteem and personality problems and tongue habits. Preserving alveolar bone is also of great importance during the growth stage. Purpose: When deciding about the management of the missing tooth, space implants are contradicted until the completion of dentoalveolar development. Even in adulthood, due to systemic or periodontal problems or biological and economic issues, the implant might not be indicated. In this article, the alternative conservative restorative methods of space maintenance are going to be discussed. Essix retainers are made chair-side as easy as forming a custom bleaching tray with some modifications. They are esthetically acceptable and not expensive. These temporaries provide support for the lips but could not be used during function. Mini-screw-supported temporaries are another option for maintaining the space, especially after orthodontic treatment when there is a time lag between the termination of orthodontic treatment and definitive restoration. Two techniques will be presented for this kind of restoration: Denture tooth pontic or a composite crown. The benefits are alveolar bone preservation, Physiologic pressure on the alveolar ridge to increase its density and even can be retained until the completion of the definitive treatment. Bonded fixed partial denture includes Maryland bridge, fiber-reinforced composite bridge, resin-bonded bridge, and ceramic bonded bridge. These types of bridges are recommended to be used after a pubertal growth spurt and a recent meta-analysis considered their clinical success similar to conventional FDPs and implant-supported crowns. However, they have several advantages that are going to be discussed by presenting some clinical examples. Practical instruction on how to construct an FRC bridge and a novel chair-side Maryland bridge will be given by means of clinical cases. Clinical relevance: minimally invasive options should always be considered and destruction of healthy enamel and dentin during the preparation phase should be avoided as much as possible.

Keywords: tooth missing, fiber-reinforced composite, Maryland, Essix retainers, screw-retained restoration

Procedia PDF Downloads 197
25224 One of the Missing Pieces of Inclusive Education: Sexual Orientations

Authors: Sıla Uzkul

Abstract:

As a requirement of human rights and children's rights, the basic condition of inclusive education is that it covers all children. However, the reforms made in the context of education in Turkey and around the world include a limited level of inclusiveness. Generally, the inclusiveness mentioned is for individuals who need special education. Educational reforms superficially state that differences are tolerated, but these differences are extremely limited and often do not include sexual orientation. When we look at the education modules of the Ministry of National Education within the scope of inclusive education in Turkey, there are children with special needs, bilingual children, children exposed to violence, children under temporary protection, children affected by migration and terrorism, and children affected by natural disasters. No training modules or inclusion terms regarding sexual orientations could be found. This research aimed to understand the perspectives of research assistants working in the preschool education department regarding sexual orientations within the scope of inclusive education. Six research assistants working in the preschool teaching department at a public university in Ankara (Turkey) participated in this qualitative research study. Participants were determined by typical case sampling, which is one of the purposeful sampling methods. The data of this research was obtained through a "survey consisting of open-ended questions". Raw data from the surveys were analyzed and interpreted using the "content analysis technique" (Yıldırım & Şimşek, 2005). During the data analysis process, the data from the participants were first numbered, then all the data were read, and content analysis was performed, and possible themes, categories, and codes were extracted. The opinions of the participants in the research regarding sexual orientations in inclusive education are presented under three main headings within the scope of the research questions. These are: (a) their views on inclusive education, (b) their views on sexual orientations (c) their views on sexual orientations in the preschool period.

Keywords: sexual orientation, inclusive education, child rights, preschool education

Procedia PDF Downloads 63
25223 The Effect of Leadership Style on Employee Engagement in Ethiopian Airlines

Authors: Mahlet Nigussie Worku

Abstract:

The main purpose of this study was to examine the effects of different leadership styles on employee engagement in Ethiopian Airlines headquarters located in Addis Ababa. Specific objectives of the study were stated to examine the effects of five leadership styles, namely transformational, transactional, democratic, lassies fair and autocratic leadership styles on employees’ engagement. The study was conducted on 288 sample sizes, and a simple random sampling technique was employed. The quantitative findings were presented and analyzed by table, ANOVA, bivariate correlation and regression model through SPSS software version 23. Out of 288 total distributed questionnaires, 280 were returned, and 8 of the returned were rejected due to missing data, while the remaining 280 responses were used for data analysis. Data was analyzed using the Statistical Package for Social Sciences (SPSS). The study employed both descriptive and explanatory research design. Correlation and regression were used to analyze the relationship and its effect between leadership Style and employee engagement. The regression results showed that transformational, transactional and democratic leadership Styles have significant contributions to employee engagement. Similarly, the transformational, transactional land democratic leadership style had a positive and strong correlation with employee engagement. However, lassies-fair and autocratic leadership styles showed a negative and insignificant effect on employee engagement. Finally, based on the findings, workable recommendations and implications for further studies were forwarded.

Keywords: leadership, autocratic leadership style, democratic leadership style, employee engagement

Procedia PDF Downloads 95
25222 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand

Authors: Jefferson Hernandez, Juan Padilla

Abstract:

Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.

Keywords: price elasticity, volume, correlation structures, Bayesian models

Procedia PDF Downloads 163
25221 The Effect Of Leadership Style On Employee Engagment In Ethiopian Airlines

Authors: Mahlet Nigussie Worku

Abstract:

The main purpose of this study was to examine the effects of different leadership styles on employee engagement in Ethiopian Airlines head quarter located in Addis Ababa. Specific objectives of the study were stated to examine the effects of five leadership styles namely transformational, transactional, democratic, lassies fair and autocratic leadership styles on employees’ engagement. The study was conducted on 288 sample size and a simple random sampling technique was employed. The quantitative findings were presented and analyzed by table, ANOVA, bivariate correlation and regression model through SPSS software version 23. Out of 288 total distributed questionnaires 280 were returned and 8 of the returned were rejected due to missing data while the remaining 280 responses were used for data analysis. Data was analyzed using the Statistical Package for Social Sciences (SPSS). The study employed both descriptive and explanatory research design. Correlation and regression were used to analyze the relationship and its effect between leadership Style and employee’s engagement. The regression results showed that transformational, transactional and democratic leadership Styles have significant contribution for employee’s engagement. Similarly transformational, transactional land democratic leadership style had a positive and strong correlation with employee’s engagement. However lassies-fair and autocratic leadership style showed negative and insignificant effect on employee engagement. Finally, based on the findings, workable recommendations and implications for further studies were forwarded

Keywords: leadership, leadership style, employee engagement, autocratic leadership styles

Procedia PDF Downloads 70
25220 Transforming Construction Companies into Full-Fledged Project-Based Organizations: Case of Ethiopia

Authors: Henok Asfaw Hailu, P. D. Rwelamila

Abstract:

Creating a suitable environment for successful projects needs a rethink of the organisational design of the parent organisations. A Project-based organisation (PBO) is a unique organizational form suitable for implementing and managing business activities around projects. A construction firm is inherently a PBO as it executes most of its activities through projects. PBO design and development require an empirical foundation. This study aimed to fill this gap by developing a conceptual model to help transform Ethiopian construction firms (ECFs) into full-fledged PBOs by assimilating the required PBO characteristics. The study used an exploratory QUAL-quant research design approach. A thematic content analysis was performed to analyse the qualitative (Interviews) research data. Means, standard deviations, frequencies, percentages, one-way ANOVA, and Pearson correlation were used to analyse the quantitative data. A transformational conceptual model was proposed and illustrated that transformation needs to begin by assessing the environment, strategic documents, and PBO characteristics. Assimilating missing PBO characteristics into ECFs is vital to realise organisations’ transformation into full-fledged PBOs.

Keywords: project-based organization, organizational design, dimensions, construction firms

Procedia PDF Downloads 73
25219 Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions

Authors: Gholamhossein Hosseini

Abstract:

Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.

Keywords: cotton, combined, analysis, earliness

Procedia PDF Downloads 141
25218 A Crowdsourced Homeless Data Collection System and Its Econometric Analysis: Strengthening Inclusive Public Administration Policies

Authors: Praniil Nagaraj

Abstract:

This paper proposes a method to collect homeless data using crowdsourcing and presents an approach to analyze the data, demonstrating its potential to strengthen existing and future policies aimed at promoting socio-economic equilibrium. This paper's contributions can be categorized into three main areas. Firstly, a unique method for collecting homeless data is introduced, utilizing a user-friendly smartphone app (currently available for Android). The app enables the general public to quickly record information about homeless individuals, including the number of people and details about their living conditions. The collected data, including date, time, and location, is anonymized and securely transmitted to the cloud. It is anticipated that an increasing number of users motivated to contribute to society will adopt the app, thus expanding the data collection efforts. Duplicate data is addressed through simple classification methods, and historical data is utilized to fill in missing information. The second contribution of this paper is the description of data analysis techniques applied to the collected data. By combining this new data with existing information, statistical regression analysis is employed to gain insights into various aspects, such as distinguishing between unsheltered and sheltered homeless populations, as well as examining their correlation with factors like unemployment rates, housing affordability, and labor demand. Initial data is collected in San Francisco, while pre-existing information is drawn from three cities: San Francisco, New York City, and Washington D.C., facilitating the conduction of simulations. The third contribution focuses on demonstrating the practical implications of the data processing results. The challenges faced by key stakeholders, including charitable organizations and local city governments, are taken into consideration. Two case studies are presented as examples. The first case study explores improving the efficiency of food and necessities distribution, as well as medical assistance, driven by charitable organizations. The second case study examines the correlation between micro-geographic budget expenditure by local city governments and homeless information to justify budget allocation and expenditures. The ultimate objective of this endeavor is to enable the continuous enhancement of the quality of life for the underprivileged. It is hoped that through increased crowdsourcing of data from the public, the Generosity Curve and the Need Curve will intersect, leading to a better world for all.

Keywords: crowdsourcing, homelessness, socio-economic policies, statistical analysis

Procedia PDF Downloads 41