Search results for: medical surveillance process
18445 Design of Circular Patch Antenna in Terahertz Band for Medical Applications
Authors: Moulfi Bouchra, Ferouani Souheyla, Ziani Kerarti Djalal, Moulessehoul Wassila
Abstract:
The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition.Keywords: circular patch antenna, Terahertz transmission, WBAN applications, real-time monitoring
Procedia PDF Downloads 30918444 Unified Structured Process for Health Analytics
Authors: Supunmali Ahangama, Danny Chiang Choon Poo
Abstract:
Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.Keywords: agile methodology, health analytics, unified process model, UML
Procedia PDF Downloads 50818443 Attributable Mortality of Nosocomial Infection: A Nested Case Control Study in Tunisia
Authors: S. Ben Fredj, H. Ghali, M. Ben Rejeb, S. Layouni, S. Khefacha, L. Dhidah, H. Said
Abstract:
Background: The Intensive Care Unit (ICU) provides continuous care and uses a high level of treatment technologies. Although developed country hospitals allocate only 5–10% of beds in critical care areas, approximately 20% of nosocomial infections (NI) occur among patients treated in ICUs. Whereas in the developing countries the situation is still less accurate. The aim of our study is to assess mortality rates in ICUs and to determine its predictive factors. Methods: We carried out a nested case-control study in a 630-beds public tertiary care hospital in Eastern Tunisia. We included in the study all patients hospitalized for more than two days in the surgical or medical ICU during the entire period of the surveillance. Cases were patients who died before ICU discharge, whereas controls were patients who survived to discharge. NIs were diagnosed according to the definitions of ‘Comité Technique des Infections Nosocomiales et les Infections Liées aux Soins’ (CTINLIS, France). Data collection was based on the protocol of Rea-RAISIN 2009 of the National Institute for Health Watch (InVS, France). Results: Overall, 301 patients were enrolled from medical and surgical ICUs. The mean age was 44.8 ± 21.3 years. The crude ICU mortality rate was 20.6% (62/301). It was 35.8% for patients who acquired at least one NI during their stay in ICU and 16.2% for those without any NI, yielding an overall crude excess mortality rate of 19.6% (OR= 2.9, 95% CI, 1.6 to 5.3). The population-attributable fraction due to ICU-NI in patients who died before ICU discharge was 23.46% (95% CI, 13.43%–29.04%). Overall, 62 case-patients were compared to 239 control patients for the final analysis. Case patients and control patients differed by age (p=0,003), simplified acute physiology score II (p < 10-3), NI (p < 10-3), nosocomial pneumonia (p=0.008), infection upon admission (p=0.002), immunosuppression (p=0.006), days of intubation (p < 10-3), tracheostomy (p=0.004), days with urinary catheterization (p < 10-3), days with CVC ( p=0.03), and length of stay in ICU (p=0.003). Multivariate analysis demonstrated 3 factors: age older than 65 years (OR, 5.78 [95% CI, 2.03-16.05] p=0.001), duration of intubation 1-10 days (OR, 6.82 [95% CI, [1.90-24.45] p=0.003), duration of intubation > 10 days (OR, 11.11 [95% CI, [2.85-43.28] p=0.001), duration of CVC 1-7 days (OR, 6.85[95% CI, [1.71-27.45] p=0.007) and duration of CVC > 7 days (OR, 5.55[95% CI, [1.70-18.04] p=0.004). Conclusion: While surveillance provides important baseline data, successful trials with more active intervention protocols, adopting multimodal approach for the prevention of nosocomial infection incited us to think about the feasibility of similar trial in our context. Therefore, the implementation of an efficient infection control strategy is a crucial step to improve the quality of care.Keywords: intensive care unit, mortality, nosocomial infection, risk factors
Procedia PDF Downloads 41018442 The Safety Profile of Vilazodone: A Study on Post-Marketing Surveillance
Authors: Humraaz Kaja, Kofi Mensah, Frasia Oosthuizen
Abstract:
Background and Aim: Vilazodone was approved in 2011 as an antidepressant to treat the major depressive disorder. As a relatively new drug, it is not clear if all adverse effects have been identified. The aim of this study was to review the adverse effects reported to the WHO Programme for International Drug Monitoring (PIDM) in order to add to the knowledge about the safety profile and adverse effects caused by vilazodone. Method: Data on adverse effects reported for vilazodone was obtained from the database VigiAccess managed by PIDM. Data was extracted from VigiAccess using Excel® and analyzed using descriptive statistics. The data collected was compared to the patient information leaflet (PIL) of Viibryd® and the FDA documents to determine adverse drug reactions reported post-marketing. Results: A total of 9708 adverse events had been recorded on VigiAccess, of which 6054 were not recorded on the PIL and the FDA approval document. Most of the reports were received from the Americas and were for adult women aged 45-64 years (24%, n=1059). The highest number of adverse events reported were for psychiatric events (19%; n=1889), followed by gastro-intestinal effects (18%; n=1839). Specific psychiatric disorders recorded included anxiety (316), depression (208), hallucination (168) and agitation (142). The systematic review confirmed several psychiatric adverse effects associated with the use of vilazodone. The findings of this study suggested that these common psychiatric adverse effects associated with the use of vilazodone were not known during the time of FDA approval of the drug and is not currently recorded in the patient information leaflet (PIL). Conclusions: In summary, this study found several adverse drug reactions not recorded in documents emanating from clinical trials pre-marketing. This highlights the importance of continued post-marketing surveillance of a drug, as well as the need for further studies on the psychiatric adverse events associated with vilazodone in order to improve the safety profile.Keywords: adverse drug reactions, pharmacovigilance, post-marketing surveillance, vilazodone
Procedia PDF Downloads 11818441 Metagenomics-Based Molecular Epidemiology of Viral Diseases
Authors: Vyacheslav Furtak, Merja Roivainen, Olga Mirochnichenko, Majid Laassri, Bella Bidzhieva, Tatiana Zagorodnyaya, Vladimir Chizhikov, Konstantin Chumakov
Abstract:
Molecular epidemiology and environmental surveillance are parts of a rational strategy to control infectious diseases. They have been widely used in the worldwide campaign to eradicate poliomyelitis, which otherwise would be complicated by the inability to rapidly respond to outbreaks and determine sources of the infection. The conventional scheme involves isolation of viruses from patients and the environment, followed by their identification by nucleotide sequences analysis to determine phylogenetic relationships. This is a tedious and time-consuming process that yields definitive results when it may be too late to implement countermeasures. Because of the difficulty of high-throughput full-genome sequencing, most such studies are conducted by sequencing only capsid genes or their parts. Therefore the important information about the contribution of other parts of the genome and inter- and intra-species recombination to viral evolution is not captured. Here we propose a new approach based on the rapid concentration of sewage samples with tangential flow filtration followed by deep sequencing and reconstruction of nucleotide sequences of viruses present in the samples. The entire nucleic acids content of each sample is sequenced, thus preserving in digital format the complete spectrum of viruses. A set of rapid algorithms was developed to separate deep sequence reads into discrete populations corresponding to each virus and assemble them into full-length consensus contigs, as well as to generate a complete profile of sequence heterogeneities in each of them. This provides an effective approach to study molecular epidemiology and evolution of natural viral populations.Keywords: poliovirus, eradication, environmental surveillance, laboratory diagnosis
Procedia PDF Downloads 28318440 Examination of Wall Art in Slums to Prevent Crime Case Study: Jabal Al-Natheef
Authors: Dana Jaber, Lilian Mansor, Lilan Al-Nablsi, Lujain Arabiat, Mariam Attoun
Abstract:
Preventing crime through environmental designs (CPTED) and situational crime prevention methods (SCP) are used to prevent crimes before they occur by anticipating people's actions and behavior in social situations. Many theories focused on wall art in preventing crimes, Graffiti, and situational crime prevention. The main aim of this research is to assess the wall art in slums and how it could avoid crimes by increasing surveillance by studying Jabal Al-Natheef—using a quantitative methodology to study the social life in the site and accumulate the intended actions to prevent crimes by using art. It was shown that the crimes in the area are severe, and they occur in slums due to the bad conditions, maintenance, and lack of surveillance. A finding of how people in the area would react to the art was a positive conclusion to how it could prevent the crimes. The research findings revealed that implementing wall art in slums would decrease the crimes in the area. This research concluded with a proposal to recommend implementing such skills to deter crimes.Keywords: CPTED, situational crime prevention, wall art, slums
Procedia PDF Downloads 8718439 Preparedness and Control of Mosquito-Borne Diseases: Experiences from Northwestern Italy
Authors: Federica Verna, Alessandra Pautasso, Maria Caramelli, Cristiana Maurella, Walter Mignone, Cristina Casalone
Abstract:
Mosquito-Borne Diseases (MBDs) are dangerously increasing in prevalence, geographical distribution and severity, representing an emerging threat for both humans and animals. Interaction between multiple disciplines is needed for an effective early warning, surveillance and control of MBDs, according to the One Health concept. This work reports the integrated surveillance system enforced by IZSPLV in Piedmont, Liguria and Valle d’Aosta regions (Northwestern Italy) in order to control MDBs spread. Veterinary services and local human health authority are involved in an information network, to connect the surveillance of human clinical cases with entomological surveillance and veterinary monitoring in order to implement control measures in case of outbreak. A systematic entomological surveillance is carried out during the vector season using mosquitoes traps located in sites selected according to risk factors. Collected mosquitoes are counted, identified to species level by morphological standard classification keys and pooled by collection site, date and species with a maximum of 100 individuals. Pools are analyzed, after RNA extraction, by Real Time RT-PCR distinctive for West Nile Virus (WNV) Lineage 1 and Lineage 2, Real Time RT-PCR USUTU virus (USUV) and a traditional flavivirus End-point RT-PCR. Positive pools are sequenced and the related sequences employed to perform a basic local alignment search tool (BLAST) in the GenBank library. Positive samples are sent to the National Reference Centre for Animal Exotic Diseases (CESME, Teramo) for confirmation. With particular reference to WNV, after the confirmation, as provided by national legislation, control measures involving both local veterinary and human health services are activated: equine sera are randomly sampled within a 4 km radius from the positive collection sites and tested with ELISA kit and WNV NAT screening of blood donors is introduced. This surveillance network allowed to detect since 2011 USUV circulation in this area of Italy. WNV was detected in Piedmont and Liguria for the first time in 2014 in mosquitoes. During the 2015 vector season, we observed the expansion of its activity in Piedmont. The virus was detected in almost all Provinces both in mosquitoes (6 pools) and animals (19 equine sera, 4 birds). No blood bag tested resulted infected. The first neuroinvasive human case occurred too. Competent authorities should be aware of a potentially increased risk of MBDs activity during the 2016 vector season. This work shows that this surveillance network allowed to early detect the presence of MBDs in humans and animals, and provided useful information to public authorities, in order to apply control measures. Finally, an additional value of our diagnostic protocol is the ability to detect all viruses belonging to the Flaviviridae family, considering the emergence caused by other Flaviviruses in humans such as the recent Zika virus infection in South America. Italy has climatic and environmental features conducive to Zika virus transmission, the competent vector and many travellers from Brazil reported every year.Keywords: integrated surveillance, mosquito borne disease, West Nile virus, Zika virus
Procedia PDF Downloads 36318438 Effects of Using a Recurrent Adverse Drug Reaction Prevention Program on Safe Use of Medicine among Patients Receiving Services at the Accident and Emergency Department of Songkhla Hospital Thailand
Authors: Thippharat Wongsilarat, Parichat tuntilanon, Chonlakan Prataksitorn
Abstract:
Recurrent adverse drug reactions are harmful to patients with mild to fatal illnesses, and affect not only patients but also their relatives, and organizations. To compare safe use of medicine among patients before and after using the recurrent adverse drug reaction prevention program . Quasi-experimental research with the target population of 598 patients with drug allergy history. Data were collected through an observation form tested for its validity by three experts (IOC = 0.87), and analyzed with a descriptive statistic (percentage). The research was conducted jointly with a multidisciplinary team to analyze and determine the weak points and strong points in the recurrent adverse drug reaction prevention system during the past three years, and 546, 329, and 498 incidences, respectively, were found. Of these, 379, 279, and 302 incidences, or 69.4; 84.80; and 60.64 percent of the patients with drug allergy history, respectively, were found to have caused by incomplete warning system. In addition, differences in practice in caring for patients with drug allergy history were found that did not cover all the steps of the patient care process, especially a lack of repeated checking, and a lack of communication between the multidisciplinary team members. Therefore, the recurrent adverse drug reaction prevention program was developed with complete warning points in the information technology system, the repeated checking step, and communication among related multidisciplinary team members starting from the hospital identity card room, patient history recording officers, nurses, physicians who prescribe the drugs, and pharmacists. Including in the system were surveillance, nursing, recording, and linking the data to referring units. There were also training concerning adverse drug reactions by pharmacists, monthly meetings to explain the process to practice personnel, creating safety culture, random checking of practice, motivational encouragement, supervising, controlling, following up, and evaluating the practice. The rate of prescribing drugs to which patients were allergic per 1,000 prescriptions was 0.08, and the incidence rate of recurrent drug reaction per 1,000 prescriptions was 0. Surveillance of recurrent adverse drug reactions covering all service providing points can ensure safe use of medicine for patients.Keywords: recurrent drug, adverse reaction, safety, use of medicine
Procedia PDF Downloads 46018437 Poultry in Motion: Text Mining Social Media Data for Avian Influenza Surveillance in the UK
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Background: Avian influenza, more commonly known as Bird flu, is a viral zoonotic respiratory disease stemming from various species of poultry, including pets and migratory birds. Researchers have purported that the accessibility of health information online, in addition to the low-cost data collection methods the internet provides, has revolutionized the methods in which epidemiological and disease surveillance data is utilized. This paper examines the feasibility of using internet data sources, such as Twitter and livestock forums, for the early detection of the avian flu outbreak, through the use of text mining algorithms and social network analysis. Methods: Social media mining was conducted on Twitter between the period of 01/01/2021 to 31/12/2021 via the Twitter API in Python. The results were filtered firstly by hashtags (#avianflu, #birdflu), word occurrences (avian flu, bird flu, H5N1), and then refined further by location to include only those results from within the UK. Analysis was conducted on this text in a time-series manner to determine keyword frequencies and topic modeling to uncover insights in the text prior to a confirmed outbreak. Further analysis was performed by examining clinical signs (e.g., swollen head, blue comb, dullness) within the time series prior to the confirmed avian flu outbreak by the Animal and Plant Health Agency (APHA). Results: The increased search results in Google and avian flu-related tweets showed a correlation in time with the confirmed cases. Topic modeling uncovered clusters of word occurrences relating to livestock biosecurity, disposal of dead birds, and prevention measures. Conclusions: Text mining social media data can prove to be useful in relation to analysing discussed topics for epidemiological surveillance purposes, especially given the lack of applied research in the veterinary domain. The small sample size of tweets for certain weekly time periods makes it difficult to provide statistically plausible results, in addition to a great amount of textual noise in the data.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, avian influenza, social media
Procedia PDF Downloads 10918436 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: disentanglement, face detection, generative adversarial networks, video surveillance
Procedia PDF Downloads 13118435 Microseismics: Application in Hydrocarbon Reservoir Management
Authors: Rahul Kumar Singh, Apurva Sharma, Dilip Kumar Srivastava
Abstract:
Tilting of our interest towards unconventional exploitation of hydrocarbons has raised a serious concern to environmentalists. Emerging technologies like horizontal/multi-lateral drilling with subsequent hydraulic fracturing or fracking etc., for exploitation of different conventional/unconventional hydrocarbon reservoirs, are related to creating micro-level seismic events below the surface of the earth. Monitoring of these micro-level seismic events is not possible by the conventional methodology of the seismic method. So, to tackle this issue, a new technology that is microseismic is very much in discussions around the globe. Multiple researches are being carried out these days around the globe in order to prove microseismic as a new essential in the E & P industry, especially for unconventional reservoir management. Microseismic monitoring is now used for reservoir surveillance, and the best application is checking the integrity of the caprock and containment of fluid in it. In general, in whatever terms we want to use micro-seismic related events monitoring and understanding the effectiveness of stimulation, this technology offers a lot of value in terms of insight into the subsurface characteristics and processes, and this makes it really a good geophysical method to be used in future.Keywords: microseismic, monitoring, hydraulic fracturing or fracking, reservoir surveillance, seismic hazards
Procedia PDF Downloads 18518434 Object-Centric Process Mining Using Process Cubes
Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst
Abstract:
Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.Keywords: multidimensional process mining, mMulti-perspective business processes, OLAP, process cubes, process discovery, process mining
Procedia PDF Downloads 26018433 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)
Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier
Abstract:
The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance
Procedia PDF Downloads 15818432 Computational Fluid Dynamics (CFD) Simulations for Studying Flow Behaviors in Dipping Tank in Continuous Latex Gloves Production Lines
Authors: Worrapol Koranuntachai, Tonkid Chantrasmi, Udomkiat Nontakaew
Abstract:
Medical latex gloves are made from the latex compound in production lines. Latex dipping is considered one of the most important processes that directly affect the final product quality. In a continuous production line, a chain conveyor carries the formers through the process and partially submerges them into an open channel flow in a latex dipping tank. In general, the conveyor speed is determined by the desired production capacity, and the latex-dipping tank can then be designed accordingly. It is important to understand the flow behavior in the dipping tank in order to achieve high quality in the process. In this work, Computational Fluid Dynamics (CFD) was used to simulate the flow past an array of formers in a simplified latex dipping process. The computational results showed both the flow structure and the vortex generation between two formers. The maximum shear stress over the surface of the formers was used as the quality metric of the latex-dipping process when adjusting operation parameters.Keywords: medical latex gloves, latex dipping, dipping tank, computational fluid dynamics
Procedia PDF Downloads 13618431 A Quantitative Model for Replacement of Medical Equipment Based on Technical and Environmental Factors
Authors: Ghadeer Mohammad Said El-Sheikh, Samer Mohamad Shalhoob
Abstract:
Medical equipment operation state is a valid reflection of health care organizations' performance, where such equipment highly contributes to the quality of healthcare services on several levels in which quality improvement has become an intrinsic part of the discourse and activities of health care services. In healthcare organizations, clinical and biomedical engineering departments play an essential role in maintaining the safety and efficiency of such equipment. One of the most challenging topics when it comes to such sophisticated equipment is the lifespan of medical equipment, where many factors will impact such characteristics of medical equipment through its life cycle. So far, many attempts have been made in order to address this issue where most of the approaches are kind of arbitrary approaches and one of the criticisms of existing approaches trying to estimate and understand the lifetime of a medical equipment lies under the inquiry of what are the environmental factors that can play into such a critical characteristic of a medical equipment. In an attempt to address this shortcoming, the purpose of our study rises where in addition to the standard technical factors taken into consideration through the decision-making process by a clinical engineer in case of medical equipment failure, the dimension of environmental factors shall be added. The investigations, researches and studies applied for the purpose of supporting the decision making process by a clinical engineers and assessing the lifespan of healthcare equipment’s in the Lebanese society was highly dependent on the identification of technical criteria’s that impacts the lifespan of a medical equipment where the affecting environmental factors didn’t receive the proper attention. The objective of our study is based on the need for introducing a new well-designed plan for evaluating medical equipment depending on two dimensions. According to this approach, the equipment that should be replaced or repaired will be classified based on a systematic method taking into account two essential criteria; the standard identified technical criteria and the added environmental criteria.Keywords: technical, environmental, healthcare, characteristic of medical equipment
Procedia PDF Downloads 15818430 The Impact of Artificial Intelligence on Textiles Technology
Authors: Ramy Kamel Fekrey Gadelrab
Abstract:
Textile sensors have gained a lot of interest in recent years as it is instrumental in monitoring physiological and environmental changes, for a better diagnosis that can be useful in various fields like medical textiles, sports textiles, protective textiles, agro textiles, and geo-textiles. Moreover, with the development of flexible textile-based wearable sensors, the functionality of smart clothing is augmented for a more improved user experience when it comes to technical textiles. In this context, conductive textiles using new composites and nanomaterials are being developed while considering its compatibility with the textile manufacturing processes. This review aims to provide a comprehensive and detailed overview of the contemporary advancements in textile-based wearable physical sensors, used in the field of medical, security, surveillance, and protection, from a global perspective. The methodology used is through analysing various examples of integration of wearable textile-based sensors with clothing for daily use, keeping in mind the technological advances in the same. By comparing various case studies, it come across various challenges textile sensors, in terms of stability, the comfort of movement, and reliable sensing components to enable accurate measurements, in spite of progress in the engineering of the wearable. Addressing such concerns is critical for the future success of wearable sensors.Keywords: nanoparticles, enzymes, immobilization, textilesconductive yarn, e-textiles, smart textiles, thermal analysisflexible textile-based wearable sensors, contemporary advancements, conductive textiles, body conformal design
Procedia PDF Downloads 5218429 Production Process of Coconut-Shell Product in Amphawa District
Authors: Wannee Sutthachaidee
Abstract:
The study of the production process of coconut-shell product in Amphawa, Samutsongkram Province is objected to study the pattern of the process of coconut-shell product by focusing in the 3 main processes which are inbound logistics process, production process and outbound process. The result of the research: There were 4 main results from the study. Firstly, most of the manufacturer of coconut-shell product is usually owned by a single owner and the quantity of the finished product is quite low and the main labor group is local people. Secondly, the production process can be divided into 4 stages which are pre-production process, production process, packaging process and distribution process. Thirdly, each 3 of the logistics process of coconut shell will find process which may cause the problem to the business but the process which finds the most problem is the production process because the production process needs the skilled labor and the quantity of the labor does not match with the demand from the customers. Lastly, the factors which affect the production process of the coconut shell can be founded in almost every process of the process such as production design, packaging design, sourcing supply and distribution management.Keywords: production process, coconut-shell product, Amphawa District, inbound logistics process
Procedia PDF Downloads 52518428 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 8318427 Use of Pheromones, Active Surveillance and Treated Cattle to Prevent the Establishment of the Tropical Bont Tick in Puerto Rico and the Americas
Authors: Robert Miller, Fred Soltero, Sandra Allan, Denise Bonilla
Abstract:
The Tropical Bont Tick (TBT), Amblyomma variegatum, was introduced to the Caribbean in the mid-1700s. Since it has spread throughout the Caribbean dispersed by cattle egrets (Bubulcus ibis). Tropical Bont Ticks vector many pathogens to livestock and humans. However, only the livestock diseases heartwater, Ehrlichia (Cowdria) ruminantium, and dermatophilosis, Dermatophilus congolensis, are associated with TBT in the Caribbean. African tick bite fever (Rickettsia africae) is widespread in Caribbean TBT but human cases are rare. The Caribbean Amblyomma Programme (CAP) was an effort led by the Food and Agricultural Organization to eradicate TBTs from participating islands. This 10-year effort successfully eradicated TBT from many islands. However, most are reinfested since its termination. Pheromone technology has been developed to aid in TBT control. Although not part of the CAP treatment scheme, this research established that pheromones in combination with pesticide greatly improves treatment efficiencies. Additionally, pheromone combined with CO₂ traps greatly improves active surveillance success. St. Croix has a history of TBT outbreaks. Passive surveillance detected outbreaks in 2016 and in May of 2021. Surveillance efforts are underway to determine the extent of TBT on St Croix. Puerto Rico is the next island in the archipelago and is at a greater risk of re-infestation due to active outbreaks in St Croix. Tropical Bont Ticks were last detected in Puerto Rico in the 1980s. The infestation started on the small Puerto Rican island of Vieques, the closest landmass to St Croix, and spread to the main island through cattle movements. This infestation was eradicated with the help of the Tropical Cattle Tick (TCT), Rhipicephalus (Boophilus) microplus, eradication program. At the time, large percentages of Puerto Rican cattle were treated for ticks along with the necessary material and manpower mobilized for the effort. Therefore, a shift of focus from the TCT to TBT prevented its establishment in Puerto Rico. Currently, no large-scale treatment of TCTs occurs in Puerto Rico. Therefore, the risk of TBT establishment is now greater than it was in the 1980s. From Puerto Rico, the risk of TBT movement to the American continent increases significantly. The establishment of TBTs in the Americas would cause $1.2 billion USD in losses to the livestock industry per year. The USDA Agricultural Research Service recently worked with the USDA Animal Health Inspection Service and the Puerto Rican Department of Agriculture to modernize the management of the TCT. This modernized program uses safer pesticides and has successfully been used to eradicate pesticide-susceptible and -resistant ticks throughout the island. The objective of this work is to prevent the infestation of Puerto Rico by TBTs by combining the current TCT management efforts with TBT surveillance in Vieques. The combined effort is designed to eradicate TCT from Vieques while using the treated cattle as trap animals for TBT using pheromone impregnated tail tags attached to treated animals. Additionally, active surveillance using CO₂-baited traps combined with pheromone will be used to actively survey the environment for free-living TBT. Knowledge gained will inform TBT control efforts in St. Croix.Keywords: Amblyomma variegatum, caribbean, eradication, Rhipicephalus (boophilus) microplus, pheromone
Procedia PDF Downloads 17918426 Packaging Processes for the Implantable Medical Microelectronics
Authors: Chung-Yu Wu, Chia-Chi Chang, Wei-Ming Chen, Pu-Wei Wu, Shih-Fan Chen, Po-Chun Chen
Abstract:
Electrostimulation medical devices for neural diseases require electroactive and biocompatible materials to transmit signals from electrodes to targeting tissues. Protection of surrounding tissues has become a great challenge for long-term implants. In this study, we designed back-end processes with compatible, efficient, and reliable advantages over the current state-of-the-art. We explored a hermetic packaging process with high quality of adhesion and uniformity as the biocompatible devices for long-term implantation. This approach is able to provide both excellent biocompatibility and protection to the biomedical electronic devices by performing conformal coating of biocompatible materials. We successfully developed a packaging process that is capable of exposing the stimulating electrode and cover all other faces of chip with high quality of protection to prevent leakage of devices and body fluid.Keywords: biocompatible package, medical microelectronics, surface coating, long-term implantation
Procedia PDF Downloads 52618425 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 16918424 Design and Optimization of a Mini High Altitude Long Endurance (HALE) Multi-Role Unmanned Aerial Vehicle
Authors: Vishaal Subramanian, Annuatha Vinod Kumar, Santosh Kumar Budankayala, M. Senthil Kumar
Abstract:
This paper discusses the aerodynamic and structural design, simulation and optimization of a mini-High Altitude Long Endurance (HALE) UAV. The applications of this mini HALE UAV vary from aerial topological surveys, quick first aid supply, emergency medical blood transport, search and relief activates to border patrol, surveillance and estimation of forest fire progression. Although classified as a mini UAV according to UVS International, our design is an amalgamation of the features of ‘mini’ and ‘HALE’ categories, combining the light weight of the ‘mini’ and the high altitude ceiling and endurance of the HALE. Designed with the idea of implementation in India, it is in strict compliance with the UAS rules proposed by the office of the Director General of Civil Aviation. The plane can be completely automated or have partial override control and is equipped with an Infra-Red camera and a multi coloured camera with on-board storage or live telemetry, GPS system with Geo Fencing and fail safe measures. An additional of 1.5 kg payload can be attached to three major hard points on the aircraft and can comprise of delicate equipment or releasable payloads. The paper details the design, optimization process and the simulations performed using various software such as Design Foil, XFLR5, Solidworks and Ansys.Keywords: aircraft, endurance, HALE, high altitude, long range, UAV, unmanned aerial vehicle
Procedia PDF Downloads 40118423 The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020
Authors: Berger Saintius, Edna Ariste, Djeamsly Salomon
Abstract:
Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem.Keywords: epidemiology, maternal death, hospital, Haiti
Procedia PDF Downloads 9218422 An Audit of the Process of Care in Surveillance Services for Children with Sickle Cell Disease in Wales
Authors: Charlie Jeffkins
Abstract:
Sickle cell disease is a serious life-limiting condition which can reduce the quality of life for many patients. Public Health England (PHE), in partnership with the Sickle Cell Society (SCS), has created guidelines to prevent severe complications from sickle cell disease. Data was collected from Children’s Hospital for Wales between 15/03/21-26/03/21. Methods: A manual search of patient records for children under the care of Rocket Ward and a key term search of online records was used. Results: Penicillin prophylaxis was given at 90 days for 89%, 77% of TCDs scans were done at 2-3 years, and 72% have had a scan in the last year. 53% of patients have had discussions about hydroxycarbamide, whilst 65% have started it. PPV vaccination was documented for 19%. Conclusion: Overall, none of the four standards were reached; however, TCD uptake has improved. There is a need for better documentation of treatment and annual re-audits.Keywords: paediatric, haematology, sickle cell, audit
Procedia PDF Downloads 22718421 Intelligent Campus Monitoring: YOLOv8-Based High-Accuracy Activity Recognition
Authors: A. Degale Desta, Tamirat Kebamo
Abstract:
Background: Recent advances in computer vision and pattern recognition have significantly improved activity recognition through video analysis, particularly with the application of Deep Convolutional Neural Networks (CNNs). One-stage detectors now enable efficient video-based recognition by simultaneously predicting object categories and locations. Such advancements are highly relevant in educational settings where CCTV surveillance could automatically monitor academic activities, enhancing security and classroom management. However, current datasets and recognition systems lack the specific focus on campus environments necessary for practical application in these settings.Objective: This study aims to address this gap by developing a dataset and testing an automated activity recognition system specifically tailored for educational campuses. The EthioCAD dataset was created to capture various classroom activities and teacher-student interactions, facilitating reliable recognition of academic activities using deep learning models. Method: EthioCAD, a novel video-based dataset, was created with a design science research approach to encompass teacher-student interactions across three domains and 18 distinct classroom activities. Using the Roboflow AI framework, the data was processed, with 4.224 KB of frames and 33.485 MB of images managed for frame extraction, labeling, and organization. The Ultralytics YOLOv8 model was then implemented within Google Colab to evaluate the dataset’s effectiveness, achieving high mean Average Precision (mAP) scores. Results: The YOLOv8 model demonstrated robust activity recognition within campus-like settings, achieving an mAP50 of 90.2% and an mAP50-95 of 78.6%. These results highlight the potential of EthioCAD, combined with YOLOv8, to provide reliable detection and classification of classroom activities, supporting automated surveillance needs on educational campuses. Discussion: The high performance of YOLOv8 on the EthioCAD dataset suggests that automated activity recognition for surveillance is feasible within educational environments. This system addresses current limitations in campus-specific data and tools, offering a tailored solution for academic monitoring that could enhance the effectiveness of CCTV systems in these settings. Conclusion: The EthioCAD dataset, alongside the YOLOv8 model, provides a promising framework for automated campus activity recognition. This approach lays the groundwork for future advancements in CCTV-based educational surveillance systems, enabling more refined and reliable monitoring of classroom activities.Keywords: deep CNN, EthioCAD, deep learning, YOLOv8, activity recognition
Procedia PDF Downloads 2218420 Impact of a Structured Antimicrobial Stewardship Program in a North-East Italian Hospital
Authors: Antonio Marco Miotti, Antonella Ruffatto, Giampaola Basso, Antonio Madia, Giulia Zavatta, Emanuela Salvatico, Emanuela Zilli
Abstract:
A National Action Plan to fight antimicrobial resistance was launched in Italy in 2017. In order to reduce inappropriate exposure to antibiotics and infections from multi-drug resistant bacteria, it is essential to set up a structured system of surveillance and monitoring of the implementation of National Action Plan standards, including antimicrobial consumption, with a special focus on quinolones, third generation cephalosporins and carbapenems. A quantitative estimate of antibiotic consumption (defined daily dose - DDD - consumption per 100 days of hospitalization) has been provided by the Pharmaceutical Service to the Hospital of Cittadella, ULSS 6 Euganea – Health Trust (District of Padua) for the years 2019 (before the pandemic), 2020 and 2021 for all classes of antibiotics. Multidisciplinary meetings have been organized monthly by the local Antimicrobial Stewardship Group. Between 2019 and 2021, an increase in the consumption of carbapenems in the Intensive Care Unit (from 12.2 to 18.2 DDD, + 49.2%) and a decrease in Medical wards (from 5.3 to 2.6 DDD, - 50.9%) was reported; a decrease in the consumption of quinolones in Intensive Care Unit (from 17.2 to 10.8 DDD, - 37.2%), Medical wards (from 10.5 to 6.6 DDD, - 37.1%) and Surgical wards (from 10.2 to 9.3 DDD, - 8.8%) was highlighted; an increase in the consumption of third generation cephalosporins in Medical wards (from 18.1 to 22.6 DDD, + 24,1%) was reported. Finally, after an increase in the consumption of macrolides between 2020 and 2019, in 2021, a decrease was reported in the Intensive Care Unit (DDD: 8.0 in 2019, 18.0 in 2020, 6.4 in 2021) and Medical wards (DDD: 9.0 in 2019, 13.7 in 2020, 10.9 in 2021). Constant monitoring of antimicrobial consumption and timely identifying of warning situations that may need a specific intervention are the cornerstone of Antimicrobial Stewardship programs, together with analysing data on bacterial resistance rates and infections from multi-drug resistant bacteria.Keywords: carbapenems, quinolones, antimicrobial, stewardship
Procedia PDF Downloads 16318419 An Assessment of the Role of Actors in the Medical Waste Management Policy-Making Process of Bangladesh
Authors: Md Monirul Islam, Shahaduz Zaman, Mosarraf H. Sarker
Abstract:
Context: Medical waste management (MWM) is a critical sector in Bangladesh due to its impact on human health and the environment. There is a need to assess the current policies and identify the role of policy actors in the policy formulation and implementation process. Research Aim: The study aimed to evaluate the role of policy actors in the medical waste management policy-making process in Bangladesh, identify policy gaps, and provide actionable recommendations for improvement. Methodology: The study adopted a qualitative research method and conducted key informant interviews. The data collected were analyzed using the thematic coding approach through Atlas.ti software. Findings: The study found that policies are formulated at higher administrative levels and implemented in a top-down approach. Higher-level institutions predominantly contribute to policy development, while lower-level institutions focus on implementation. However, due to negligence, ignorance, and lack of coordination, medical waste management receives insufficient attention from the actors. The study recommends the need for immediate strategies, a comprehensive action plan, regular policy updates, and inter-ministerial meetings to enhance medical waste management practices and interventions. Theoretical Importance: The research contributes to evaluating the role of policy actors in medical waste management policymaking and implementation in Bangladesh. It identifies policy gaps and provides actionable recommendations for improvement. Data Collection: The study used key informant interviews as the data collection method. Thirty-six participants were interviewed, including influential policymakers and representatives of various administrative spheres. Analysis Procedures: The data collected was analyzed using the inductive thematic analysis approach. Question Addressed: The study aimed to assess the role of policy actors in medical waste management policymaking and implementation in Bangladesh. Conclusion: In conclusion, the study provides insights into the current medical waste management policy in Bangladesh, the role of policy actors in policy formulation and implementation, and the need for improved strategies and policy updates. The findings of this study can guide future policy-making efforts to enhance medical waste management practices and interventions in Bangladesh.Keywords: key informant, medical waste management, policy maker, qualitative study
Procedia PDF Downloads 8318418 Views and Experiences of Medical Students of Kerman University of Medical Sciences on Facilitators and Inhibitators of Quality of Education in the Clinical Education System in 2021
Authors: Hossein Ghaedamini, Salman Farahbakhsh, Alireza Amirbeigi, Zahra Saghafi, Salman Daneshi, Alireza Ghaedamini
Abstract:
Background: Assessing the challenges of clinical education of medical students is one of the most important and sensitive parts of medical education. The aim of this study was to investigate the views and experiences of Kerman medical students on the factors that facilitate and inhibit the quality of clinical education. Materials and Methods: This research was qualitative and used a phenomenological approach. The study population included medical interns of Kerman University of Medical Sciences in 1400. The method of data collection was in-depth interviews with participants. Data were encoded and analyzed by Claizey stepwise model. Results: First, about 540 primary codes were extracted in the form of two main themes (facilitators and inhibitors) and 10 sub-themes including providing motivational models and creating interest in interns, high scientific level of professors and the appropriate quality of their teaching, the use of technology in the clinical education process, delegating authority and freedom of action and more responsibilities to interns, inappropriate treatment of some officials, professors, assistants and department staff with their interns, inadequate educational programming, lack of necessary cooperation and providing inappropriate treatment by clinical training experts for interns, inadequate evaluation method in clinical training for interns, poor quality mornings, the unefficiency of grand rounds, the inappropriate way of evaluating clinical training for interns, the lack of suitable facilities and conditions with the position of a medical intern, and the hardwork of some departments were categorized. Conclusion: Clinical education is always mixed with special principles and subtleties, and special attention to facilitators and inhibitors in this process has an important role in improving its quality.Keywords: clinical education, medical students, qualitative study, education
Procedia PDF Downloads 10418417 A Study on Unix Process Crash Based on Efficient Process Management Method
Authors: Guo Haonan, Chen Peiyu, Zhao Hanyu, Burra Venkata Durga Kumar
Abstract:
Unix and Unix-like operating systems are widely used due to their high stability but are limited by the parent-child process structure, and the child process depends on the parent process, so the crash of a single process may cause the entire process group or even the entire system to fail. Another possibility of unexpected process termination is that the system administrator inadvertently closed the terminal or pseudo-terminal where the application was launched, causing the application process to terminate unexpectedly. This paper mainly analyzes the reasons for the problems and proposes two solutions.Keywords: process management, daemon, login-bash and non-login bash, process group
Procedia PDF Downloads 14018416 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 24