Search results for: hair fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1370

Search results for: hair fiber

1280 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, Chemical treatment, Fiber characteristics, Natural fiber

Procedia PDF Downloads 204
1279 Seasonal Lambing in Crossbred of Katahdin Ewes in Tropical Regions of Chiapas, Mexico

Authors: Juan C. Martínez-Alfaro, Aracely Zúñiga, Fernando Ruíz-Zarate

Abstract:

In recent years, the Katahdin sheep breeds have been one of the breeds with greater acceptance by sheep farmers in southwestern Mexico. The Hair Sheep breeds from tropical latitudes (16° to 21° North Latitude) show low estrus activity from January to May. By contrast, these breeds of sheep exhibit high estrus activity from August to December. However, the reproductive management of Hair Sheep crossbred is very limited, independently of the socioeconomic levels of sheep farmers. Thus, in crossbred of Hair Sheep, occurrence of lambing is greater in autumn (84%) than spring (16%). In this sense, the aim of this study was to determine the lambing in Crossbred of Katahdin sheep during different seasons of the year. The Hypothesis was that in crossbred of Katahdin sheep, the lambing period has a behavior seasonal in the Southwestern Mexico. The study design consisted in evaluating the lambing proportion in one herds of Katahdin ewes crossbred during one year (October 1st, 2015 to October 1st, 2016). The study was realized in a farm located in the municipality of Jiquipilas, in the State of Chiapas, Mexico (16° North Latitude). A total of 40 female sheep homogeneous in terms of physical condition, age and physiological state were selected; and they were fed in grazing continuous, mainly with Africa star grass (Cynodon lemfuensis) and they are provided with water and mineral salts ad libitum; during the dry season, the ewes were supplemented with a diet of maize and sorghum, and the reproductive management was continuous mating. The lambing proportion was analyzed by chi-squared test, using SAS statistical software. The proportion of Katahdin ewes crossbred that lambed during the study period was high (100%; 40/40), the prolificacy was 1.42 (lamb/lambing). The proportion of lambing was higher (P<0.05) in autumn (67.5%; 27/40), than winter, spring and summer (32.5%; 13/40; 0%; 0/40; 0%; 0/40; respectively). The proportion of lambing was greater (P<0.05) in November (50%; 20/40), compared to October, December and January (2.5%; 1/40; 27.5%; 11/40; 20%; 8/40, respectively). The results are consistent with the fact that in the Hair Sheep Breeds, the lambing appears behave seasonally. The most important finding is that the lambing period in the crossbred of Katahdin Sheep is similar to the crossbred of Hair Sheep in tropical regions of Mexico. Therefore, the period of greater sexual activity occurs in the spring season. In conclusion, the period of lambing in crossbred of Katahdin ewes appears behave seasonally. Further researches to assess the ovarian activity in different breeds of Hair Ewes are under assessment.

Keywords: Katahdin ewes, lambing, prolificacy, seasonality

Procedia PDF Downloads 236
1278 Spectral Properties of Fiber Bragg Gratings

Authors: Y. Hamaizi, H. Triki, A. El-Akrmi

Abstract:

In this paper, the reflection spectra, group delay and dispersion of a uniform fiber Bragg grating (FBG) are obtained. FBGs with two types of apodized variations of the refractive index were modeled to show how the side-lobes can be suppressed. Apodization techniques are used to get optimized reflection spectra. The simulation is based on solving coupled mode equations together with the transfer matrix method.

Keywords: fiber bragg gratings, coupled-mode theory, reflectivity, apodization

Procedia PDF Downloads 683
1277 Bending Effect on POF Splitter Performance for Different Thickness of Fiber Cores

Authors: L. S. Supian, Mohd Syuhaimi Ab-Rahman, Norhana Arsad

Abstract:

Experimental study has been done to study the performance on polymer optical fiber splitter characterization when different bending radii are applied on splitters with different fiber cores. The splitters with different cores pair are attached successively to splitter platform of ellipse-shape geometrical blocks of several bending radii. A force is exerted upon the blocks thus the splitter in order to encourage the splitting of energy between the two fibers. The aim of this study is to investigate which fiber core pair gives the optimum performance that goes with each bending radius in order to develop an effective splitter.

Keywords: splitter, macro-bending, cores, geometrical blocks

Procedia PDF Downloads 644
1276 Numerical Study of Fiber Bragg Grating Sensor: Longitudinal and Transverse Detection of Temperature and Strain

Authors: K. Khelil, H. Ammar, K. Saouchi

Abstract:

Fiber Bragg Grating (FBG) structure is an periodically modulated optical fiber. It acts as a selective filter of wavelength whose reflected peak is called Bragg wavelength and it depends on the period of the fiber and the refractive index. The simulation of FBG is based on solving the Coupled Mode Theory equation by using the Transfer Matrix Method which is carried out using MATLAB. It is found that spectral reflectivity is shifted when the change of temperature and strain is uniform. Under non-uniform temperature or strain perturbation, the spectrum is both shifted and destroyed. In case of transverse loading, reflectivity spectrum is split into two peaks, the first is specific to X axis, and the second belongs to Y axis. FBGs are used in civil engineering to detect perturbations applied to buildings.

Keywords: Bragg wavelength, coupled mode theory, optical fiber, temperature measurement

Procedia PDF Downloads 468
1275 Utilization of Soymilk Residue for Wheat Flour Substitution in Gyoza skin

Authors: Naruemon Prapasuwannakul

Abstract:

Soy milk residue is obtained as a byproduct from soy milk and tofu production with little economic value. It contains high protein and fiber as well as various minerals and phyto-chemical compounds. The objective of this research was to substitute soy milk residue for wheat flour in gyoza skin in order to enhance value of soy milk residue and increase protein and fiber content of gyoza skin. Wheat flour was replaced with soy milk residue from 0 to 40%. The soy milk residue prepared in this research contains 26.92% protein, 3.58% fiber, 2.88% lipid, 6.29% ash and 60.33% carbohydrate. The results showed that increasing soy milk residue decreased lightness (L*value), tensile strength and sensory attributes but increased redness (a*), yellowness (b*), protein and fiber contents of product. The result also showed that the gyoza skin substituted with 30% soy milk residue was the most acceptable (p≤0.05) and its protein and fiber content increased up to 45 % and 867 % respectively.

Keywords: Gyoza skin, sensory, soymilk residue, wheat flour

Procedia PDF Downloads 371
1274 Automation of Process Waste-Free Air Filtration in Production of Concrete, Reinforced with Basalt Fiber

Authors: Stanislav Perepechko

Abstract:

Industrial companies - one of the major sources of harmful substances to the atmosphere. The main cause of pollution on the concrete plants are cement dust emissions. All the cement silos, pneumatic transport, and ventilation systems equipped with filters, to avoid this. Today, many Russian companies have to decide on replacement morally and physically outdated filters and guided back to the electrostatic filters as usual equipment. The offered way of a cleaning of waste-free filtering of air differs in the fact that a filtering medium of the filter is used in concrete manufacture. Basalt is widespread and pollution-free material. In the course of cleaning, one part of basalt fiber and cement immediately goes to the mixer through flow-control units of initial basalt fiber and cement. Another part of basalt fiber goes to filters for purification of the air used in systems of an air lift, and ventilating emissions passes through them, and with trapped particles also goes to the mixer through flow-control units of the basalt fiber fulfilled in filters. At the same time, regulators are adjusted in such a way that total supply of basalt fiber and cement into the mixer remains invariable and corresponds to a given technological mode.

Keywords: waste-free air filtration, concrete, basalt fiber, building automation

Procedia PDF Downloads 404
1273 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 148
1272 Effect of Fiber Orientation on the Mechanical Properties of Fabricated Plate Using Basalt Fiber

Authors: Sharmili Routray, Kishor Chandra Biswal

Abstract:

The use of corrosion resistant fiber reinforced polymer (FRP) reinforcement is beneficial in structures particularly those exposed to deicing salts, and/or located in highly corrosive environment. Generally Glass, Carbon and Aramid fibers are used for the strengthening purpose of the structures. Due to the necessities of low weight and high strength materials, it is required to find out the suitable substitute with low cost. Recent developments in fiber production technology allow the strengthening of structures using Basalt fiber which is made from basalt rock. Basalt fiber has good range of thermal performance, high tensile strength, resistance to acids, good electro‐magnetic properties, inert nature, resistance to corrosion, radiation and UV light, vibration and impact loading. This investigation focuses on the effect of fibre content and fiber orientation of basalt fibre on mechanical properties of the fabricated composites. Specimen prepared with unidirectional Basalt fabric as reinforcing materials and epoxy resin as a matrix in polymer composite. In this investigation different fiber orientation are taken and the fabrication is done by hand lay-up process. The variation of the properties with the increasing number of plies of fiber in the composites is also studied. Specimens are subjected to tensile strength test and the failure of the composite is examined with the help of INSTRON universal testing Machine (SATEC) of 600 kN capacities. The average tensile strength and modulus of elasticity of BFRP plates are determined from the test Program.

Keywords: BFRP, fabrication, Fiber Reinforced Polymer (FRP), strengthening

Procedia PDF Downloads 267
1271 Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers

Authors: Howaidi M. Al-Otaibi, Abdulrahman S. Al-Suhaibani, Hamad A. Alsoliman

Abstract:

Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting.

Keywords: cellulose date palm fiber, fiber modified asphalt, physical properties, rheological properties

Procedia PDF Downloads 305
1270 Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites

Authors: Alok Srivastava, Vidit Gupta, Aparna Singh, Chandra Sekher Yerramalli

Abstract:

Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples.

Keywords: carbon fiber, graphene nanoplatelets, strength, VARTM, Vacuum Assisted Resin Transfer Moulding

Procedia PDF Downloads 122
1269 Fracture Properties Investigation of Artocarpus odoratissimus Composite with Polypropylene (PP)

Authors: M. Kamal M. Shah, Al Fareez Bin Aslie, O. Irma Wani, J. Sahari

Abstract:

Wood plastic composites (WPC) were made using matrix of polypropylene (PP) thermoplastic resin with wood fiber from Artocarpus Odoratissimus as filler. The purpose of this project is to investigate the fracture properties of Artocarpus odoratissimus composite with PP. The WPC were manufactured by hot-press technique with varying formulations which are 10:0 (100% pure PP), 50:50 (40 g of wood fiber and 40 g of PP) and 60:40 (48 g of wood fiber and 32 g of PP). The mechanical properties were investigated. Tensile and flexural were carried out according to ASTM D 638 and ASTM D 790. The results were analysed to calculate the tensile strength. Tensile strength at break is ranged from 13.2 N/mm2 to 21.7 N/mm2 while, the flexural strength obtained is varying from 14.7 N/mm2 to 31.1 N/mm2. The results of the experiment showed that tensile and flexural properties of the composite were increased with the adding of wood fiber material. Finally, the Scanning Electron Microscope (SEM), have been done to study the fracture behavior of the WPC specimens.

Keywords: Artocarpus odoratissimus, polypropylene thermoplastic, wood fiber, WPC

Procedia PDF Downloads 370
1268 Crack Opening Investigation in Fiberconcrete

Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

Work has three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. Length of steel fiber was 26 mm, diameter 0.5 mm. On the obtained force- displacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. Surface of fiber channel in concrete matrix after pull-out test (fiber angle to pulling out force direction 70°). At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiber concrete prisms (with dimensions 10x10x40 cm) subjected to 4-point bending. After testing was analyzed main crack. On the main crack’s both surfaces were recognized all pulled out fibers their locations, angles to crack surface and lengths of pull-out fibers parts. At the third stage elaborated prediction model for the fiber-concrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack.

Keywords: fiberconcrete, pull-out, fiber channel, layered fiberconcrete

Procedia PDF Downloads 412
1267 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete

Authors: Erjola Reufi, Thomas Beer

Abstract:

Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.

Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber

Procedia PDF Downloads 275
1266 Behavior of Reinforced Soil by Polypropylene Fibers

Authors: M. Kamal Elbokl

Abstract:

The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.

Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain

Procedia PDF Downloads 591
1265 Design of Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring Application

Authors: Arafat A. A. Shabaneh

Abstract:

Harsh environments demand a developed detection of an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBG) are emerging sensing instruments that respond to variations in strain and temperature via varying wavelengths. In this paper, cascaded uniform FBG as a strain sensor for 6 km length at 1550 nm wavelength with 30 oC is designed with analyzing of dynamic strain and wavelength shifts. FBG is placed in a small segment of optical fiber, which reflects light of a specific wavelength and passes the remaining wavelengths. This makes a periodic alteration in the refractive index within the fiber core. The alteration in the modal index of fiber produced due to strain consequences in a Bragg wavelength. When the developed sensor exposure to a strain of cascaded uniform FBG by 0.01, the wavelength is shifted to 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show reliable and effective strain monitoring sensors for remote sensing applications.

Keywords: Cascaded fiber Bragg gratings, Strain sensor, Remote sensing, Wavelength shift

Procedia PDF Downloads 172
1264 Experimental Demonstration of Broadband Erbium-Doped Fiber Amplifier

Authors: Belloui Bouzid

Abstract:

In this paper, broadband design of erbium doped fiber amplifier (EDFA) is demonstrated and proved experimentally. High and broad gain is covered in C and L bands. The used technique combines, in one configuration, two double passes with split band structure for the amplification of two traveled signals one for the C band and the other for L band. This new topology is to investigate the trends of high gain and wide amplification at different status of pumping power, input wavelength, and input signal power. The presented paper is to explore the performance of EDFA gain using what it can be called double pass double branch wide band amplification configuration. The obtained results show high gain and wide broadening range of 44.24 dB and 80 nm amplification respectively.

Keywords: erbium doped fiber amplifier, erbium doped fiber laser, optical amplification, fiber laser

Procedia PDF Downloads 232
1263 An Alteration of the Boltzmann Superposition Principle to Account for Environmental Degradation in Fiber Reinforced Plastics

Authors: Etienne K. Ngoy

Abstract:

This analysis suggests that the comprehensive degradation caused by any environmental factor on fiber reinforced plastics under mechanical stress can be measured as a change in viscoelastic properties of the material. The change in viscoelastic characteristics is experimentally determined as a time-dependent function expressing the amplification of the stress relaxation. The variation of this experimental function provides a measure of the environmental degradation rate. Where real service environment conditions can be reliably simulated in the laboratory, it is possible to generate master curves that include environmental degradation effect and hence predict the durability of the fiber reinforced plastics under environmental degradation.

Keywords: environmental effects, fiber reinforced plastics durability, prediction, stress effect

Procedia PDF Downloads 168
1262 Stabilization of Expansive Soils with Polypropylene Fiber

Authors: Ali Sinan Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent

Procedia PDF Downloads 448
1261 Distributed Acoustic Sensing Signal Model under Static Fiber Conditions

Authors: G. Punithavathy

Abstract:

The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber.

Keywords: distributed acoustic sensing, optical fiber devices, optical time domain reflectometry, Rayleigh scattering

Procedia PDF Downloads 48
1260 Growth and Development of Membranes in Gas Sequestration

Authors: Sreevalli Bokka

Abstract:

The process of reducing the intensity of the carbon from a process or stream into the atmosphere is termed Decarbonization. Of the various technologies that are emerging to capture or reduce carbon intensity, membranes are emerging as a key player in separating carbon from a gas stream, such as industrial effluent air and others. Due to the advantage of high surface area and low flow resistance, fiber membranes are emerging widely for gas separation applications. A fiber membrane is a semipermeable barrier that is increasingly used for filtration and separation applications needing high packing density. A few of the many applications are in water desalination, medical applications, bioreactors, and gas separations applications. Only a few polymeric membranes were studied for fabricating fiber membranes such as cellulose acetate, Polysulfone, and Polyvinylidene fluoride. A few of the challenges of using fiber membranes are fouling and weak mechanical properties, leading to the breakage of membranes. In this work, the growth of fiber membranes and challenges for future developments in the filtration and gas separation applications are presented.

Keywords: membranes, filtration, separations, polymers, carbon capture

Procedia PDF Downloads 25
1259 Efficacy and Safety of Combination Therapy in Androgenetic Alopecia: Randomized Uncontrolled Evaluator, Blind Study

Authors: Shivani Dhande, Sanjiv Choudhary, Adarshlata Singh

Abstract:

Introduction: Early age of onset of baldness has marked psychological impact on personality. Combination therapies have better efficacy than monotherapy in androgenetic alopecia. Although medical, surgical treatment and cosmetic aids are available for treatment of pattern baldness, medical is first preferred the line of treatment. Although only 5% topical minoxidil is USFDA approved, 10% is available in India since 2007. Efficacy of tablet finasteride is well established in male pattern baldness. 5% topical minoxidil is effective and safe in female pattern baldness. There is a role of saw palmetto in regrowth of scalp hair. With this background research was undertaken to study efficacy and safety of topical minoxidil 10% + tab. Finesteride (1mg) + dermaroller in male pattern baldness and topical minoxidil 5% + cap. Saw palmetto (320 mg) + dermaroller in female pattern baldness. Methods and Materials: It was a randomized uncontrolled evaluator blind study consisting of total 21 patients, 15 of male pattern baldness and 6 of female pattern baldness within 20-35 yrs of age were enrolled. Male patients had Hamilton grade 2-4 MPB and females had Ludwig grade 2 FPB. Male patients were treated with Tab Finesteride 1mg once daily + 10% topical Minoxidil 1ml twice daily for 6 months. Female patients were treated with Cap. Saw palmetto 320 mg once daily + 5% topical Minoxidil twice daily for 6 months. In both male & female patients dermaroller therapy was used once in 10 days for 4 sittings followed by once in 15 days for next 5 months. Blood pressure and possible side effects were monitored in every follow up visits. Pre and post treatment photographs were taken. Assessment of hair growth was done at baseline and at the end of 6 months. Patients satisfactory grading scale and Physician assessment of hair growth scale were used to assessing the results. Trichoscan was done for assessment of hair-shaft diameter and density. Pre and post treatment photographs and Trichoscan hair growth analysis (by diameter and density) was done by physician (dermatologist) not directly involved in this study (evaluator blind). Result: This combination therapy showed moderate response in female pattern alopecia and good to excellent results in male pattern alopecia at the end of 6 months. During therapy none of the patients showed side effects like hypotension, headache and loss of libido, hirsuitism. Mild irritation due to crystal deposition was noted by 3 patients. Conclusion: Effective and early treatment using combination therapy with higher percent of Minoxidil for rapid hair growth is necessary in initial period since it will boost up the self-confidence in patients leading to better treatment compliance. Subsequent maintenance of hair growth can be done with lower concentration. No significant side effects with treatment are observed in both group of patients.

Keywords: androgenetic alopecia, dermaroller, finasteride, minoxidil, saw palmetto

Procedia PDF Downloads 229
1258 Bending Behaviour of Fiber Reinforced Polymer Composite Stiffened Panel Subjected to Transverse Loading

Authors: S. Kumar, Rajesh Kumar, S. Mandal

Abstract:

Fiber Reinforced Polymer (FRP) is gaining popularity in many branch of engineering and various applications due to their light weight, specific strength per unit weight and high stiffness in particular direction. As the strength of material is high it can be used in thin walled structure as industrial roof sheds satisfying the strength constraint with comparatively lesser thickness. Analysis of bending behavior of FRP panel has been done here with variation in oriented angle of stiffener panels, fiber orientation, aspect ratio and boundary conditions subjected to transverse loading by using Finite Element Method. The effect of fiber orientation and thickness of ply has also been studied to determine the minimum thickness of ply for optimized section of stiffened FRP panel.

Keywords: bending behavior, fiber reinforced polymer, finite element method, orientation of stiffeners

Procedia PDF Downloads 365
1257 Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes

Authors: Mohammad R. Irshidat, Mohammed H. Al-Saleh, Mahmoud Al-Shoubaki

Abstract:

This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nano tubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy.

Keywords: CNT, epoxy, carbon fiber, RC columns

Procedia PDF Downloads 331
1256 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Authors: Ali Sinan Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent

Procedia PDF Downloads 494
1255 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 247
1254 Synthesis and Characterisation of Different Blends of Virgin Polyethylene Modified by Naturel Fibres Alfa

Authors: Benalia Kouini

Abstract:

The basic idea of this study is to promote a polyethylene recycle and local vegetable fiber (alfa) in the development and characterization of a new composite material. In this work, different sizes of fiber alfa (<63 microns, between 63 and 125 microns, 125 and 250 microns) were incorporated into the blends (HDPE / recycled HDPE) with different methods elaboration (extruder twin-screw and twin-cylinder mixer). The fiber was modified by sodium hydroxide in order to evaluate the effect of alkaline treatment on the interfacial adhesion and therefore the properties of composites prepared. These were characterized by various techniques: mechanical (tensile and Charpy impact test), Rheological (melt flow), morphological (SEM). The demonstration of the effect of alkali treatment on alfa fiber was examined by FTIR spectroscopy and morphological analysis. The introduction of alfa treated fiber in the (HDPE/recycled HDPE) increased stress, impact strength and Young's modulus on the contrary, the elongation at break decreased. The results of the mechanical properties showed an improvement is better in extrusion twin-screw mixer than two cylinders.

Keywords: naturel fiber, alfa, recycling, blends, polyethylene

Procedia PDF Downloads 120
1253 The Influence of Fiber Fillers on the Bonding Safety of Structural Adhesives: A Fracture Analytical Evaluation

Authors: Brandtner-Hafner Martin

Abstract:

Adhesives have established themselves as an innovative joining technology in the industry. Their strengths lie in joining different materials, avoiding structural weakening as in welding or screwing, and enabling lightweight construction methods. Now there are a variety of ways to improve the efficiency and effectiveness of bonded joints. One way is to add fiber fillers. This leads to an improvement in adhesion and cohesion (structural integrity). In this study, the effectiveness of fiber-modified adhesives for bonding different construction materials is reviewed. A series of experimental tests were performed using the fracture analytical GF principle to study the adhesive bonding safety and performance of the joint. Three different structural adhesive systems based on epoxy, CA/A hybrid, and PUR were modified with different fiber materials on different substrates. The results show that significant performance improvements can be achieved and that bonding reliability can be sustainably increased.

Keywords: fiber-modified adhesives, bonding safety, GF-principle, fracture analysis

Procedia PDF Downloads 146
1252 An Approach To Flatten The Gain Of Fiber Raman Amplifiers With Multi-Pumping

Authors: Surinder Singh, Adish Bindal

Abstract:

The effects of the pumping wavelength and their power on the gain flattening of a fiber Raman amplifier (FRA) are investigated. The multi-wavelength pumping scheme is utilized to achieve gain flatness in FRA. It is proposed that gain flatness becomes better with increase in number of pumping wavelengths applied. We have achieved flat gain with 0.27 dB fluctuation in a spectral range of 1475-1600 nm for a Raman fiber length of 10 km by using six pumps with wavelengths with in the 1385-1495 nm interval. The effect of multi-wavelength pumping scheme on gain saturation in FRA is also studied. It is proposed that gain saturation condition gets improved by using this scheme and this scheme is more useful for higher spans of Raman fiber length.

Keywords: FRA, WDM, pumping, flat gain

Procedia PDF Downloads 455
1251 Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Hyun Kyung Yoon, Seong Woo Hong, Min Jae Yu, Hong Gun Kim, Lee Ku Kwac

Abstract:

In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepress whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analyzed through the tests, in this study, the applicability and possibility are proposed.

Keywords: Carbon Fiber Reinforced Plastic(CFRP), Glass Fiber Reinforced Plastic(GFRP), stainless wire mesh, electromagnetic shielding

Procedia PDF Downloads 388