Search results for: equal channel angular extrusion
2801 Product Line Design with Customization in the Presence of Demand Uncertainty
Authors: Parisa Bagheri Tookanlou
Abstract:
In this paper, we analyze a product line design problem faced by a manufacturing firm where the product line consists of a customized product in addition to a standard product and is offered in a market in which customers are heterogeneous on aesthetic attributes of the product. The customization level of a product is defined by the fraction of aesthetic attributes of the product that the manufacturer chooses to customize. In contrast to the existing literature on product line design that predominantly assumes deterministic demand, we consider the presence of demand uncertainty and frame the product line design problem in a single period (news vendor) setting. We examine the effect of demand uncertainty on product line decisions. Furthermore, we also examine how product line decisions are influenced by channel structure. While we use the centralized channel as a benchmark, we consider the decentralized dual channel where the customized product is sold through an online channel owned by the manufacturer and the standard product is sold through a retailer. We introduce a supply contract between the manufacturer and the retailer for improving channel efficiency and coordinate the distribution channel.Keywords: product line design, demand uncertainty, customization level, distribution channel
Procedia PDF Downloads 1832800 Flow Prediction of Boundary Shear Stress with Enlarging Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is our main source of water which is a form of open channel flow and the flow in open channel provides with many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results is compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution
Procedia PDF Downloads 1512799 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX
Procedia PDF Downloads 3912798 Influence of Silicon Carbide Particle Size and Thermo-Mechanical Processing on Dimensional Stability of Al 2124SiC Nanocomposite
Authors: Mohamed M. Emara, Heba Ashraf
Abstract:
This study is to investigation the effect of silicon carbide (SiC) particle size and thermo-mechanical processing on dimensional stability of aluminum alloy 2124. Three combinations of SiC weight fractions are investigated, 2.5, 5, and 10 wt. % with different SiC particle sizes (25 μm, 5 μm, and 100nm) were produced using mechanical ball mill. The standard testing samples were fabricated using powder metallurgy technique. Both samples, prior and after extrusion, were heated from room temperature up to 400ºC in a dilatometer at different heating rates, that is, 10, 20, and 40ºC/min. The analysis showed that for all materials, there was an increase in length change as temperature increased and the temperature sensitivity of aluminum alloy decreased in the presence of both micro and nano-sized silicon carbide. For all conditions, nanocomposites showed better dimensional stability compared to conventional Al 2124/SiC composites. The after extrusion samples showed better thermal stability and less temperature sensitivity for the aluminum alloy for both micro and nano-sized silicon carbide.Keywords: aluminum 2124 metal matrix composite, SiC nano-sized reinforcements, powder metallurgy, extrusion mechanical ball mill, dimensional stability
Procedia PDF Downloads 5252797 Slug Initiation Evaluation in Long Horizontal Channels Experimentally
Authors: P. Adibi, M. R. Ansari, S. Jafari, B. Habibpour, E. Salimi
Abstract:
In this paper, the effects of gas and liquid superficial inlet velocities and for the first time the effect of liquid holdup on slug initiation position are studied experimentally. Empirical correlations are also presented based on the obtained results. The tests are conducted for three liquid holdups in a long horizontal channel with dimensions of 5cmx10cm and 36m length. Usl and Usg rated as to 0.11m/s to 0.56m/s and 1.88m/s to 13m/s, respectively. The obtained results show that as αl=0.25, slug initiation position is increasing monotonically with Usl and Usg. During αl=0.50, slug initiation position is almost constant. For αl=0.75, slug initiation position is decreasing monotonically with Usl and Usg. In the case of equal void fraction of phases, generated slugs are weakly (low pressure). However, for the unequal void fraction of phases strong slugs (high pressure) are formed.Keywords: liquid holdup, long horizontal channel, slug initiation position, superficial inlet velocity
Procedia PDF Downloads 2632796 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System
Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song
Abstract:
In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.Keywords: MIMO-OFDM, QRD-M, channel condition, BER
Procedia PDF Downloads 3662795 Physical, Microstructural and Functional Quality Improvements of Cassava-Sorghum Composite Snacks
Authors: Adil Basuki Ahza, Michael Liong, Subarna Suryatman
Abstract:
Healthy chips now dominating the snack market shelves. More than 80% processed snack foods in the market are chips. This research takes the advantages of twin extrusion technology to produce two types of product, i.e. directly expanded and intermediate ready-to-fry or microwavable chips. To improve the functional quality, the cereal-tuber based mix was enriched with antioxidant rich mix of temurui, celery, carrot and isolated soy protein (ISP) powder. Objectives of this research were to find best composite cassava-sorghum ratio, i.e. 60:40, 70:30 and 80:20, to optimize processing conditions of extrusion and study the microstructural, physical and sensorial characteristics of the final products. Optimization was firstly done by applying metering section of extruder barrel temperatures of 120, 130 and 140 °C with screw speeds of 150, 160 and 170 rpm to produce direct expanded product. The intermediate product was extruded in 100 °C and 100 rpm screw speed with feed moisture content of 35, 40 and 45%. The directly expanded products were analyzed for color, hardness, density, microstructure, and organoleptic properties. The results showed that interaction of ratio of cassava-sorghum and cooking methods affected the product's color, hardness, and bulk density (p<0.05). Extrusion processing conditions also significantly affected product's microstructure (p<0.05). The direct expanded snacks of 80:20 cassava-sorghum ratio and fried expanded one 70:30 and 80:20 ratio shown the best organoleptic score (slightly liked) while baking the intermediate product with microwave were resulted sensorial not acceptable quality chips.Keywords: cassava-sorghum composite, extrusion, microstructure, physical characteristics
Procedia PDF Downloads 2802794 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment
Authors: Ibrahim Ozkan
Abstract:
In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading
Procedia PDF Downloads 1432793 Three-Dimensional Numerical Simulation of Drops Suspended in Poiseuille Flow: Effect of Reynolds Number
Authors: A. Nourbakhsh
Abstract:
A finite difference/front tracking method is used to study the motion of three-dimensional deformable drops suspended in plane Poiseuille flow at non-zero Reynolds numbers. A parallel version of the code was used to study the behavior of suspension on a reasonable grid resolution (grids). The viscosity and density of drops are assumed to be equal to that of the suspending medium. The effect of the Reynolds number is studied in detail. It is found that drops with small deformation behave like rigid particles and migrate to an equilibrium position about half way between the wall and the center line (the Segre-Silberberg effect). However, for highly deformable drops there is a tendency for drops to migrate to the middle of the channel, and the maximum concentration occurs at the center line. The effective viscosity of suspension and the fluctuation energy of the flow across the channel increases with the Reynolds number of the flow.Keywords: suspensions, Poiseuille flow, effective viscosity, Reynolds number
Procedia PDF Downloads 3532792 Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam
Authors: L. Dahmani, S. Drizi, M. Djemai, A. Boudjemia, M. O. Mechiche
Abstract:
Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3.Keywords: ANSYS, Eurocode 3, finite element method, lateral torsional buckling, steel channel beam
Procedia PDF Downloads 3842791 Improvement of Mechanical Properties of Recycled High-Density and Low-Density Polyethylene Blends through Extrusion, Reinforcement, and Compatibilization Approaches
Authors: H. Kharmoudi, S. Elkoun, M. Robert, C. Diez
Abstract:
In the literature, the elaboration of polymer blends based on recycled HDPE and LDPE is challenging because of the non-miscibility. Ensuring the compatibility of blends is one of the challenges; this study will discuss the different methods to be adopted to assess the compatibility of polymer blends. The first one aims to act on the extrusion process while varying the speed, flow rate, and residence time. The second method has as its purpose the use of grafted anhydride maleic elastomer chains as a compatibilizer. The results of the formulations will be characterized by means of differential scanning calorimetric (DSC) as well as mechanical tensile and bending tests to assess whether pipes made from recycled polyethylene meet the standards.Keywords: recycled HDPE, LDPE, compatibilizer, mechanical tests
Procedia PDF Downloads 1902790 Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer
Authors: So-Young Ju, Sung-Mi Jo, Eui-Rim Jeong
Abstract:
In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation.Keywords: channel estimation, jammer, pilot, SC-FDE
Procedia PDF Downloads 4722789 Experimental Study of Discharge with Sharp-Crested Weirs
Authors: E. Keramaris, V. Kanakoudis
Abstract:
In this study the water flow in an open channel over a sharp-crested weir is investigated experimentally. For this reason a series of laboratory experiments were performed in an open channel with a sharp-crested weir. The maximum head expected over the weir, the total upstream water height and the downstream water height of the impact in the constant bed of the open channel were measured. The discharge was measured using a tank put right after the open channel. In addition, the discharge and the upstream velocity were also calculated using already known equations. The main finding is that the relative error percentage for the majority of the experimental measurements is ± 4%, meaning that the calculation of the discharge with a sharp-crested weir gives very good results compared to the numerical results from known equations.Keywords: sharp-crested weir, weir height, flow measurement, open channel flow
Procedia PDF Downloads 1372788 Issues on Optimizing the Structural Parameters of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter.Keywords: induction converters, magnetic circuit material, current and angular errors, frequency response, mathematical formulation, structural parameters
Procedia PDF Downloads 3442787 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed
Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy
Abstract:
Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control
Procedia PDF Downloads 2652786 Effect of Rapeseed Press Cake on Extrusion System Parameters and Physical Pellet Quality of Fish Feed
Authors: Anna Martin, Raffael Osen
Abstract:
The demand for fish from aquaculture is constantly growing. Concurrently, due to a shortage of fishmeal caused by extensive overfishing, fishmeal substitution by plant proteins is getting increasingly important for the production of sustainable aquafeed. Several research studies evaluated the impact of plant protein meals, concentrates or isolates on fish health and fish feed quality. However, these protein raw materials often require elaborate and expensive manufacturing and their availability is limited. Rapeseed press cake (RPC) – a side product of de-oiling processes – exhibits a high potential as a plant-based fishmeal alternative in fish feed for carnivorous species due to its availability, low costs and protein content. In order to produce aquafeed with RPC, it is important to systematically assess i) inclusion levels of RPC with similar pellet qualities compared to fishmeal containing formulations and ii) how extrusion parameters can be adjusted to achieve targeted pellet qualities. However, the effect of RPC on extrusion system parameters and pellet quality has only scarcely been investigated. Therefore, the aim of this study was to evaluate the impact of feed formulation, extruder barrel temperature (90, 100, 110 °C) and screw speed (200, 300, 400 rpm) on extrusion system parameters and the physical properties of fish feed pellets. A co-rotating pilot-scale twin screw extruder was used to produce five iso-nitrogenous feed formulations: a fish meal based reference formulation including 16 g/100g fishmeal and four formulations in which fishmeal was substituted by RPC to 25, 50, 75 or 100 %. Extrusion system parameters, being product temperature, pressure at the die, specific mechanical energy (SME) and torque, were monitored while samples were taken. After drying, pellets were analyzed regarding to optical appearance, sectional and longitudinal expansion, sinking velocity, bulk density, water stability, durability and specific hardness. In our study, the addition of minor amounts of RPC already had high impact on pellet quality parameters, especially on expansion but only marginally affected extrusion system parameters. Increasing amounts of RPC reduced sectional expansion, sinking velocity, bulk density and specific hardness and increased longitudinal expansion compared to a reference formulation without RPC. Water stability and durability were almost not affected by RPC addition. Moreover, pellets with rapeseed components showed a more coarse structure than pellets containing only fishmeal. When the adjustment of barrel temperature and screw speed was investigated, it could be seen that the increase of extruder barrel temperature led to a slight decrease of SME and die pressure and an increased sectional expansion of the reference pellets but did almost not affect rapeseed containing fish feed pellets. Also changes in screw speed had little effects on the physical properties of pellets however with raised screw speed the SME and the product temperature increased. In summary, a one-to-one substitution of fishmeal with RPC without the adjustment of extrusion process parameters does not result in fish feed of a designated quality. Therefore, a deeper knowledge of raw materials and their behavior under thermal and mechanical stresses as applied during extrusion is required.Keywords: extrusion, fish feed, press cake, rapeseed
Procedia PDF Downloads 1462785 Impact of Surface Roughness on Light Absorption
Authors: V. Gareyan, Zh. Gevorkian
Abstract:
We study oblique incident light absorption in opaque media with rough surfaces. An analytical approach with modified boundary conditions taking into account the surface roughness in metallic or dielectric films has been discussed. Our approach reveals interference-linked terms that modify the absorption dependence on different characteristics. We have discussed the limits of our approach that hold valid from the visible to the microwave region. Polarization and angular dependences of roughness-induced absorption are revealed. The existence of an incident angle or a wavelength for which the absorptance of a rough surface becomes equal to that of a flat surface is predicted. Based on this phenomenon, a method of determining roughness correlation length is suggested.Keywords: light, absorption, surface, roughness
Procedia PDF Downloads 532784 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils
Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev
Abstract:
The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.Keywords: slope, channel, landslide, collapse, swell, soil, structure
Procedia PDF Downloads 852783 General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels
Authors: Abdulrahman Abdulrahman
Abstract:
A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel.Keywords: analytical solution, combined channel, exponential channel, side weirs, trapezoidal channel, water surface profile
Procedia PDF Downloads 2342782 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 1772781 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction
Authors: Hua Li, Hongwu Deng
Abstract:
The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary
Procedia PDF Downloads 1042780 Impact of Weather Conditions on Generalized Frequency Division Multiplexing over Gamma Gamma Channel
Authors: Muhammad Sameer Ahmed, Piotr Remlein, Tansal Gucluoglu
Abstract:
The technique called as Generalized frequency division multiplexing (GFDM) used in the free space optical channel can be a good option for implementation free space optical communication systems. This technique has several strengths e.g. good spectral efficiency, low peak-to-average power ratio (PAPR), adaptability and low co-channel interference. In this paper, the impact of weather conditions such as haze, rain and fog on GFDM over the gamma-gamma channel model is discussed. A Trade off between link distance and system performance under intense weather conditions is also analysed. The symbol error probability (SEP) of GFDM over the gamma-gamma turbulence channel is derived and verified with the computer simulations.Keywords: free space optics, generalized frequency division multiplexing, weather conditions, gamma gamma distribution
Procedia PDF Downloads 1702779 Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels
Authors: Anshul Jain, P. Deepak Kumar, P. K. S. Dikshit
Abstract:
To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel.Keywords: drag, lift, vanes, open channel
Procedia PDF Downloads 3452778 Prediction of Boundary Shear Stress with Flood Plains Enlargements
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
The river is our main source of water which is a form of open channel flow and the flow in the open channel provides with many complex phenomena of sciences that need to be tackled such as the critical flow conditions, boundary shear stress, and depth-averaged velocity. The development of society, more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between the main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of the main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, CES software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel, and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth, velocity distribution
Procedia PDF Downloads 1752777 Numerical Analysis of Liquid Metal Magnetohydrodynamic Flows in a Manifold with Three Sub-Channels
Authors: Meimei Wen, Chang Nyung Kim
Abstract:
In the current study, three-dimensional liquid metal (LM) magneto-hydrodynamic (MHD) flows in a manifold with three sub-channels under a uniform magnetic field are numerically investigated. In the manifold, the electrical current can cross channel walls, thus having influence on the flow distribution in each sub-channel. A case with various arrangements of electric conductivity for different parts of channel walls is considered, yielding different current distributions as well as flow distributions in each sub-channel. Here, the imbalance of mass flow rates in the three sub-channels is addressed. Meanwhile, predicted are detailed behaviors of the flow velocity, pressure, current and electric potential of LM MHD flows with three sub-channels. Commercial software CFX is used for the numerical simulation of LM MHD flows.Keywords: CFX, liquid metal, manifold, MHD flow
Procedia PDF Downloads 3422776 Markov Characteristics of the Power Line Communication Channels in China
Authors: Ming-Yue Zhai
Abstract:
Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one.Keywords: power line communication, channel model, markovian, information theory, first-order
Procedia PDF Downloads 4112775 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application
Authors: Hailu Dessalegn, T. Srinivas
Abstract:
We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6 nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974 nm with a flat top pass band at 1dB of 0.5205 nm and free spectral range of about 14.9 nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54 pm/V has been achieved with negligible tunability variation in the eight channel tunable optical filter proportional to the DC voltage applied in the structure, and it is capable of tuning up to 3.45 nm in each channel with a maximum loss difference of 0.22 dB in the tuning range and out of band rejection ratio of 35 dB, with a low channel crosstalk ≤ 30 dB.Keywords: optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer
Procedia PDF Downloads 4362774 Investigation of Existing Guidelines for Four-Legged Angular Telecommunication Tower
Authors: Sankara Ganesh Dhoopam, Phaneendra Aduri
Abstract:
Lattice towers are light weight structures which are primarily governed by the effects of wind loading. Ensuring a precise assessment of wind loads on the tower structure, antennas, and associated equipment is vital for the safety and efficiency of tower design. Earlier, the Indian standards are not available for design of telecom towers. Instead, the industry conventionally relied on the general building wind loading standard for calculating loads on tower components and the transmission line tower design standard for designing the angular members of the towers. Subsequently, the Bureau of Indian Standards (BIS) revised these standards and angular member design standard. While the transmission line towers are designed using the above standard, a full-scale model test will be done to prove the design. Telecom angular towers are also designed using the same with overload factor/factor of safety without full scale tower model testing. General construction in steel design code is available with limit state design approach and is applicable to the design of general structures involving angles and tubes but not used for angle member design of towers. Recently, in response to the evolving industry needs, the Bureau of Indian Standards (BIS) introduced a new standard titled “Isolated Towers, Masts, and Poles using structural steel -Code of practice” for the design of telecom towers. This study focuses on a 40m four legged angular tower to compare loading calculations and member designs between old and new standards. Additionally, a comparative analysis aligning with the new code provisions with international loading and design standards with a specific focus on American standards has been carried out. This paper elaborates code-based provisions used for load and member design calculations, including the influence of "ka" area averaging factor introduced in new wind load case.Keywords: telecom, angular tower, PLS tower, GSM antenna, microwave antenna, IS 875(Part-3):2015, IS 802(Part-1/sec-2):2016, IS 800:2007, IS 17740:2022, ANSI/TIA-222G, ANSI/TIA-222H.
Procedia PDF Downloads 822773 ELectromagnetic-Thermal Coupled Analysis of PMSM with Cooling Channel
Authors: Hyun-Woo Jun, Tae-Chul Jeong, Huai-Cong Liu, Ju Lee
Abstract:
The paper presents the electromagnetic-thermal flow coupled analysis of permanent magnet synchronous motor (PMSM) which has cooling channel in stator core for forced air cooling. Unlike the general PMSM design, to achieve ohmic loss reduction for high efficiency, cooling channel actively used in the stator core. Equivalent thermal network model was made to analyze the effect of the formation of the additional flow path in the core. According to the shape and position changing of the channel design, electromagnetic-thermal coupled analysis results were reviewed.Keywords: coupled problems, electric motors, equivalent circuits, fluid flow, thermal analysis
Procedia PDF Downloads 6182772 Effects of Watershed Erosion on Stream Channel Formation
Authors: Tiao Chang, Ivan Caballero, Hong Zhou
Abstract:
Streams carry water and sediment naturally by maintaining channel dimensions, pattern, and profile over time. Watershed erosion as a natural process has occurred to contribute sediment to streams over time. The formation of channel dimensions is complex. This study is to relate quantifiable and consistent channel dimensions at the bankfull stage to the corresponding watershed erosion estimation by the Revised Universal Soil Loss Equation (RUSLE). Twelve sites of which drainage areas range from 7 to 100 square miles in the Hocking River Basin of Ohio were selected for the bankfull geometry determinations including width, depth, cross-section area, bed slope, and drainage area. The twelve sub-watersheds were chosen to obtain a good overall representation of the Hocking River Basin. It is of interest to determine how these bankfull channel dimensions are related to the soil erosion of corresponding sub-watersheds. Soil erosion is a natural process that has occurred in a watershed over time. The RUSLE was applied to estimate erosions of the twelve selected sub-watersheds where the bankfull geometry measurements were conducted. These quantified erosions of sub-watersheds are used to investigate correlations with bankfull channel dimensions including discharge, channel width, channel depth, cross-sectional area, and pebble distribution. It is found that drainage area, bankfull discharge and cross-sectional area correlates strongly with watershed erosion well. Furthermore, bankfull width and depth are moderately correlated with watershed erosion while the particle size, D50, of channel bed sediment is not well correlated with watershed erosion.Keywords: watershed, stream, sediment, channel
Procedia PDF Downloads 285