Search results for: cutting efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7006

Search results for: cutting efficiency

6916 Effect of Heat Treatment on the Hardness and Abrasiveness of Almandine and Pyrope Garnet for Water-Cutting of Marble

Authors: Mahmoud Rabh

Abstract:

Garnet has been used for decades as an abrasive in water jet cutting and sand blasting because of its superior physical properties. When added to use in water-cutting process of marble. A standard commercial sample of the mineral was tested in terms of the hardness and abrasiveness properties. The sample was sized to 4 fractions having the size of < 60 um, > 60 < 100 um, > 100 < 180 um > 1280 < 250 and 250 um designated the symbols, FF, MF, MC and C respectively. Each sample was separately heated in controlled conditions at temperatures up to 1000 °C at a heating rate of 10°C/min in an electrically heated chamber furnace. Soaking time at the maximum temperature was up to 6 h. Hardness and abrasiveness properties of the heat treated samples were tested to cut marble having a thickness of 25 mm. Results revealed that H/A of the natural garnet mineral increased by heating at temperatures up to 600°C and exhibited pronounced decrease with higher temperatures up to 1000 °C. Results were explained in the light of a structural irreversible dislocation (SD) of the crystals of garnet almandine Fe2+3Al2Si3O12 and pyrope Mg3Al2Si3O12. Characterization of the mineral was carried out with the help of XRD, SEM and FT-IR measurements.

Keywords: garnet abrasive, heat treatment, water jet cutting, hardness abrasiveness

Procedia PDF Downloads 328
6915 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, J. Franke

Abstract:

The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.

Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production

Procedia PDF Downloads 725
6914 Surface Roughness of Al-Si/10% AlN MMC Material in Milling Operation Using the Taguchi Method

Authors: M. S. Said, J. A. Ghani, Izzati Osman, Z. A. Latiff, S. A .F. Syed Mohd

Abstract:

Metal matrix composites have demand for light-weight structural and functional materials. MMCs have been shown to offer improvements in strength, rigidity, temperature stability, wear resistance, reliability and control of physical properties such as density and coefficient of thermal expansion, thereby providing improved engineering performance in comparison to the un-reinforced matrix. Experiment were conducted at various cutting speed, feed rate and difference cutting tools according to Taguchi method using a standard orthogonal array L9. The volume of AlN reinforced particle was 10% in MMC. The milling process was carried out under dry cutting condition using uncoated carbide, TiN and TiCN tool insert. The parameters used were the cutting speed of (230,300,370 m/min) the federate used were (0.4, 0.6, 0.8 mm/tooth) while the depth of cut is constant (0.3 mm). The tool diameter is 20mm. From the project, the surface roughness mechanism was investigated in detail using Mitutoyo portable surface roughness measurements surftest SJ-310. This machining will be fabricated on MMC with 150mm length, 100mm width and 30mm thick. The results showed using S/N ratio, concluded that a combination of low cutting speed, medium feed rate and uncoated insert give a remarkable surface finish. From the ANOVA result showed the feed rate was major contributing factor (43.76%) following type of insert (40.89%).

Keywords: MMC, milling operation and surface roughness, Taguchi method

Procedia PDF Downloads 525
6913 Cutting Plane Methods for Integer Programming: NAZ Cut and Its Variations

Authors: A. Bari

Abstract:

Integer programming is a branch of mathematical programming techniques in operations research in which some or all of the variables are required to be integer valued. Various cuts have been used to solve these problems. We have also developed cuts known as NAZ cut & A-T cut to solve the integer programming problems. These cuts are used to reduce the feasible region and then reaching the optimal solution in minimum number of steps.

Keywords: Integer Programming, NAZ cut, A-T cut, Cutting plane method

Procedia PDF Downloads 359
6912 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions

Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji

Abstract:

Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.

Keywords: solid lubricant, graphite, minimum quantity lubrication (MQL), nano–particles

Procedia PDF Downloads 262
6911 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: Joseph Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: surface roughness, Taguchi parameter design, turning center, turn-milling operations, vertical machining center

Procedia PDF Downloads 322
6910 Modeling of Surface Roughness in Hard Turning of DIN 1.2210 Cold Work Tool Steel with Ceramic Tools

Authors: Mehmet Erdi Korkmaz, Mustafa Günay

Abstract:

Nowadays, grinding is frequently replaced with hard turning for reducing set up time and higher accuracy. This paper focused on mathematical modeling of average surface roughness (Ra) in hard turning of AISI L2 grade (DIN 1.2210) cold work tool steel with ceramic tools. The steel was hardened to 60±1 HRC after the heat treatment process. Cutting speed, feed rate, depth of cut and tool nose radius was chosen as the cutting conditions. The uncoated ceramic cutting tools were used in the machining experiments. The machining experiments were performed according to Taguchi L27 orthogonal array on CNC lathe. Ra values were calculated by averaging three roughness values obtained from three different points of machined surface. The influences of cutting conditions on surface roughness were evaluated as statistical and experimental. The analysis of variance (ANOVA) with 95% confidence level was applied for statistical analysis of experimental results. Finally, mathematical models were developed using the artificial neural networks (ANN). ANOVA results show that feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and cutting speed.

Keywords: ANN, hard turning, DIN 1.2210, surface roughness, Taguchi method

Procedia PDF Downloads 364
6909 Chatter Suppression in Boring Process Using Passive Damper

Authors: V. Prasannavenkadesan, A. Elango, S. Chockalingam

Abstract:

During machining process, chatter is an unavoidable phenomenon. Boring bars possess the cantilever shape and due to this, it is subjected to chatter. The adverse effect of chatter includes the increase in temperature which will leads to excess tool wear. To overcome these problems, in this investigation, Cartridge brass (Cu – 70% and Zn – 30%) is passively fixed on the boring bar and also clearance is provided in order to reduce the displacement, tool wear and cutting temperature. A conventional all geared lathe is attached with vibrometer and pyrometer is used to measure the displacement and temperature. The influence of input parameters such as cutting speed, depth of cut and clearance on temperature, tool wear and displacement are investigated for various cutting conditions. From the result, the optimum conditions to obtain better damping in boring process for chatter reduction is identified.

Keywords: boring, chatter, mass damping, passive damping

Procedia PDF Downloads 346
6908 Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform

Authors: Bruno S. Soria, Mauricio R. Policena, Andre J. Souza

Abstract:

The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors.

Keywords: face milling, stainless steel, tool condition monitoring, wavelet discrete transform

Procedia PDF Downloads 139
6907 Influence of Build Orientation on Machinability of Selective Laser Melted Titanium Alloy-Ti-6Al-4V

Authors: Manikandakumar Shunmugavel, Ashwin Polishetty, Moshe Goldberg, Junior Nomani, Guy Littlefair

Abstract:

Selective laser melting (SLM), a promising additive manufacturing (AM) technology, has a huge potential in the fabrication of Ti-6Al-4V near-net shape components. However, poor surface finish of the components fabricated from this technology requires secondary machining to achieve the desired accuracy and tolerance. Therefore, a systematic understanding of the machinability of SLM fabricated Ti-6Al-4V components is paramount to improve the productivity and product quality. Considering the significance of machining in SLM fabricated Ti-6Al-4V components, this research aim is to study the influence of build orientation on machinability characteristics by performing low speed orthogonal cutting tests. In addition, the machinability of SLM fabricated Ti-6Al-4V is compared with conventionally produced wrought Ti-6Al-4V to understand the influence of SLM technology on machining. This paper is an attempt to provide evidence to the hypothesis associated that build orientation influences cutting forces, chip formation and surface integrity during orthogonal cutting of SLM Ti-6Al-4V samples. Results obtained from the low speed orthogonal cutting tests highlight the practical importance of microstructure and build orientation on machinability of SLM Ti-6Al-4V.

Keywords: additive manufacturing, build orientation, machinability, titanium alloys (Ti-6Al-4V)

Procedia PDF Downloads 279
6906 Optimization of Process Parameters by Using Taguchi Method for Bainitic Steel Machining

Authors: Vinay Patil, Swapnil Kekade, Ashish Supare, Vinayak Pawar, Shital Jadhav, Rajkumar Singh

Abstract:

In recent days, bainitic steel is used in automobile and non-automobile sectors due to its high strength. Bainitic steel is difficult to machine because of its high hardness, hence in this paper machinability of bainitic steel is studied by using Taguchi design of experiments (DOE) approach. Convectional turning experiments were done by using L16 orthogonal array for three input parameters viz. cutting speed, depth of cut and feed. The Taguchi method is applied to study the performance characteristics of machining parameters with surface roughness (Ra), cutting force and tool wear rate. By using Taguchi analysis, optimized process parameters for best surface finish and minimum cutting forces were analyzed.

Keywords: conventional turning, Taguchi method, S/N ratio, bainitic steel machining

Procedia PDF Downloads 327
6905 Spectral Coherence Analysis between Grinding Interaction Forces and the Relative Motion of the Workpiece and the Cutting Tool

Authors: Abdulhamit Donder, Erhan Ilhan Konukseven

Abstract:

Grinding operation is performed in order to obtain desired surfaces precisely in machining process. The needed relative motion between the cutting tool and the workpiece is generally created either by the movement of the cutting tool or by the movement of the workpiece or by the movement of both of them as in our case. For all these cases, the coherence level between the movements and the interaction forces is a key influential parameter for efficient grinding. Therefore, in this work, spectral coherence analysis has been performed to investigate the coherence level between grinding interaction forces and the movement of the workpiece on our robotic-grinding experimental setup in METU Mechatronics Laboratory.

Keywords: coherence analysis, correlation, FFT, grinding, hanning window, machining, Piezo actuator, reverse arrangements test, spectral analysis

Procedia PDF Downloads 396
6904 Efficiency Analysis of Trader in Thailand and Laos Border Trade: Case Study of Textile and Garment Products

Authors: Varutorn Tulnawat, Padcharee Phasuk

Abstract:

This paper investigates the issue of China’s dumping on border trade between Thailand and Laos. From the pass mostly, the border trade goods are traditional textile and garment mainly served locals and tourists which majority of traders is of small and medium size. In the present day the competition is fierce, the volume of trade has expanded far beyond its original intent. The major competitors in Thai-Laos border trade are China, Vietnam and also South Korea. This research measures and compares the efficiency and ability to survive the onslaught of Thai and Laos firm along Thailand (Nong Kai province) and Laos (Vientiane) border. Two attack strategies are observed, price cutting and incense such as full facilitation for big volume order. Data Envelopment Analysis (DEA) is applied to data surveyed from 90 Thai and Laos entrepreneurs. The expected results are the proportion of efficiency and inefficiency firms. Points of inefficiency and suggested improvement are also discussed.

Keywords: border trade, dea, textile, garment

Procedia PDF Downloads 241
6903 Study of Behavior Tribological Cutting Tools Based on Coating

Authors: A. Achour L. Chekour, A. Mekroud

Abstract:

Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.

Keywords: friction, wear, tool, cutting

Procedia PDF Downloads 328
6902 Optimization of Surface Roughness by Taguchi’s Method for Turning Process

Authors: Ashish Ankus Yerunkar, Ravi Terkar

Abstract:

Study aimed at evaluating the best process environment which could simultaneously satisfy requirements of both quality as well as productivity with special emphasis on reduction of cutting tool flank wear, because reduction in flank wear ensures increase in tool life. The predicted optimal setting ensured minimization of surface roughness. Purpose of this paper is focused on the analysis of optimum cutting conditions to get lowest surface roughness in turning SCM 440 alloy steel by Taguchi method. Design for the experiment was done using Taguchi method and 18 experiments were designed by this process and experiments conducted. The results are analyzed using ANOVA method. Taguchi method has depicted that the depth of cut has significant role to play in producing lower surface roughness followed by feed. The Cutting speed has lesser role on surface roughness from the tests. The vibrations of the machine tool, tool chattering are the other factors which may contribute poor surface roughness to the results and such factors ignored for analyses. The inferences by this method will be useful to other researches for similar type of study and may be vital for further research on tool vibrations, cutting forces etc.

Keywords: surface roughness (ra), machining, dry turning, taguchi method, turning process, anova method, mahr perthometer

Procedia PDF Downloads 365
6901 Analysis of Delamination in Drilling of Composite Materials

Authors: Navid Zarif Karimi, Hossein Heidary, Giangiacomo Minak, Mehdi Ahmadi

Abstract:

In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled.

Keywords: composite material, delamination, drilling, thrust force

Procedia PDF Downloads 511
6900 Bacterial Contamination of Kitchen Sponges and Cutting Surfaces and Disinfection Procedures

Authors: Hayyan I Al Taweil

Abstract:

Background: The most common of bacterium in kitchen sponges and cutting surfaces which can play a task within the cross-contamination of foods, fomites and hands by foodborne pathogens. Aims and Objectives: This study investigated the incidence of bacterium in kitchen Sponge, and cutting surfaces. Material and methods: a complete of twenty four kitchen Sponges were collected from home kitchens and therefore the numbers of mesotrophic microorganism, coliform microorganism, E. coli, Salmonella, genus {pseudomonas|bacteria genus} and staphylococci in every kitchen Sponges were determined. Microbiological tests of all sponges for total mesophilic aerobic microorganism, S. aureus, Pseudomonas, Salmonella spp., and E. coli were performed on days 3, 7, and 14 by sampling. The sponges involved in daily use in kitchens countenosely with the dishwasher detergent a minimum of doubly daily Results: Results from the overall mesophilic aerobic microorganism, indicate a major increase within the variety of log CFU/ml. the amount of E. coli was reduced, Salmonella spp. was stabled, S. aureus was enhanced from the sponges throughout fourteen days. Genus Pseudomonas was enhanced and was the dominant micro flora within the sponges throughout fourteen days.

Keywords: Kitchen Sponges, Microbiological Contamination, Disinfection; cutting surface; , Cross-Contamination

Procedia PDF Downloads 131
6899 Surface Roughness Formed during Hybrid Turning of Inconel Alloy

Authors: Pawel Twardowski, Tadeusz Chwalczuk, Szymon Wojciechowski

Abstract:

Inconel 718 is a material characterized by the unique mechanical properties, high temperature strength, high thermal conductivity and the corrosion resistance. However, these features affect the low machinability of this material, which is usually manifested by the intense tool wear and low surface finish. Therefore, this paper is focused on the evaluation of surface roughness during hybrid machining of Inconel 718. The primary aim of the study was to determine the relations between the vibrations generated during hybrid turning and the formed surface roughness. Moreover, the comparison of tested machining techniques in terms of vibrations, tool wear and surface roughness has been made. The conducted tests included the face turning of Inconel 718 with laser assistance in the range of variable cutting speeds. The surface roughness was inspected with the application of stylus profile meter and accelerations of vibrations were measured with the use of three-component piezoelectric accelerometer. The carried out research shows that application of laser assisted machining can contribute to the reduction of surface roughness and cutting vibrations, in comparison to conventional turning. Moreover, the obtained results enable the selection of effective cutting speed allowing the improvement of surface finish and cutting dynamics.

Keywords: hybrid machining, nickel alloys, surface roughness, turning, vibrations

Procedia PDF Downloads 320
6898 Functional Surfaces and Edges for Cutting and Forming Tools Created Using Directed Energy Deposition

Authors: Michal Brazda, Miroslav Urbanek, Martina Koukolikova

Abstract:

This work focuses on the development of functional surfaces and edges for cutting and forming tools created through the Directed Energy Deposition (DED) technology. In the context of growing challenges in modern engineering, additive technologies, especially DED, present an innovative approach to manufacturing tools for forming and cutting. One of the key features of DED is its ability to precisely and efficiently deposit Fully dense metals from powder feedstock, enabling the creation of complex geometries and optimized designs. Gradually, it becomes an increasingly attractive choice for tool production due to its ability to achieve high precision while simultaneously minimizing waste and material costs. Tools created using DED technology gain significant durability through the utilization of high-performance materials such as nickel alloys and tool steels. For high-temperature applications, Nimonic 80A alloy is applied, while for cold applications, M2 tool steel is used. The addition of ceramic materials, such as tungsten carbide, can significantly increase the tool's resistance. The introduction of functionally graded materials is a significant contribution, opening up new possibilities for gradual changes in the mechanical properties of the tool and optimizing its performance in different sections according to specific requirements. In this work, you will find an overview of individual applications and their utilization in the industry. Microstructural analyses have been conducted, providing detailed insights into the structure of individual components alongside examinations of the mechanical properties and tool life. These analyses offer a deeper understanding of the efficiency and reliability of the created tools, which is a key element for successful development in the field of cutting and forming tools. The production of functional surfaces and edges using DED technology can result in financial savings, as the entire tool doesn't have to be manufactured from expensive special alloys. The tool can be made from common steel, onto which a functional surface from special materials can be applied. Additionally, it allows for tool repairs after wear and tear, eliminating the need for producing a new part and contributing to an overall cost while reducing the environmental footprint. Overall, the combination of DED technology, functionally graded materials, and verified technologies collectively set a new standard for innovative and efficient development of cutting and forming tools in the modern industrial environment.

Keywords: additive manufacturing, directed energy deposition, DED, laser, cutting tools, forming tools, steel, nickel alloy

Procedia PDF Downloads 42
6897 Effects of Machining Parameters on the Surface Roughness and Vibration of the Milling Tool

Authors: Yung C. Lin, Kung D. Wu, Wei C. Shih, Jui P. Hung

Abstract:

High speed and high precision machining have become the most important technology in manufacturing industry. The surface roughness of high precision components is regarded as the important characteristics of the product quality. However, machining chatter could damage the machined surface and restricts the process efficiency. Therefore, selection of the appropriate cutting conditions is of importance to prevent the occurrence of chatter. In addition, vibration of the spindle tool also affects the surface quality, which implies the surface precision can be controlled by monitoring the vibration of the spindle tool. Based on this concept, this study was aimed to investigate the influence of the machining conditions on the surface roughness and the vibration of the spindle tool. To this end, a series of machining tests were conducted on aluminum alloy. In tests, the vibration of the spindle tool was measured by using the acceleration sensors. The surface roughness of the machined parts was examined using white light interferometer. The response surface methodology (RSM) was employed to establish the mathematical models for predicting surface finish and tool vibration, respectively. The correlation between the surface roughness and spindle tool vibration was also analyzed by ANOVA analysis. According to the machining tests, machined surface with or without chattering was marked on the lobes diagram as the verification of the machining conditions. Using multivariable regression analysis, the mathematical models for predicting the surface roughness and tool vibrations were developed based on the machining parameters, cutting depth (a), feed rate (f) and spindle speed (s). The predicted roughness is shown to agree well with the measured roughness, an average percentage of errors of 10%. The average percentage of errors of the tool vibrations between the measurements and the predictions of mathematical model is about 7.39%. In addition, the tool vibration under various machining conditions has been found to have a positive influence on the surface roughness (r=0.78). As a conclusion from current results, the mathematical models were successfully developed for the predictions of the surface roughness and vibration level of the spindle tool under different cutting condition, which can help to select appropriate cutting parameters and to monitor the machining conditions to achieve high surface quality in milling operation.

Keywords: machining parameters, machining stability, regression analysis, surface roughness

Procedia PDF Downloads 224
6896 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis

Procedia PDF Downloads 443
6895 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control

Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy

Abstract:

This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.

Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element

Procedia PDF Downloads 615
6894 Tool Wear Analysis in 3D Manufactured Ti6AI4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical/aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear

Procedia PDF Downloads 85
6893 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process

Authors: S. Ghorbani, N. I. Polushin

Abstract:

The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.

Keywords: decision tree forest, GMDH, surface roughness, Taguchi method, turning process

Procedia PDF Downloads 434
6892 [Keynote Talk]: Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: fuzzy logic, metal machining, process modeling, surface roughness

Procedia PDF Downloads 157
6891 Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

Authors: Murat Sarıkaya, Abdulkadir Güllü

Abstract:

Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.

Keywords: cryogenic machining, difficult-to-cut alloy, tool wear, turning

Procedia PDF Downloads 584
6890 Production of Metal Matrix Composites with Diamond for Abrasive Cutting Resistance by Gas Infiltration Casting

Authors: Haydar S. Al Shabbani, M. Marshall, R. Goodall

Abstract:

Metal matrix composites (MMCs) have been explored for many applications for many decades. Recently, this includes investigations for thermal applications associated with electronics, such as in heat sinks. Here, to promote thermal conductivity, composites of a metal matrix with diamond particles are used. However, this class of composites has not yet been extensively examined for mechanical and tribological behavior, especially for applications that require extreme mechanical and tribological strength, such as the resistance to abrasive cutting. Therefore, this research seeks to develop a composite material with metal matrix and diamond particles which resist abrasive and cutting forces. The development progresses through a series of steps, exploring methods to process the material, understanding the mechanics of abrasive behavior and optimizing the composite structure to resist abrasive cutting. In processing, infiltration casting under gas pressure has been applied to molten aluminum to obtain a significant penetration of the metal into a preform of diamond particles. Different diamond particle sizes were used with different surface modifications (coated/uncoated), and to compare resulting composites with the same particle sizes. Al-1 wt.% Mg as a matrix alloy was utilised to investigate the possible effect of Mg on bonding phases during the infiltration process. The mechanical behavior and microstructure of the materials produced have been characterised. These tests showed that the surface modification of the diamond particles with a reactive material (Ti-coating) has an important role for enhancing the bonding between the aluminium matrix and diamond reinforcement as apparent under SEM observation. The effect of this improved bond is seen in the cutting resistance of the material.

Keywords: aluminium, composites, diamond, Ti-coated, tribology

Procedia PDF Downloads 263
6889 Effect of Post Hardening on PVD Coated Tools

Authors: Manjinder Bajwa, Mahipal Singh, Ashish Tulli

Abstract:

In the research, the effect of varying cutting parameters, design parameters and heat treatment processes were studied on the cutting performance (Tool life) of a PVD coated tool. Thus, in a quest for these phenomenon comparison, a single coated tool and a multicoated tool were analyzed after suitable heat treatment process. TNMG shaped insert with single coating of TiCN and multi-coating of TiAlN/TiN were developed on tungsten carbide substrate. These coated inserts were then successfully annealed and normalized for a temperature of 350°C for 30 minutes and their cutting performance was evaluated as per the flank wear obtained after turning of mild steel. The results showed that heat treatment had a suitable impact on the tool life of the coated insert and also led to increase in the micro-hardness of the tool coatings and decrease in the wear rate.

Keywords: PVD coatings, flank wear, micro-hardness, annealing, normalizing

Procedia PDF Downloads 344
6888 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 148
6887 How to Use Big Data in Logistics Issues

Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy

Abstract:

Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.

Keywords: big data, logistics, operational efficiency, risk management

Procedia PDF Downloads 637