Search results for: Order Quantity Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27910

Search results for: Order Quantity Model

27820 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 112
27819 About the Number of Fundamental Physical Interactions

Authors: Andrey Angorsky

Abstract:

In the article an issue about the possible number of fundamental physical interactions is studied. The theory of similarity on the dimensionless quantity as the damping ratio serves as the instrument of analysis. The structure with the features of Higgs field comes out from non-commutative expression for this ratio. The experimentally checked up supposition about the nature of dark energy is spoken out.

Keywords: damping ratio, dark energy, dimensionless quantity, fundamental physical interactions, Higgs field, non-commutative expression

Procedia PDF Downloads 140
27818 X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'

Authors: Minas Balyan

Abstract:

Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically.

Keywords: Bragg diffraction, nonlinear Takagi’s equations, nonlinear Renninger effect, third order nonlinearity

Procedia PDF Downloads 384
27817 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives

Procedia PDF Downloads 315
27816 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 238
27815 Changes in the Quantity of Milk and the PH and Temperature of Rumen Content, after Surgical Treatment of Displaced Abomasum

Authors: Ramūnas Antanaitis, Robertas Stoškus, Mindaugas Televičius

Abstract:

The objective is to identify changes in the quantity of milk and the pH and the temperature of rumen content after omentopexia. The research was performed in a dairy farm with 550 cows on December 2014 – January 2015. The sample consisted of 10 cows. Left-sided displacement of the abomasums was diagnosed in 5 of them, which was treated by lateral omentopexia according to Dirksen; the rest 5 were used for control. Additional treatment was not applied. A special bolus for measuring pH and temperature was administered to the rumen of healthy cows and cows after the operation. The quantity of milk was registered with the help of herd management program Westfalia DP C21. All data were recorded ones a week in the period of four weeks. Statistically reliable difference in the quantity of milk (p<0.05) between the research groups was observed during the entire research. The major difference was recorded on Week 1 after the treatment (29.18 kg/d); on Week 4, the difference was 13.97 kg/d. During the entire research, rumen pH of Test group was lower than that of the Control group. Statistically reliable difference between the groups was identified on Week 1 (p<0.05). On the period mentioned, the pH of the rumen content of Test group was lower by 0.42 than that of the Control group. On Week 3, the difference increased up to 0.84. On Weeks 1, 2, and 3, statistically reliable (p<0.05) higher temperature was observed in the Test group. Major difference of temperature, 1.81 °C, was recorded on Week 1. On Week 4, the temperature of rumen in the Test group became equal to that of the Control group. After omentopexia treatment, the first four weeks showed the following results: statistically reliable difference in the quantity of milk remains the most obvious in Week 1 after the treatment; cows with left-sided displacement of abomasums were exposed to greater risk of acidosis; they indicated lower pH of rumen content; the first two weeks after omentopexia, rumen content has increased temperature, especially obvious in Week 1.

Keywords: Displacement of the abomasum, omentopexia, acidosis

Procedia PDF Downloads 464
27814 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control

Procedia PDF Downloads 409
27813 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching

Authors: Angel Daniel Muñoz Guzmán

Abstract:

E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.

Keywords: student, experience, e-learning, e-teaching, e-tools, technology, education

Procedia PDF Downloads 108
27812 Efficient Model Order Reduction of Descriptor Systems Using Iterative Rational Krylov Algorithm

Authors: Muhammad Anwar, Ameen Ullah, Intakhab Alam Qadri

Abstract:

This study presents a technique utilizing the Iterative Rational Krylov Algorithm (IRKA) to reduce the order of large-scale descriptor systems. Descriptor systems, which incorporate differential and algebraic components, pose unique challenges in Model Order Reduction (MOR). The proposed method partitions the descriptor system into polynomial and strictly proper parts to minimize approximation errors, applying IRKA exclusively to the strictly adequate component. This approach circumvents the unbounded errors that arise when IRKA is directly applied to the entire system. A comparative analysis demonstrates the high accuracy of the reduced model and a significant reduction in computational burden. The reduced model enables more efficient simulations and streamlined controller designs. The study highlights IRKA-based MOR’s effectiveness in optimizing complex systems’ performance across various engineering applications. The proposed methodology offers a promising solution for reducing the complexity of large-scale descriptor systems while maintaining their essential characteristics and facilitating their analysis, simulation, and control design.

Keywords: model order reduction, descriptor systems, iterative rational Krylov algorithm, interpolatory model reduction, computational efficiency, projection methods, H₂-optimal model reduction

Procedia PDF Downloads 29
27811 Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines

Authors: Xiaogang Li, Jieqiong Miao

Abstract:

As for the problem of the grey forecasting model prediction accuracy is low, an improved grey prediction model is put forward. Firstly, use trigonometric function transform the original data sequence in order to improve the smoothness of data , this model called SGM( smoothness of grey prediction model), then combine the improved grey model with support vector machine , and put forward the grey support vector machine model (SGM - SVM).Before the establishment of the model, we use trigonometric functions and accumulation generation operation preprocessing data in order to enhance the smoothness of the data and weaken the randomness of the data, then use support vector machine (SVM) to establish a prediction model for pre-processed data and select model parameters using genetic algorithms to obtain the optimum value of the global search. Finally, restore data through the "regressive generate" operation to get forecasting data. In order to prove that the SGM-SVM model is superior to other models, we select the battery life data from calce. The presented model is used to predict life of battery and the predicted result was compared with that of grey model and support vector machines.For a more intuitive comparison of the three models, this paper presents root mean square error of this three different models .The results show that the effect of grey support vector machine (SGM-SVM) to predict life is optimal, and the root mean square error is only 3.18%. Keywords: grey forecasting model, trigonometric function, support vector machine, genetic algorithms, root mean square error

Keywords: Grey prediction model, trigonometric functions, support vector machines, genetic algorithms, root mean square error

Procedia PDF Downloads 459
27810 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis

Authors: J. Ritonja, B. Grcar

Abstract:

For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.

Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator

Procedia PDF Downloads 242
27809 A Stochastic Volatility Model for Optimal Market-Making

Authors: Zubier Arfan, Paul Johnson

Abstract:

The electronification of financial markets and the rise of algorithmic trading has sparked a lot of interest from the mathematical community, for the market making-problem in particular. The research presented in this short paper solves the classic stochastic control problem in order to derive the strategy for a market-maker. It also shows how to calibrate and simulate the strategy with real limit order book data for back-testing. The ambiguity of limit-order priority in back-testing is dealt with by considering optimistic and pessimistic priority scenarios. The model, although it does outperform a naive strategy, assumes constant volatility, therefore, is not best suited to the LOB data. The Heston model is introduced to describe the price and variance process of the asset. The Trader's constant absolute risk aversion utility function is optimised by numerically solving a 3-dimensional Hamilton-Jacobi-Bellman partial differential equation to find the optimal limit order quotes. The results show that the stochastic volatility market-making model is more suitable for a risk-averse trader and is also less sensitive to calibration error than the constant volatility model.

Keywords: market-making, market-microsctrucure, stochastic volatility, quantitative trading

Procedia PDF Downloads 149
27808 Characterization of Activated Tire Char (ATC) and Adsorptive Desulfurization of Tire Pyrolytic Oil (TPO) Using ATC

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The adsorptive ability of different carbon materials, tire char (TC), demineralized tire char (DTC), activated tire char (ATC) and Aldrich supplied commercial activated carbon (CAC) was studied for desulfurization of tire pyrolytic oil (TPO). TPO with an initial sulfur content of 7767.7 ppmw was used in this present study. Preparation of ATC was achieved by chemical treatment of raw TC using a potassium hydroxide (KOH) solution and subsequent activation at 800°C in the presence of nitrogen. The thermal behavior of TC, surface microstructure, and the surface functional groups of the carbon materials was investigated using TGA, SEM, and FTIR, respectively. Adsorptive desulfurization of TPO using the carbon materials was performed and they performed in the order of CAC>ATC>DTC>TC. Adsorption kinetics were studied, and pseudo-first order kinetic model displayed a better fit compared to pseudo-second order model. For isotherm studies, the Freundlich isotherm model fitted to the equilibrium data better than the Langmuir isotherm model.

Keywords: ATC, desulfurization, pyrolysis, tire, TPO

Procedia PDF Downloads 113
27807 Modelling Residential Space Heating Energy for Romania

Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala

Abstract:

This paper proposes a linear model for optimizing domestic energy consumption, in Romania. Both techno-economic and consumer behavior approaches have been considered, in order to develop the model. The proposed model aims to reduce the energy consumption, in households, by assembling in a unitary model, aspects concerning: residential lighting, space heating, hot water, and combined space heating – hot water, space cooling, and passenger transport. This paper focuses on space heating domestic energy consumption model, and quantify not only technical-economic issues, but also consumer behavior impact, related to people decision to envelope and insulate buildings, in order to minimize energy consumption.

Keywords: consumer behavior, open source energy modeling system (OSeMOSYS), MARKAL/TIMES Romanian energy model, virtual technologies

Procedia PDF Downloads 540
27806 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 230
27805 Hybrid Lubri-Coolants as an Alternatives to Mineral Based Emulsion in Machining Aerospace Alloy Ti-6Al-4V

Authors: Muhammad Jamil, Ning He, Wei Zhao

Abstract:

Ti-6Al-4V has poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect on machining Ti-6Al-4V.

Keywords: hybrid lubri-cooling, tool wear, surface roughness, minimum quantity lubrication

Procedia PDF Downloads 142
27804 A Model for Reverse-Mentoring in Education

Authors: Sabine A. Zauchner-Studnicka

Abstract:

As the term indicates, reverse-mentoring flips the classical roles of mentoring: In school, students take over the role of mentors for adults, i.e. teachers or parents. Originally reverse-mentoring stems from US enterprises, which implemented this innovative method in order to benefit from the resources of skilled younger employees for the enhancement of IT competences of senior colleagues. However, reverse-mentoring in schools worldwide is rare. Based on empirical studies and theoretical approaches, in this article an implementation model for reverse-mentoring is developed in order to bring the significant potential reverse-mentoring has for education into practice.

Keywords: reverse-mentoring, innovation in education, implementation model, school education

Procedia PDF Downloads 247
27803 The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates

Authors: Marcin Zieliński, Marcin Dębowski, Mirosław Krzemieniewski

Abstract:

The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane.

Keywords: microwave radiation, biogas, methane fermentation, biomass

Procedia PDF Downloads 530
27802 Gender Based of Sustainable Food Self-Resilience for Village Using Dynamic System Model

Authors: Kholil, Laksanto Utomo

Abstract:

The food needs of the Indonesian people will continue increase year to year due to the increase of population growth. For ensuring food securityand and resilience, the government has developed a program food self-resilience village since 2006. Food resilience is a complex system, consisting of subsystem availability, distribution and consumption of the sufficiency of food consumed both in quantity and quality. Low access, and limited assets to food sources is the dominant factor vulnerable of food. Women have a major role in supporting the productive activities of the family to meet food sufficiency and resilience. The purpose of this paper is to discuss the model of food self-resilience village wich gender responsive by using a dynamic system model. Model will be developed into 3 level: family, vilage, and regency in accordance with the concept of village food resilience model wich has been developed by ministry of agriculture. Model development based on the results of experts discussion and field study. By some scenarios and simulation models we will able to develop appropriate policy strategies for family food resilience. The result of study show that food resilience was influenced by many factors: goverment policies, technology, human resource, and in the same time it will be a feed back for goverment policies and number of poor family.

Keywords: food availability, food sufficiency, gender, model dynamic, law enfrocement

Procedia PDF Downloads 532
27801 The Patterns Designation by the Inspiration from Flower at Suan Sunandha Palace

Authors: Nawaporn Srisarankullawong

Abstract:

This research is about the creating the design by the inspiration of the flowers, which were once planted in Suan Sunandha Palace. The researcher have conducted the research regarding the history of Suan Sunandha Palace and the flowers which have been planted in the palace’s garden, in order to use this research to create the new designs in the future. The objective are as follows; 1. To study the shape and the pattern of the flowers in Suan Sunandha Palace, in order to select a few of them as the model to create the new design. 2. In order to create the flower design from the flowers in Suan Sunandha Palace by using the current photograph of the flowers which were once used to be planted inside the palace and using adobe Illustrator and Adobe Photoshop programs to create the patterns and the model. The result of the research: From the research, the researcher had selected three types of flowers to crate the pattern model; they are Allamanda, Orchids and Flamingo Plant. The details of the flowers had been reduced in order to show the simplicity and create the pattern model to use them for models, so three flowers had created three pattern models and they had been developed into six patterns, using universal artist techniques, so the pattern created are modern and they can be used for further decoration.

Keywords: patterns design, Suan Sunandha Palace, pattern of the flowers, visual arts and design

Procedia PDF Downloads 370
27800 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 107
27799 A Dynamical Study of Fractional Order Obesity Model by a Combined Legendre Wavelet Method

Authors: Hakiki Kheira, Belhamiti Omar

Abstract:

In this paper, we propose a new compartmental fractional order model for the simulation of epidemic obesity dynamics. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. We also present some fractional differential illustrative examples to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.

Keywords: Caputo derivative, epidemiology, Legendre wavelet method, obesity

Procedia PDF Downloads 419
27798 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 139
27797 Impact of Lined/Unlined Canal on Groundwater Recharge in the Lower Bhavani Basin, Tamilnadu, India

Authors: K. Mirudhula, R. Saravanan

Abstract:

Bhavani basin is the fourth largest Sub Basin in the Cauvery basin. The entire command area of all three major canals that takes off from the Bhavani river falls within the Erode District i.e. Lower Bhavani Project (LBP), Kodiveri and Kalingarayan canals. The LBP canal is a major source of irrigation in Erode District. Many of these canals are unlined and leakage takes place from them. Thus the seepage from the canal helps in recharging the wells in the area, enabling to get adequate water supply for the crops when water was not released from Bhavanisagar Dam. In this study, the groundwater recharge is determined by groundwater flow modeling using Visual MODFLOW model. For this purpose, three major natural sources of groundwater recharge are taken into consideration such as rainfall infiltration, canal seepage and return flow of irrigation. The model was run and ZONEBUDGET gives an idea about the amount of recharge from lined/unlined canal to the field. Unlined canal helps to recharge the groundwater about 20% more than the lined canal. The analysis reveals that the annual rainfall also has rapidly changed in this region. In the LBP canal Head reach meets their requirement with available quantity of water from the canal system. Tail end reach does not receive the required quantity of water because of seepage loss and conveyance loss. Hence the lined canal can be provided for full length of the main canal. Branch canals and minor distributaries are suggested to maintain the canals with unlined canal system.

Keywords: lower Bhavani basin, erode, groundwater flow modeling, irrigation practice, lined canal system

Procedia PDF Downloads 297
27796 Sparsity Order Selection and Denoising in Compressed Sensing Framework

Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar

Abstract:

Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.

Keywords: compressed sensing, data denoising, model order selection, sparse representation

Procedia PDF Downloads 483
27795 Development of a Model for the Redesign of Plant Structures

Authors: L. Richter, J. Lübkemann, P. Nyhuis

Abstract:

In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.

Keywords: change driven factory redesign, factory planning, plant structure, flexibility

Procedia PDF Downloads 269
27794 Quantity, Quality and Water Productivity of Mulberry Leaf Influenced by Different Methods, Levels of Irrigation and Mulching in Eastern Dry Zone of Karnataka, India

Authors: Chengalappa Seenappa, Narayanappa Devkumar, Narayanappa Nagaraja

Abstract:

Mulberry leaf is the major economic component in sericulture and quality of leaf produced per unit area has a direct effect on quality of cocoon. Among all the agronomical inputs, irrigation water has highest impact on mulberry leaf quantity and quality. The water productivity in sericulture in the country is inadequate and inefficient though India has the largest irrigated area. There is a need of proper irrigation methods and conservation practices to ensure efficiency and economy in water use. Hence, this field experiment was conducted at College of Sericulture, Chintamani, Chickaballapur district, Karnataka, India during 2013 and 2014 to know the quantity, quality and water productivity of mulberry influenced by different methods, levels of irrigation and mulching in Eastern Dry Zone (EDZ) of Karnataka, India. The results revealed that the mulberry leaf quantity, quality and water productivity were significantly influenced by different methods, levels of irrigation and mulching. Subsurface drip irrigation at 0.8 CPE (Cumulative Pan Evaporation) recorded higher leaf yield, chlorophyll, relative water, protein content and water productivity (42857 kg ha-1 yr-1, 8.54, 65.80%, 22.27% and 364.41 kg hacm-1, respectively) than surface drip at 1.0 CPE (38809 kg ha-1 yr-1, 7.34, 62.76%, 17.75% and 264 10 kg hacm-1, respectively) and micro spray jet at 1.0 CPE (39931 kg ha-1 yr-1, 7.96, 63.50%, 19.00%, 35617 kg ha-1 yr-1 and 271.83 kg hacm-1, respectively). Mulching treatment recorded maximum leaf yield, chlorophyll, relative water, protein content and water productivity (38035 kg ha-1 yr-1, 7.12, 62.11%, 16.14% and 330 kg hacm-1, respectively) compared to without mulching. These results clearly indicated that subsurface drip irrigation at lower level of irrigation (0.8 CPE) and mulching increased the quantity, quality and water productivity of mulberry leaf than surface drip and micro spray jet irrigation at higher level of irrigation (1.0 CPE) by saving 20 per cent of water. Therefore, in the coming days subsurface drip irrigation in mulberry cultivation may be more appropriate to realise higher yield, quality and water productivity in EDZ of Karnataka, India.

Keywords: subsurface drip irrigation, mulching, water productivity, mulberry

Procedia PDF Downloads 268
27793 Fractional-Order Modeling of GaN High Electron Mobility Transistors for Switching Applications

Authors: Anwar H. Jarndal, Ahmed S. Elwakil

Abstract:

In this paper, a fraction-order model for pad parasitic effect of GaN HEMT on Si substrate is developed and validated. Open de-embedding structure is used to characterize and de-embed substrate loading parasitic effects. Unbiased device measurements are implemented to extract parasitic inductances and resistances. The model shows very good simulation for S-parameter measurements under different bias conditions. It has been found that this approach can improve the simulation of intrinsic part of the transistor, which is very important for small- and large-signal modeling process.

Keywords: fractional-order modeling, GaNHEMT, si-substrate, open de-embedding structure

Procedia PDF Downloads 354
27792 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments

Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing

Abstract:

Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.

Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization

Procedia PDF Downloads 164
27791 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool

Authors: Yongrong Li, Ralf Domroes

Abstract:

Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.

Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining

Procedia PDF Downloads 203