Search results for: time series regression
21332 The Role of Arousal in Time Perception: Implications for Emotional Driving
Authors: Ewa Siedlecka
Abstract:
Emotional stress is an important risk factor in the rate and severity of traffic accidents. Moreover, incorrect time perception is implicated in the increase of traffic violations, such as running red lights or collisions. While the role of emotional arousal on perceived time is well-established, the role of physiological arousal in time perception remains unexamined. Specific emotions can be, however, associated with distinct physiological responses. In the current research, two studies examined the role of physiological arousal in time perception. In the first experiment, 41 participants engaged in a cold pressor task and had their time perception measured throughout the experiment. In the second study, 138 participants engaged in either isometric or deep breathing exercises. These activities were designed to simulate the sympathetic and parasympathetic nervous systems, respectively. Participants completed a bisection task to measure time perception in both studies, as well as a physiological response via an Electrocardiography (ECG). Results found that activation of the parasympathetic nervous system is associated with greater time perception. These findings are discussed with reference to models of time perception, as well as implications for emotional driving and misperceptions of speed. It is important to consider the role of physiology in the misperception of time, as these factors can lead to increases in driving accidents.Keywords: emotions, nervous system, physiology, time perception
Procedia PDF Downloads 32821331 Gender Estimation by Means of Quantitative Measurements of Foramen Magnum: An Analysis of CT Head Images
Authors: Thilini Hathurusinghe, Uthpalie Siriwardhana, W. M. Ediri Arachchi, Ranga Thudugala, Indeewari Herath, Gayani Senanayake
Abstract:
The foramen magnum is more prone to protect than other skeletal remains during high impact and severe disruptive injuries. Therefore, it is worthwhile to explore whether these measurements can be used to determine the human gender which is vital in forensic and anthropological studies. The idea was to find out the ability to use quantitative measurements of foramen magnum as an anatomical indicator for human gender estimation and to evaluate the gender-dependent variations of foramen magnum using quantitative measurements. Randomly selected 113 subjects who underwent CT head scans at Sri Jayawardhanapura General Hospital of Sri Lanka within a period of six months, were included in the study. The sample contained 58 males (48.76 ± 14.7 years old) and 55 females (47.04 ±15.9 years old). Maximum length of the foramen magnum (LFM), maximum width of the foramen magnum (WFM), minimum distance between occipital condyles (MnD) and maximum interior distance between occipital condyles (MxID) were measured. Further, AreaT and AreaR were also calculated. The gender was estimated using binomial logistic regression. The mean values of all explanatory variables (LFM, WFM, MnD, MxID, AreaT, and AreaR) were greater among male than female. All explanatory variables except MnD (p=0.669) were statistically significant (p < 0.05). Significant bivariate correlations were demonstrated by AreaT and AreaR with the explanatory variables. The results evidenced that WFM and MxID were the best measurements in predicting gender according to binomial logistic regression. The estimated model was: log (p/1-p) =10.391-0.136×MxID-0.231×WFM, where p is the probability of being a female. The classification accuracy given by the above model was 65.5%. The quantitative measurements of foramen magnum can be used as a reliable anatomical marker for human gender estimation in the Sri Lankan context.Keywords: foramen magnum, forensic and anthropological studies, gender estimation, logistic regression
Procedia PDF Downloads 15321330 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste
Authors: Maciej Szeląg
Abstract:
The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters
Procedia PDF Downloads 24821329 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 10921328 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 10921327 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals
Authors: Ibrahim Khan, Waqas Khalid
Abstract:
The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning
Procedia PDF Downloads 6821326 The Effect of Regulation and Investment in Sustainable Practices on Environmental Performance and Consumer Trust: a Time Series Analysis of the Dominant Companies within the Energy Sector
Authors: Sempiga Olivier, Dominika Latusek-Jurczak
Abstract:
Climate change has allegedly been attributed to a high consumption of fossil fuels, leading to severe environmental problems. The energy sector has been among the most polluting sectors for many decades. Consequently, there is a lack of trust in several energy firms, especially those in fossil fuels and nuclear energy. A robust regulatory framework is needed, and more investment in renewable energy sources is paramount for a better environmental outcome. Given the significant environmental impact of energy production and consumption in the energy sector, sustainable marketing practices have become increasingly important. Although the latter has had the lion’s share in polluting the environment, much effort has been made recently to move away from fossil fuels and privilege renewable energy sources. How this shift would help rebuild trust in the energy industry is unclear. For the shift to have lasting effects, it may be essential that regulatory agencies examine how energy firms engage in sustainable investment. There is little empirical evidence on whether adopting regulating marketing practices and investment initiatives can help different organizations reduce their environmental impact and promote sustainable development. Little is known about how and whether the environmental value in firms goes beyond rhetoric, greenwashing and publicity to translate into economic gains and environmental performance. The study investigates how regulatory agencies can help energy firms invest sustainably and take sustainable initiatives even amid the energy crisis caused by the Russia-Ukraine conflict and how these sustainable practices relate to renewed consumer trust. Using data from Corporate Knights, the study, through time series, analyses the relationship between sustainable regulation, sustainable practices of energy firms from around the world and their relation to consumer trust and environmental performance over the past 20 years. It examines how their sustainable investment, energy, and carbon productivity relate to environmental sustainability and consumer trust. This longitudinal study provides empirical evidence of the interplay between regulation, trust and environmental performance. The research is grounded in institutional trust theory, which emphasizes the role of regulatory frameworks and organizational practices in shaping public perceptions of fairness, transparency, and legitimacy. Results show that organizations in the energy sector, supported by robust regulatory tools, can overcome the negative image of polluters and compete with other companies in the fight against climate change and global warming. However, to do so, energy firms should consider investing more in renewable energy sources and implementing sustainable strategies and practices that go beyond greenwashing to improve their environmental performance, thereby rebuilding consumer trust in the energy sector. Results allow regulatory regimes and organizations to learn why it is crucial for energy firms to invest in renewable energy sources and engage in various sustainable initiatives and practices to contribute to better environmental outcomes and higher levels of trust.Keywords: consumer trust, energy, environmental performance, regulation, renewable energy sources, sustainable practices
Procedia PDF Downloads 1921325 The Types of Annuities with Flexible Premium
Authors: Deniz Ünal Özpalamutcu, Burcu Altman
Abstract:
Actuaria uses mathematics, statistic and financial information when analyzing the financial impacts of uncertainties, risks, insurance and pension related issues. In other words, it deals with the likelihood of potential risks, their financial impacts and especially the financial measures. Handling these measures require some long-term payment and investments. So, it is obvious it is inevitable to plan the periodic payments with equal time intervals considering also the changing value of money over time. These series of payment made specific intervals of time is called annuity or rant. In literature, rants are classified based on start and end dates, start times, payments times, payments amount or frequency. Classification of rants based on payment amounts changes based on the constant, descending or ascending payment methods. The literature about handling the annuity is very limited. Yet in a daily life, especially in today’s world where the economic issues gained a prominence, it is very crucial to use the variable annuity method in line with the demands of the customers. In this study, the types of annuities with flexible payment are discussed. In other words, we focus on calculating payment amount of a period by adding a certain percentage of previous period payment was studied. While studying this problem, formulas were created considering both start and end period payments for cash value and accumulated. Also increase of each period payment by r interest rate each period payments calculated with previous periods increases. And the problem of annuities (rants) of which each period payment increased with previous periods’ increase by r interest rate has been analyzed. Cash value and accumulated value calculation of this problem were studied separately based on the period start/end and their relations were expressed by formulas.Keywords: actuaria, annuity, flexible payment, rant
Procedia PDF Downloads 22321324 Time Synchronization between the eNBs in E-UTRAN under the Asymmetric IP Network
Abstract:
In this paper, we present a method for a time synchronization between the two eNodeBs (eNBs) in E-UTRAN (Evolved Universal Terrestrial Radio Access) network. The two eNBs are cooperating in so-called inter eNB CA (Carrier Aggregation) case and connected via asymmetrical IP network. We solve the problem by using broadcasting signals generated in E-UTRAN as synchronization signals. The results show that the time synchronization with the proposed method is possible with the error significantly less than 1 ms which is sufficient considering the time transmission interval is 1 ms in E-UTRAN. This makes this method (with low complexity) more suitable than Network Time Protocol (NTP) in the mobile applications with generated broadcasting signals where time synchronization in asymmetrical network is required.Keywords: IP scheduled throughput, E-UTRAN, Evolved Universal Terrestrial Radio Access Network, NTP, Network Time Protocol, assymetric network, delay
Procedia PDF Downloads 36521323 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite
Authors: Maciej Szeląg, Stanisław Fic
Abstract:
The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters
Procedia PDF Downloads 39321322 Solving Dimensionality Problem and Finding Statistical Constructs on Latent Regression Models: A Novel Methodology with Real Data Application
Authors: Sergio Paez Moncaleano, Alvaro Mauricio Montenegro
Abstract:
This paper presents a novel statistical methodology for measuring and founding constructs in Latent Regression Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations on Item Response Theory (IRT). In addition, based on the fundamentals of submodel theory and with a convergence of many ideas of IRT, we propose an algorithm not just to solve the dimensionality problem (nowadays an open discussion) but a new research field that promises more fear and realistic qualifications for examiners and a revolution on IRT and educational research. In the end, the methodology is applied to a set of real data set presenting impressive results for the coherence, speed and precision. Acknowledgments: This research was financed by Colciencias through the project: 'Multidimensional Item Response Theory Models for Practical Application in Large Test Designed to Measure Multiple Constructs' and both authors belong to SICS Research Group from Universidad Nacional de Colombia.Keywords: item response theory, dimensionality, submodel theory, factorial analysis
Procedia PDF Downloads 37521321 Exploring Neural Responses to Urban Spaces in Older People Using Mobile EEG
Authors: Chris Neale, Jenny Roe, Peter Aspinall, Sara Tilley, Steve Cinderby, Panos Mavros, Richard Coyne, Neil Thin, Catharine Ward Thompson
Abstract:
This research directly assesses older people’s neural activation in response to walking through a changing urban environment, as measured by electroencephalography (EEG). As the global urban population is predicted to grow, there is a need to understand the role that the urban environment may play on the health of its older inhabitants. There is a large body of evidence suggesting green space has a beneficial restorative effect, but this effect remains largely understudied in both older people and by using a neuroimaging assessment. For this study, participants aged 65 years and over were required to walk between a busy urban built environment and a green urban environment, in a counterbalanced design, wearing an Emotiv EEG headset to record real-time neural responses to place. Here we report on the outputs for these responses derived from both the proprietary Affectiv Suite software, which creates emotional parameters with a real time value assigned to them, as well as the raw EEG output focusing on alpha and beta changes, associated with changes in relaxation and attention respectively. Each walk lasted around fifteen minutes and was undertaken at the natural walking pace of the participant. The two walking environments were compared using a form of high dimensional correlated component regression (CCR) on difference data between the urban busy and urban green spaces. For the Emotiv parameters, results showed that levels of ‘engagement’ increased in the urban green space (with a subsequent decrease in the urban busy built space) whereas levels of ‘excitement’ increased in the urban busy environment (with a subsequent decrease in the urban green space). In the raw data, low beta (13 – 19 Hz) increased in the urban busy space with a subsequent decrease shown in the green space, similar to the pattern shown with the ‘excitement’ result. Alpha activity (9 – 13 Hz) shows a correlation with low beta, but not with dependent change in the regression model. This suggests that alpha is acting as a suppressor variable. These results suggest that there are neural signatures associated with the experience of urban spaces which may reflect the age of the cohort or the spatiality of the settings themselves. These are shown both in the outputs of the proprietary software as well as the raw EEG output. Built busy urban spaces appear to induce neural activity associated with vigilance and low level stress, while this effect is ameliorated in the urban green space, potentially suggesting a beneficial effect on attentional capacity in urban green space in this participant group. The interaction between low beta and alpha requires further investigation, in particular the role of alpha in this relationship.Keywords: ageing, EEG, green space, urban space
Procedia PDF Downloads 22721320 Dynamic EEG Desynchronization in Response to Vicarious Pain
Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy
Abstract:
The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition
Procedia PDF Downloads 28621319 A Forward-Looking View of the Intellectual Capital Accounting Information System
Authors: Rbiha Salsabil Ketitni
Abstract:
The entire company is a series of information among themselves so that each information serves several events and activities, and the latter is nothing but a large set of data or huge data. The enormity of information leads to the possibility of losing it sometimes, and this possibility must be avoided in the institution, especially the information that has a significant impact on it. In most cases, to avoid the loss of this information and to be relatively correct, information systems are used. At present, it is impossible to have a company that does not have information systems, as the latter works to organize the information as well as to preserve it and even saves time for its owner and this is the result of the speed of its mission. This study aims to provide an idea of an accounting information system that opens a forward-looking study for its manufacture and development by researchers, scientists, and professionals. This is the result of most individuals seeing a great contradiction between the work of an information system for moral capital and does not provide real values when measured, and its disclosure in financial reports is not distinguished by transparency.Keywords: accounting, intellectual capital, intellectual capital accounting, information system
Procedia PDF Downloads 9021318 A Hyperexponential Approximation to Finite-Time and Infinite-Time Ruin Probabilities of Compound Poisson Processes
Authors: Amir T. Payandeh Najafabadi
Abstract:
This article considers the problem of evaluating infinite-time (or finite-time) ruin probability under a given compound Poisson surplus process by approximating the claim size distribution by a finite mixture exponential, say Hyperexponential, distribution. It restates the infinite-time (or finite-time) ruin probability as a solvable ordinary differential equation (or a partial differential equation). Application of our findings has been given through a simulation study.Keywords: ruin probability, compound poisson processes, mixture exponential (hyperexponential) distribution, heavy-tailed distributions
Procedia PDF Downloads 34521317 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: situation-awareness, smart home, IoT, machine learning, classifier
Procedia PDF Downloads 42421316 Development of a Regression Based Model to Predict Subjective Perception of Squeak and Rattle Noise
Authors: Ramkumar R., Gaurav Shinde, Pratik Shroff, Sachin Kumar Jain, Nagesh Walke
Abstract:
Advancements in electric vehicles have significantly reduced the powertrain noise and moving components of vehicles. As a result, in-cab noises have become more noticeable to passengers inside the car. To ensure a comfortable ride for drivers and other passengers, it has become crucial to eliminate undesirable component noises during the development phase. Standard practices are followed to identify the severity of noises based on subjective ratings, but it can be a tedious process to identify the severity of each development sample and make changes to reduce it. Additionally, the severity rating can vary from jury to jury, making it challenging to arrive at a definitive conclusion. To address this, an automotive component was identified to evaluate squeak and rattle noise issue. Physical tests were carried out for random and sine excitation profiles. Aim was to subjectively assess the noise using jury rating method and objectively evaluate the same by measuring the noise. Suitable jury evaluation method was selected for the said activity, and recorded sounds were replayed for jury rating. Objective data sound quality metrics viz., loudness, sharpness, roughness, fluctuation strength and overall Sound Pressure Level (SPL) were measured. Based on this, correlation co-efficients was established to identify the most relevant sound quality metrics that are contributing to particular identified noise issue. Regression analysis was then performed to establish the correlation between subjective and objective data. Mathematical model was prepared using artificial intelligence and machine learning algorithm. The developed model was able to predict the subjective rating with good accuracy.Keywords: BSR, noise, correlation, regression
Procedia PDF Downloads 8521315 Kinetic Modeling of Colour and Textural Properties of Stored Rohu (Labeo rohita) Fish
Authors: Pramod K. Prabhakar, Prem P. Srivastav
Abstract:
Rohu (Labeo rohita) is an Indian major carp and highly relished freshwater food for its unique flavor, texture, and culinary properties. It is highly perishable and, spoilage occurs as a result of series of complicated biochemical changes brought about by enzymes which are the function of time and storage temperature also. The influence of storage temperature (5, 0, and -5 °C) on colour and texture of fish were studied during 14 days storage period in order to analyze kinetics of colour and textural changes. The rate of total colour change was most noticeable at the highest storage temperature (5°C), and these changes were well described by the first order reaction. Texture is an important variable of quality of the fish and is increasing concern to aquaculture industries. Textural parameters such as hardness, toughness and stiffness were evaluated on a texture analyzer for the different day of stored fish. The significant reduction (P ≤ 0.05) in hardness was observed after 2nd, 4th and 8th day for the fish stored at 5, 0, and -5 °C respectively. The textural changes of fish during storage followed a first order kinetic model and fitted well with this model (R2 > 0.95). However, the textural data with respect to time was also fitted to modified Maxwell model and found to be good fit with R2 value ranges from 0.96 to 0.98. Temperature dependence of colour and texture change was adequately modelled with the Arrhenius type equation. This fitted model may be used for the determination of shelf life of Rohu Rohu (Labeo rohita) Fish.Keywords: first order kinetics, biochemical changes, Maxwell model, colour, texture, Arrhenius type equation
Procedia PDF Downloads 23821314 An Investigation of Commitment to Marital Relationship Precedents through Self-Expansion in Students from the Medical Science University of Iran
Authors: Mehravar Javid, Laura Reid Harris, Zahra Khodadadi, Rachel Walton
Abstract:
The study aimed to explore commitment precedence through self-expansion among students at the Medical Science University of Shiraz, Iran. Method: The statistical population was comprised of students at Shiraz University of Medical Science during the academic years 2013 to 2014. Using random sampling, 133 married students (50 males and 83 females) were selected. The commitment condition of this studied group was assessed using Adam and Jones' (1999) Marital Commitment Dimensions Scale (DCI), and self-expansion was measured using Aron and Lewandowski's (2002) Self-Expansion Questionnaire. Simple regression analyses investigated commitment precedence via self-expansion. Results: The data revealed a positive correlation between total commitment (r=0.35, p < 0.01), the subscales of commitment to the spouse (r=0.43, p < 0.01), and commitment to marriage (r=0.31, p < 0.01). Regression analyses indicated that perceived self-expansion positively correlated with commitment to marital relationships in married students. The findings suggest that an increased possibility of self-expansion in a marital relationship corresponds with heightened commitment.Keywords: commitment to marital relationship, married students, relationship dynamics, self-expansion
Procedia PDF Downloads 7021313 A Time-Reducible Approach to Compute Determinant |I-X|
Authors: Wang Xingbo
Abstract:
Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.Keywords: algorithm, determinant, computation, eigenvalue, time complexity
Procedia PDF Downloads 41921312 Food Insecurity Assessment, Consumption Pattern and Implications of Integrated Food Security Phase Classification: Evidence from Sudan
Authors: Ahmed A. A. Fadol, Guangji Tong, Wlaa Mohamed
Abstract:
This paper provides a comprehensive analysis of food insecurity in Sudan, focusing on consumption patterns and their implications, employing the Integrated Food Security Phase Classification (IPC) assessment framework. Years of conflict and economic instability have driven large segments of the population in Sudan into crisis levels of acute food insecurity according to the (IPC). A substantial number of people are estimated to currently face emergency conditions, with an additional sizeable portion categorized under less severe but still extreme hunger levels. In this study, we explore the multifaceted nature of food insecurity in Sudan, considering its historical, political, economic, and social dimensions. An analysis of consumption patterns and trends was conducted, taking into account cultural influences, dietary shifts, and demographic changes. Furthermore, we employ logistic regression and random forest analysis to identify significant independent variables influencing food security status in Sudan. Random forest clearly outperforms logistic regression in terms of area under curve (AUC), accuracy, precision and recall. Forward projections of the IPC for Sudan estimate that 15 million individuals are anticipated to face Crisis level (IPC Phase 3) or worse acute food insecurity conditions between October 2023 and February 2024. Of this, 60% are concentrated in Greater Darfur, Greater Kordofan, and Khartoum State, with Greater Darfur alone representing 29% of this total. These findings emphasize the urgent need for both short-term humanitarian aid and long-term strategies to address Sudan's deepening food insecurity crisis.Keywords: food insecurity, consumption patterns, logistic regression, random forest analysis
Procedia PDF Downloads 7921311 Full Mini Nutritional Assessment Questionnaire and the Risk of Malnutrition and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos E. Lampropoulos, Maria Konsta, Tamta Sirbilatze, Ifigenia Apostolou, Vicky Dradaki, Konstantina Panouria, Irini Dri, Christina Kordali, Vaggelis Lambas, Georgios Mavras
Abstract:
Objectives: Full Mini Nutritional Assessment (MNA) questionnaire is one of the most useful tools in diagnosis of malnutrition in hospitalized patients, which is related to increased morbidity and mortality. The purpose of our study was to assess the nutritional status of elderly, hospitalized patients and examine the hypothesis that MNA may predict mortality and extension of hospitalization. Methods: One hundred fifty patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. The following data were taken into account in analysis: anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission. The latter was compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and extended hospitalization respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 20% per each unit increase of full MNA score (OR=0.8, 95% CI 0.74-0.89, p < 0.0001). Patients who admitted due to cancer were 23 times more likely to die, compared to those with infection (OR=23, 95% CI 3.8-141.6, p=0.001). Similarly, patients who admitted due to stroke were 7 times more likely to die (OR=7, 95% CI 1.4-34.5, p=0.02), while these with all other causes of admission were less likely (OR=0.2, 95% CI 0.06-0.8, p=0.03), compared to patients with infection. According to multivariate linear regression analysis, each increase of unit of full MNA, decreased the admission duration on average 0.3 days (b:-0.3, 95% CI -0.45 - -0.15, p < 0.0001). Patients admitted due to cancer had on average 6.8 days higher extension of hospitalization, compared to those admitted for infection (b:6.8, 95% CI 3.2-10.3, p < 0.0001). Conclusion: Mortality and extension of hospitalization is significantly increased in elderly, malnourished patients. Full MNA score is a useful diagnostic tool of malnutrition.Keywords: duration of admission, malnutrition, mini nutritional assessment score, prognostic factors for mortality
Procedia PDF Downloads 31621310 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization
Procedia PDF Downloads 31421309 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy
Abstract:
Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.Keywords: fuzzy sets, uncertainty, qualitative factors, decision making
Procedia PDF Downloads 65721308 Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique
Authors: M. A. Ansari, A. Hussain, A. Uddin
Abstract:
A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations.Keywords: discharge coefficient, group method of data handling, open channel, side labyrinth weir
Procedia PDF Downloads 16321307 Assessing Level of Pregnancy Rate and Milk Yield in Indian Murrah Buffaloes
Authors: V. Jamuna, A. K. Chakravarty, C. S. Patil, Vijay Kumar, M. A. Mir, Rakesh Kumar
Abstract:
Intense selection of buffaloes for milk production at organized herds of the country without giving due attention to fertility traits viz. pregnancy rate has lead to deterioration in their performances. Aim of study is to develop an optimum model for predicting pregnancy rate and to assess the level of pregnancy rate with respect to milk production Murrah buffaloes. Data pertaining to 1224 lactation records of Murrah buffaloes spread over a period 21 years were analyzed and it was observed that pregnancy rate depicted negative phenotypic association with lactation milk yield (-0.08 ± 0.04). For developing optimum model for pregnancy rate in Murrah buffaloes seven simple and multiple regression models were developed. Among the seven models, model II having only Service period as an independent reproduction variable, was found to be the best prediction model, based on the four statistical criterions (high coefficient of determination (R 2), low mean sum of squares due to error (MSSe), conceptual predictive (CP) value, and Bayesian information criterion (BIC). For standardizing the level of fertility with milk production, pregnancy rate was classified into seven classes with the increment of 10% in all parities, life time and their corresponding average pregnancy rate in relation to the average lactation milk yield (MY).It was observed that to achieve around 2000 kg MY which can be considered optimum for Indian Murrah buffaloes, level of pregnancy rate should be in between 30-50%.Keywords: life time, pregnancy rate, production, service period, standardization
Procedia PDF Downloads 64021306 Predictors of School Safety Awareness among Malaysian Primary School Teachers
Authors: Ssekamanya, Mastura Badzis, Khamsiah Ismail, Dayang Shuzaidah Bt Abduludin
Abstract:
With rising incidents of school violence worldwide, educators and researchers are trying to understand and find ways to enhance the safety of children at school. The purpose of this study was to investigate the extent to which the demographic variables of gender, age, length of service, position, academic qualification, and school location predicted teachers’ awareness about school safety practices in Malaysian primary schools. A stratified random sample of 380 teachers was selected in the central Malaysian states of Kuala Lumpur and Selangor. Multiple regression analysis revealed that none of the factors was a good predictor of awareness about school safety training, delivery methods of school safety information, and available school safety programs. Awareness about school safety activities was significantly predicted by school location (whether the school was located in a rural or urban area). While these results may reflect a general lack of awareness about school safety among primary school teachers in the selected locations, a national study needs to be conducted for the whole country.Keywords: school safety awareness, predictors of school safety, multiple regression analysis, malaysian primary schools
Procedia PDF Downloads 47421305 Montelukast Doesn’t Decrease the Risk of Cardiovascular Disease in Asthma Patients in Taiwan
Authors: Sheng Yu Chen, Shi-Heng Wang
Abstract:
Aim: Based on human, animal experiments, and genetic studies, cysteinyl leukotrienes, LTC4, LTD4, and LTE4, are inflammatory substances that are metabolized by 5-lipooxygenase from arachidonic acid, and these substances trigger asthma. In addition, the synthetic pathway of cysteinyl leukotriene is relevant to the increase in cardiovascular diseases such as myocardial ischemia and stroke. Given the situation, we aim to investigate whether cysteinyl leukotrienes receptor antagonist (LTRA), montelukast which cures those who have asthma has potential protective effects on cardiovascular diseases. Method: We conducted a cohort study, and enrolled participants which are newly diagnosed with asthma (ICD-9 CM code 493. X) between 2002 to 2011. The data source is from Taiwan National Health Insurance Research Database Patients with a previous history of myocardial infarction or ischemic stroke were excluded. Among the remaining participants, every montelukast user was matched with two randomly non-users by sex, and age. The incident cardiovascular diseases, including myocardial infarction and ischemic stroke, were regarded as outcomes. We followed the participants until outcomes come first or the end of the following period. To explore the protective effect of montelukast on the risk of cardiovascular disease, we use multivariable Cox regression to estimate the hazard ratio with adjustment for potential confounding factors. Result: There are 55876 newly diagnosed asthma patients who had at least one claim of inpatient admission or at least three claims of outpatient records. We enrolled 5350 montelukast users and 10700 non-users in this cohort study. The following mean (±SD) time of the Montelukast group is 5 (±2.19 )years, and the non-users group is 6.2 5.47 (± 2.641) years. By using multivariable Cox regression, our analysis indicated that the risk of incident cardiovascular diseases between montelukast users (n=43, 0.8%) and non-users (n=111, 1.04%) is approximately equal. [adjusted hazard ratio 0.992; P-value:0.9643] Conclusion: In this population-based study, we found that the use of montelukast is not associated with a decrease in incident MI or IS.Keywords: asthma, inflammation, montelukast, insurance research database, cardiovascular diseases
Procedia PDF Downloads 8821304 Causality between the Construction Industry and the GDP in the United Arab Emirates
Authors: Hasan S. Mahmoud, Salwa M. Beheiry, Vian Ahmed
Abstract:
In light of the repercussions of the 2008 global economic crisis, the response of the United Arab Emirates economy and growth, and the vast construction activities that are undergoing, there is a need to investigate the relationship between construction activities and the Gross Domestic Product (GDP). This study aims to investigate the causality relationship between the construction industry in the United Arab Emirates and the GDP of the country in the last decade. For that, this study will investigate the relationship between the growth of the GDP and the growth of construction activities and their value addition to the economy. To ascertain this relationship, Granger Causality method is used to identify the causality between the time-dependent series.Keywords: construction value addition, Granger causality, growth of gross domestic product, United Arab Emirates
Procedia PDF Downloads 15021303 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 352