Search results for: rearing parameters optimization
10123 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 15810122 Study of Biofuel Produced by Babassu Oil Fatty Acids Esterification
Authors: F. A. F. da Ponte, J. Q. Malveira, I. A. Maciel, M. C. G. Albuquerque
Abstract:
In this work aviation, biofuel production was studied by fatty acids (C6 to C16) esterification. The process variables in heterogeneous catalysis were evaluated using an experimental design. Temperature and reaction time were the studied parameters, and the methyl esters content was the response of the experimental design. An ion exchange resin was used as a heterogeneous catalyst. The process optimization was carried out using response surface methodology (RSM) and polynomial model of second order. Results show that the most influential variables on the linear coefficient of each effect studied were temperature and reaction time. The best result of methyl esters conversion in the experimental design was under the conditions: 10% wt of catalyst; 100 °C and 4 hours of reaction. The best-achieved conversion was 96.5% wt of biofuel.Keywords: esterification, ion-exchange resins, response surface methodology, biofuel
Procedia PDF Downloads 49610121 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle
Authors: P. Kacejko, M. Wendeker
Abstract:
The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption
Procedia PDF Downloads 12210120 Optimal Planning and Design of Hybrid Energy System for Taxila University
Authors: Habib Ur Rahman Habib
Abstract:
Renewable energy resources are being realized as suitable options in hybrid energy planning for on-grid and micro grid. In this paper, operation, planning and optimal design of on-grid distributed energy resources based hybrid system are investigated. The aim is to minimize the cost of the overall energy system keeping in view the environmental emission and minimum penetration of conventional energy resources. Seven grid connected different case studies including diesel only, diesel-renewable based, and renewable based only are designed to perform economic analysis, operational planning and emission. Sensitivity analysis is implemented to investigate the impact of different parameters on the performance of energy resources.Keywords: data management, renewable energy, distributed energy, smart grid, micro-grid, modeling, energy planning, design optimization
Procedia PDF Downloads 46010119 Using Complete Soil Particle Size Distributions for More Precise Predictions of Soil Physical and Hydraulic Properties
Authors: Habib Khodaverdiloo, Fatemeh Afrasiabi, Farrokh Asadzadeh, Martinus Th. Van Genuchten
Abstract:
The soil particle-size distribution (PSD) is known to affect a broad range of soil physical, mechanical and hydraulic properties. Complete descriptions of a PSD curve should provide more information about these properties as opposed to having only information about soil textural class or the soil sand, silt and clay (SSC) fractions. We compared the accuracy of 19 different models of the cumulative PSD in terms of fitting observed data from a large number of Iranian soils. Parameters of the six most promising models were correlated with measured values of the field saturated hydraulic conductivity (Kfs), the mean weight diameter of soil aggregates (MWD), bulk density (ρb), and porosity (∅). These same soil properties were correlated also with conventional PSD parameters (SSC fractions), selected geometric PSD parameters (notably the mean diameter dg and its standard deviation σg), and several other PSD parameters (D50 and D60). The objective was to find the best predictions of several soil physical quality indices and the soil hydraulic properties. Neither SSC nor dg, σg, D50 and D60 were found to have a significant correlation with both Kfs or logKfs, However, the parameters of several cumulative PSD models showed statistically significant correlation with Kfs and/or logKfs (|r| = 0.42 to 0.65; p ≤ 0.05). The correlation between MWD and the model parameters was generally also higher than either with SSC fraction and dg, or with D50 and D60. Porosity (∅) and the bulk density (ρb) also showed significant correlation with several PSD model parameters, with ρb additionally correlating significantly with various geometric (dg), mechanical (D50 and D60), and agronomic (clay and sand) representations of the PSD. The fitted parameters of selected PSD models furthermore showed statistically significant correlations with Kfs,, MWD and soil porosity, which may be viewed as soil quality indices. Results of this study are promising for developing more accurate pedotransfer functions.Keywords: particle size distribution, soil texture, hydraulic conductivity, pedotransfer functions
Procedia PDF Downloads 27910118 Updating Stochastic Hosting Capacity Algorithm for Voltage Optimization Programs and Interconnect Standards
Authors: Nicholas Burica, Nina Selak
Abstract:
The ADHCAT (Automated Distribution Hosting Capacity Assessment Tool) was designed to run Hosting Capacity Analysis on the ComEd system via a stochastic DER (Distributed Energy Resource) placement on multiple power flow simulations against a set of violation criteria. The violation criteria in the initial version of the tool captured a limited amount of issues that individual departments design against for DER interconnections. Enhancements were made to the tool to further align with individual department violation and operation criteria, as well as the addition of new modules for use for future load profile analysis. A reporting engine was created for future analytical use based on the simulations and observations in the tool.Keywords: distributed energy resources, hosting capacity, interconnect, voltage optimization
Procedia PDF Downloads 19010117 Estimation of the Parameters of Muskingum Methods for the Prediction of the Flood Depth in the Moudjar River Catchment
Authors: Fares Laouacheria, Said Kechida, Moncef Chabi
Abstract:
The objective of the study was based on the hydrological routing modelling for the continuous monitoring of the hydrological situation in the Moudjar river catchment, especially during floods with Hydrologic Engineering Center–Hydrologic Modelling Systems (HEC-HMS). The HEC-GeoHMS was used to transform data from geographic information system (GIS) to HEC-HMS for delineating and modelling the catchment river in order to estimate the runoff volume, which is used as inputs to the hydrological routing model. Two hydrological routing models were used, namely Muskingum and Muskingum routing models, for conducting this study. In this study, a comparison between the parameters of the Muskingum and Muskingum-Cunge routing models in HEC-HMS was used for modelling flood routing in the Moudjar river catchment and determining the relationship between these parameters and the physical characteristics of the river. The results indicate that the effects of input parameters such as the weighting factor "X" and travel time "K" on the output results are more significant, where the Muskingum routing model was more sensitive to input parameters than the Muskingum-Cunge routing model. This study can contribute to understand and improve the knowledge of the mechanisms of river floods, especially in ungauged river catchments.Keywords: HEC-HMS, hydrological modelling, Muskingum routing model, Muskingum-Cunge routing model
Procedia PDF Downloads 27810116 Optimization of Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times Using Genetic Algorithm Approach
Authors: Sanjay Kumar Parjapati, Ajai Jain
Abstract:
This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.Keywords: flexible job shop, genetic algorithm, makespan, sequence dependent setup times
Procedia PDF Downloads 33210115 Optimization of Black Grass Jelly Formulation to Reduce Leaching and Increase Floating Rate
Authors: M. M. Nor, H. I. Sheikh, M. F. H. Hassan, S. Mokhtar, A. Suganthi, A. Fadhlina
Abstract:
Black grass jelly (BGJ) is a popular black jelly used in preparing various drinks and desserts. Food industries often use preservatives to maintain the physicochemical properties of foods, such as color and texture. These preservatives (e.g., phosphoric acid) are linked with deleterious health effects such as kidney disease. Using gelling agents, carrageenan, and gelatin to make BGJ could improve its physiochemical and textural properties. This study was designed to optimize BGJ-selected physicochemical and textural properties using carrageenan and gelatin. Various black grass jelly formulations (BGJF) were designed using an I-optimal mixture design in Design Expert® software. Data from commercial BGJ were used as a reference during the optimization process. The combination of carrageenan and gelatin added to the formulations was up to 14.38g (~5%), respectively. The results showed that adding 2.5g carrageenan and 2.5g gelatin at approximately 5g (~5%) effectively maintained most of the physiochemical properties with an overall desirability function of 0.81. This formulation was selected as the optimum black grass jelly formulation (OBGJF). The leaching properties and floating duration were measured on the OBGJF and commercial grass jelly for 20 min and 40 min, respectively. The results indicated that OBGJF showed significantly (p<0.0001) lower leaching rate and floating time (p<0.05). Hence, further optimization is needed to increase the floating duration of carrageenan and gelatin-based BGJ.Keywords: cincau, Mesona chinensis, black grass jelly, carrageenan, gelatin
Procedia PDF Downloads 8210114 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads
Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani
Abstract:
The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 3510113 Research on the Optimization of Satellite Mission Scheduling
Authors: Pin-Ling Yin, Dung-Ying Lin
Abstract:
Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling
Procedia PDF Downloads 2510112 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence
Authors: Oluwagbemi Victor Aladeokin
Abstract:
In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area
Procedia PDF Downloads 14510111 A Comparative Study on a Tilt-Integral-Derivative Controller with Proportional-Integral-Derivative Controller for a Pacemaker
Authors: Aysan Esgandanian, Sabalan Daneshvar
Abstract:
The study is done to determine the comparison between proportional-integral-derivative controller (PID controller) and tilt-integral-derivative (TID controller) for cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The controller offers good adaption of heart to the physiological needs of the patient. The parameters of the both controllers are tuned by particle swarm optimization (PSO) algorithm which uses the integral of time square error as a fitness function to be minimized. Simulation results are performed on the developed cardiovascular system of humans and results demonstrate that the TID controller produces superior control performance than PID controllers. In this paper, all simulations were performed in Matlab.Keywords: integral of time square error, pacemaker systems, proportional-integral-derivative controller, PSO algorithm, tilt-integral-derivative controller
Procedia PDF Downloads 46210110 Spray Drying: An Innovative and Sustainable Method of Preserving Fruits
Authors: Adepoju Abiola Lydia, Adeyanju James Abiodun, Abioye A. O.
Abstract:
Spray drying, an innovative and sustainable preservation method, is increasingly gaining recognition for its potential to enhance food security by extending the shelf life of fruits. This technique involves the atomization of fruit pulp into fine droplets, followed by rapid drying with hot air, resulting in a powdered product that retains much of the original fruit's nutritional value, flavor, and color. By encapsulating sensitive bioactive compounds within a dry matrix, spray drying mitigates nutrient degradation and extends product usability. This technology aligns with sustainability goals by reducing post-harvest losses, minimizing the need for preservatives, and lowering energy consumption compared to conventional drying methods. Furthermore, spray drying enables the use of imperfect or surplus fruits, contributing to waste reduction and providing a continuous supply of nutritious fruit-based ingredients regardless of seasonal variations. The powdered form enhances versatility, allowing incorporation into various food products, thus broadening the scope of fruit utilization. Innovations in spray drying, such as the use of novel carrier agents and optimization of processing parameters, enhance the quality and functionality of the final product. Moreover, the scalability of spray drying makes it suitable for both industrial applications and smaller-scale operations, supporting local economies and food systems. In conclusion, spray drying stands out as a key technology in enhancing food security by ensuring a stable supply of high-quality, nutritious food ingredients while fostering sustainable agricultural practices.Keywords: spray drying, sustainable, process parameters, carrier agents, fruits
Procedia PDF Downloads 2210109 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization
Procedia PDF Downloads 15910108 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors
Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis
Abstract:
In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method
Procedia PDF Downloads 13510107 Statistical Analysis of Cables in Long-Span Cable-Stayed Bridges
Authors: Ceshi Sun, Yueyu Zhao, Yaobing Zhao, Zhiqiang Wang, Jian Peng, Pengxin Guo
Abstract:
With the rapid development of transportation, there are more than 100 cable-stayed bridges with main span larger than 300 m in China. In order to ascertain the statistical relationships among the design parameters of stay cables and their distribution characteristics, 1500 cables were selected from 25 practical long-span cable-stayed bridges. A new relationship between the first order frequency and the length of cable was found by conducting the curve fitting. Then, based on this relationship other interesting relationships were deduced. Several probability density functions (PDFs) were used to investigate the distributions of the parameters of first order frequency, stress level and the Irvine parameter. It was found that these parameters obey the Lognormal distribution, the Weibull distribution and the generalized Pareto distribution, respectively. Scatter diagrams of the three parameters were plotted and their 95% confidence intervals were also investigated.Keywords: cable, cable-stayed bridge, long-span, statistical analysis
Procedia PDF Downloads 63310106 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid
Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu
Abstract:
The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction
Procedia PDF Downloads 43210105 The Impact of Transaction Costs on Rebalancing an Investment Portfolio in Portfolio Optimization
Authors: B. Marasović, S. Pivac, S. V. Vukasović
Abstract:
Constructing a portfolio of investments is one of the most significant financial decisions facing individuals and institutions. In accordance with the modern portfolio theory maximization of return at minimal risk should be the investment goal of any successful investor. In addition, the costs incurred when setting up a new portfolio or rebalancing an existing portfolio must be included in any realistic analysis. In this paper rebalancing an investment portfolio in the presence of transaction costs on the Croatian capital market is analyzed. The model applied in the paper is an extension of the standard portfolio mean-variance optimization model in which transaction costs are incurred to rebalance an investment portfolio. This model allows different costs for different securities, and different costs for buying and selling. In order to find efficient portfolio, using this model, first, the solution of quadratic programming problem of similar size to the Markowitz model, and then the solution of a linear programming problem have to be found. Furthermore, in the paper the impact of transaction costs on the efficient frontier is investigated. Moreover, it is shown that global minimum variance portfolio on the efficient frontier always has the same level of the risk regardless of the amount of transaction costs. Although efficient frontier position depends of both transaction costs amount and initial portfolio it can be concluded that extreme right portfolio on the efficient frontier always contains only one stock with the highest expected return and the highest risk.Keywords: Croatian capital market, Markowitz model, fractional quadratic programming, portfolio optimization, transaction costs
Procedia PDF Downloads 38510104 Process Optimization for Albanian Crude Oil Characterization
Authors: Xhaklina Cani, Ilirjan Malollari, Ismet Beqiraj, Lorina Lici
Abstract:
Oil characterization is an essential step in the design, simulation, and optimization of refining facilities. To achieve optimal crude selection and processing decisions, a refiner must have exact information refer to crude oil quality. This includes crude oil TBP-curve as the main data for correct operation of refinery crude oil atmospheric distillation plants. Crude oil is typically characterized based on a distillation assay. This procedure is reasonably well-defined and is based on the representation of the mixture of actual components that boil within a boiling point interval by hypothetical components that boil at the average boiling temperature of the interval. The crude oil assay typically includes TBP distillation according to ASTM D-2892, which can characterize this part of oil that boils up to 400 C atmospheric equivalent boiling point. To model the yield curves obtained by physical distillation is necessary to compare the differences between the modelling and the experimental data. Most commercial use a different number of components and pseudo-components to represent crude oil. Laboratory tests include distillations, vapor pressures, flash points, pour points, cetane numbers, octane numbers, densities, and viscosities. The aim of the study is the drawing of true boiling curves for different crude oil resources in Albania and to compare the differences between the modeling and the experimental data for optimal characterization of crude oil.Keywords: TBP distillation curves, crude oil, optimization, simulation
Procedia PDF Downloads 30410103 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm
Authors: Jan Busch, Peter Nyhuis
Abstract:
Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity and the required nozzle pressure is presented.Keywords: aerodynamic feeding system, genetic algorithm, multi-objective optimization, workpiece orientation
Procedia PDF Downloads 57710102 Optimization of Technical and Technological Solutions for the Development of Offshore Hydrocarbon Fields in the Kaliningrad Region
Authors: Pavel Shcherban, Viktoria Ivanova, Alexander Neprokin, Vladislav Golovanov
Abstract:
Currently, LLC «Lukoil-Kaliningradmorneft» is implementing a comprehensive program for the development of offshore fields of the Kaliningrad region. This is largely associated with the depletion of the resource base of land in the region, as well as the positive results of geological investigation surrounding the Baltic Sea area and the data on the volume of hydrocarbon recovery from a single offshore field are working on the Kaliningrad region – D-6 «Kravtsovskoye».The article analyzes the main stages of the LLC «Lukoil-Kaliningradmorneft»’s development program for the development of the hydrocarbon resources of the region's shelf and suggests an optimization algorithm that allows managing a multi-criteria process of development of shelf deposits. The algorithm is formed on the basis of the problem of sequential decision making, which is a section of dynamic programming. Application of the algorithm during the consolidation of the initial data, the elaboration of project documentation, the further exploration and development of offshore fields will allow to optimize the complex of technical and technological solutions and increase the economic efficiency of the field development project implemented by LLC «Lukoil-Kaliningradmorneft».Keywords: offshore fields of hydrocarbons of the Baltic Sea, development of offshore oil and gas fields, optimization of the field development scheme, solution of multicriteria tasks in oil and gas complex, quality management in oil and gas complex
Procedia PDF Downloads 20010101 Detailed Investigation of Thermal Degradation Mechanism and Product Characterization of Co-Pyrolysis of Indian Oil Shale with Rubber Seed Shell
Authors: Bhargav Baruah, Ali Shemsedin Reshad, Pankaj Tiwari
Abstract:
This work presents a detailed study on the thermal degradation kinetics of co-pyrolysis of oil shale of Upper Assam, India with rubber seed shell, and lab-scale pyrolysis to investigate the influence of pyrolysis parameters on product yield and composition of products. The physicochemical characteristics of oil shale and rubber seed shell were studied by proximate analysis, elemental analysis, Fourier transform infrared spectroscopy and X-ray diffraction. The physicochemical study showed the mixture to be of low moisture, high ash, siliceous, sour with the presence of aliphatic, aromatic, and phenolic compounds. The thermal decomposition of the oil shale with rubber seed shell was studied using thermogravimetric analysis at heating rates of 5, 10, 20, 30, and 50 °C/min. The kinetic study of the oil shale pyrolysis process was performed on the thermogravimetric (TGA) data using three model-free isoconversional methods viz. Friedman, Flynn Wall Ozawa (FWO), and Kissinger Akahira Sunnose (KAS). The reaction mechanisms were determined using the Criado master plot. The understanding of the composition of Indian oil shale and rubber seed shell and pyrolysis process kinetics can help to establish the experimental parameters for the extraction of valuable products from the mixture. Response surface methodology (RSM) was employed usinf central composite design (CCD) model to setup the lab-scale experiment using TGA data, and optimization of process parameters viz. heating rate, temperature, and particle size. The samples were pre-dried at 115°C for 24 hours prior to pyrolysis. The pyrolysis temperatures were set from 450 to 650 °C, at heating rates of 2 to 20°C/min. The retention time was set between 2 to 8 hours. The optimum oil yield was observed at 5°C/min and 550°C with a retention time of 5 hours. The pyrolytic oil and gas obtained at optimum conditions were subjected to characterization using Fourier transform infrared spectroscopy (FT-IR) gas chromatography and mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR).Keywords: Indian oil shale, rubber seed shell, co-pyrolysis, isoconversional methods, gas chromatography, nuclear magnetic resonance, Fourier transform infrared spectroscopy
Procedia PDF Downloads 14610100 An Evolutionary Approach for QAOA for Max-Cut
Authors: Francesca Schiavello
Abstract:
This work aims to create a hybrid algorithm, combining Quantum Approximate Optimization Algorithm (QAOA) with an Evolutionary Algorithm (EA) in the place of traditional gradient based optimization processes. QAOA’s were first introduced in 2014, where, at the time, their algorithm performed better than the traditional best known classical algorithm for Max-cut graphs. Whilst classical algorithms have improved since then and have returned to being faster and more efficient, this was a huge milestone for quantum computing, and their work is often used as a benchmarking tool and a foundational tool to explore variants of QAOA’s. This, alongside with other famous algorithms like Grover’s or Shor’s, highlights to the world the potential that quantum computing holds. It also presents the reality of a real quantum advantage where, if the hardware continues to improve, this could constitute a revolutionary era. Given that the hardware is not there yet, many scientists are working on the software side of things in the hopes of future progress. Some of the major limitations holding back quantum computing are the quality of qubits and the noisy interference they generate in creating solutions, the barren plateaus that effectively hinder the optimization search in the latent space, and the availability of number of qubits limiting the scale of the problem that can be solved. These three issues are intertwined and are part of the motivation for using EAs in this work. Firstly, EAs are not based on gradient or linear optimization methods for the search in the latent space, and because of their freedom from gradients, they should suffer less from barren plateaus. Secondly, given that this algorithm performs a search in the solution space through a population of solutions, it can also be parallelized to speed up the search and optimization problem. The evaluation of the cost function, like in many other algorithms, is notoriously slow, and the ability to parallelize it can drastically improve the competitiveness of QAOA’s with respect to purely classical algorithms. Thirdly, because of the nature and structure of EA’s, solutions can be carried forward in time, making them more robust to noise and uncertainty. Preliminary results show that the EA algorithm attached to QAOA can perform on par with the traditional QAOA with a Cobyla optimizer, which is a linear based method, and in some instances, it can even create a better Max-Cut. Whilst the final objective of the work is to create an algorithm that can consistently beat the original QAOA, or its variants, due to either speedups or quality of the solution, this initial result is promising and show the potential of EAs in this field. Further tests need to be performed on an array of different graphs with the parallelization aspect of the work commencing in October 2023 and tests on real hardware scheduled for early 2024.Keywords: evolutionary algorithm, max cut, parallel simulation, quantum optimization
Procedia PDF Downloads 6010099 Sex Differentiation of Elm Nymphalid (Nymphalis polychloros Linnaeus, 1758) on Pupal Stage
Authors: Hanife Genç
Abstract:
This study was conducted to determine sex differentiation of laboratory reared Elm nymphalid (Nymphalis polychloros Linnaeus, 1758) by examining the morphological structure of pupal stage. Laboratory colony of elm nymphalid, reared on pear leaves, were used to set up experiments. It was performed with 5 replications having 8 pupae for each replication. Dorsal, ventral and lateral parts of external morphological structures of pupae were examined by Olympus SZX9 microscope and photographed. When fully grown, mature larvae wander the highest part of the rearing cage and pupae were formed hanging by cremaster. After completing prepupa stage about 1.5±0.3 days, they all pupated. Pupal stage was completed at 25±1°C about 4.38±1.20 days. Pupal weights were 0.483±0.05 g in females and 0.392±0.08 g (n=40) in males respectively. Pupal emergence rate was 95%, with 22 females and 16 males. Examinations of ventral parts of 8th, 9th, and 10th abdominal segments revealed that anal opening were found at 10th abdominal segment in both sexes, 3 lumbs were determined at 9th abdominal segments then the specific opening structure at 8th segment was only found on female pupae.Keywords: sex differentiation, Nymphalis polychloros, pupa, Linnaeus
Procedia PDF Downloads 23510098 Performance Estimation of Two Port Multiple-Input and Multiple-Output Antenna for Wireless Local Area Network Applications
Authors: Radha Tomar, Satish K. Jain, Manish Panchal, P. S. Rathore
Abstract:
In the presented work, inset fed microstrip patch antenna (IFMPA) based two port MIMO Antenna system has been proposed, which is suitable for wireless local area network (WLAN) applications. IFMPA has been designed, optimized for 2.4 GHz and applied for MIMO formation. The optimized parameters of the proposed IFMPA have been used for fabrication of antenna and two port MIMO in a laboratory. Fabrication of the designed MIMO antenna has been done and tested experimentally for performance parameters like Envelope Correlation Coefficient (ECC), Mean Effective Gain (MEG), Directive Gain (DG), Channel Capacity Loss (CCL), Multiplexing Efficiency (ME) etc and results are compared with simulated parameters extracted with simulated S parameters to validate the results. The simulated and experimentally measured plots and numerical values of these MIMO performance parameters resembles very much with each other. This shows the success of MIMO antenna design methodology.Keywords: multiple-input and multiple-output, wireless local area network, vector network analyzer, envelope correlation coefficient
Procedia PDF Downloads 5510097 Studies on Optimization of Batch Biosorption of Cr (VI) and Cu (II) from Wastewater Using Bacillus subtilis
Authors: Narasimhulu Korrapati
Abstract:
The objective of this present study is to optimize the process parameters for batch biosorption of Cr(VI) and Cu(II) ions by Bacillus subtilis using Response Surface Methodology (RSM). Batch biosorption studies were conducted under optimum pH, temperature, biomass concentration and contact time for the removal of Cr(VI) and Cu(II) ions using Bacillus subtilis. From the studies it is noticed that the maximum biosorption of Cr(VI) and Cu(II) was by Bacillus subtilis at optimum conditions of contact time of 30 minutes, pH of 4.0, biomass concentration of 2.0 mg/mL, the temperature of 32°C in batch biosorption studies. Predicted percent biosorption of the selected heavy metal ions by the design expert software is in agreement with experimental results of percent biosorption. The percent biosorption of Cr(VI) and Cu(II) in batch studies is 80% and 78.4%, respectively.Keywords: heavy metal ions, response surface methodology, biosorption, wastewater
Procedia PDF Downloads 27410096 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers
Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion
Abstract:
Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law
Procedia PDF Downloads 15110095 Vehicle Maneuverability on Horizontal Curves on Hilly Terrain: A Study on Shillong Highway
Authors: Surendra Choudhary, Sapan Tiwari
Abstract:
The driver has two fundamental duties i) controlling the position of the vehicle along the longitudinal and lateral direction of movement ii) roadway width. Both of these duties are interdependent and are concurrently referred to as two-dimensional driver behavior. One of the main problems facing driver behavior modeling is to identify the parameters for describing the exemplary driving conduct and car maneuver under distinct traffic circumstances. Still, to date, there is no well-accepted theory that can comprehensively model the 2-D driver conduct (longitudinal and lateral). The primary objective of this research is to explore the vehicle's lateral longitudinal behavior in the heterogeneous condition of traffic on horizontal curves as well as the effect of road geometry on dynamic traffic parameters, i.e., car velocity and lateral placement. In this research, with their interrelationship, a thorough assessment of dynamic car parameters, i.e., speed, lateral acceleration, and turn radius. Also, horizontal curve road parameters, i.e., curvature radius, pavement friction, are performed. The dynamic parameters of the various types of car drivers are gathered using a VBOX GPS-based tool with high precision. The connection between dynamic car parameters and curve geometry is created after the removal of noise from the GPS trajectories. The major findings of the research are that car maneuvers with higher than the design limits of speed, acceleration, and lateral deviation on the studied curves of the highway. It can become lethal if the weather changes from dry to wet.Keywords: geometry, maneuverability, terrain, trajectory, VBOX
Procedia PDF Downloads 14310094 Statistical Analysis and Optimization of a Process for CO2 Capture
Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi
Abstract:
CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor
Procedia PDF Downloads 287