Search results for: optical tissue oximetry (OTO)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3217

Search results for: optical tissue oximetry (OTO)

2077 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model

Authors: Chongyang Ye, Rong Liu

Abstract:

Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.

Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction

Procedia PDF Downloads 110
2076 Biomechanical Assessment of Esophageal Elongation

Authors: Marta Kozuń, Krystian Toczewski, Sylwester Gerus, Justyna Wolicka, Kamila Boberek, Jarosław Filipiak, Dariusz Patkowski

Abstract:

Long gap esophageal atresia is a congenital defect and is a challenge for pediatric surgeons all over the world. There are different surgical techniques in use to treat atresia. One of them is esophageal elongation but the optimal suture placement technique to achieve maximum elongation with low-risk complications is still unknown. The aim of the study was to characterize the process of esophageal elongation from the biomechanical point of view. Esophagi of white Pekin Duck was used as a model based on the size of this animal which is similar to a newborn (2.5-4kg). The specimens were divided into two groups: the control group (CG) and the group with sutures (SG). The esophagi of the control group were mounted in the grips of the MTS Tytron 250 testing machine and tensile test until rupture was performed. The loading speed during the test was 10mm/min. Then the SG group was tested. Each esophagus was cut into two equal parts and that were fused together using surgical sutures. The distance between both esophagus parts was 20mm. Ten both ends were mounted on the same testing machine and the tensile test with the same parameters was conducted. For all specimens, force and elongation were recorded. The biomechanical properties, i.e., the maximal force and maximal elongation, were determined on the basis of force-elongation curves. The maximal elongation was determined at the point of maximal force. The force achieved with the suture group was 10.1N±1.9N and 50.3N±11.6N for the control group. The highest elongation was also obtained for the control group: 18mm±3mm vs. 13.5mm ±2.4mm for the suture group. The presented study expands the knowledge of elongation of esophagi. It is worth emphasizing that the duck esophagus differs from the esophagus of a newborn, i.e., its wall lacks striated muscle cells. This is why the parts of animal esophagi used in the research are may characterized by different biomechanical properties in comparison with newborn tissue.

Keywords: long gap atresia treatment, esophageal elongation, biomechanical properties, soft tissue

Procedia PDF Downloads 98
2075 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 106
2074 Flexible Programmable Circuit Board Electromagnetic 1-D Scanning Micro-Mirror Laser Rangefinder by Active Triangulation

Authors: Vixen Joshua Tan, Siyuan He

Abstract:

Scanners have been implemented within single point laser rangefinders, to determine the ranges within an environment by sweeping the laser spot across the surface of interest. The research motivation is to exploit a smaller and cheaper alternative scanning component for the emitting portion within current designs of laser rangefinders. This research implements an FPCB (Flexible Programmable Circuit Board) Electromagnetic 1-Dimensional scanning micro-mirror as a scanning component for laser rangefinding by means of triangulation. The prototype uses a laser module, micro-mirror, and receiver. The laser module is infrared (850 nm) with a power output of 4.5 mW. The receiver consists of a 50 mm convex lens and a 45mm 1-dimensional PSD (Position Sensitive Detector) placed at the focal length of the lens at 50 mm. The scanning component is an elliptical Micro-Mirror attached onto an FPCB Structure. The FPCB structure has two miniature magnets placed symmetrically underneath it on either side, which are then electromagnetically actuated by small solenoids, causing the FPCB to mechanically rotate about its torsion beams. The laser module projects a laser spot onto the micro-mirror surface, hence producing a scanning motion of the laser spot during the rotational actuation of the FPCB. The receiver is placed at a fixed distance from the micro-mirror scanner and is oriented to capture the scanning motion of the laser spot during operation. The elliptical aperture dimensions of the micro-mirror are 8mm by 5.5 mm. The micro-mirror is supported by an FPCB with two torsion beams with dimensions of 4mm by 0.5mm. The overall length of the FPCB is 23 mm. The voltage supplied to the solenoids is sinusoidal with an amplitude of 3.5 volts and 4.5 volts to achieve optical scanning angles of +/- 10 and +/- 17 degrees respectively. The operating scanning frequency during experiments was 5 Hz. For an optical angle of +/- 10 degrees, the prototype is capable of detecting objects within the ranges from 0.3-1.2 meters with an error of less than 15%. As for an optical angle of +/- 17 degrees the measuring range was from 0.3-0.7 meters with an error of 16% or less. Discrepancy between the experimental and actual data is possibly caused by misalignment of the components during experiments. Furthermore, the power of the laser spot collected by the receiver gradually decreased as the object was placed further from the sensor. A higher powered laser will be tested to potentially measure further distances more accurately. Moreover, a wide-angled lens will be used in future experiments when higher scanning angles are used. Modulation within the current and future higher powered lasers will be implemented to enable the operation of the laser rangefinder prototype without the use of safety goggles.

Keywords: FPCB electromagnetic 1-D scanning micro-mirror, laser rangefinder, position sensitive detector, PSD, triangulation

Procedia PDF Downloads 133
2073 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 179
2072 Cosmetic Dermatology Procedures: Survey Results of American Society for Dermatologic Surgery

Authors: Marina S. Basta, Kirollos S. Basta

Abstract:

Cosmetic dermatology procedures have witnessed exponential growth and diversification over the last 10 years. Thus, the purpose of this study was to collect data about the latest trends for cosmetic procedures reported by dermatologists during the year 2018. This study was performed by American Society for Dermatologic Surgery (ASDS) in 2018 through sending survey invitations to 3,358 practicing dermatologists in the U.S. containing streamline questions as well as statistical questions targeted to specific analysis of cosmetic dermatology trends. Out of the targeted physicians, only 596 dermatologists reply to the survey invitation (15% overall response rate). It was noted that data collected from that survey was generalized to represent all ASDS members. Results show that there is an increase in cosmetic dermatology procedures since 12.5 million procedures were reported for 2018 compared to only 7.8 million for 2012. Injectable neuromodulators and soft tissue fillers have topped the list with a 3.7 million procedure count. Body sculpting, chemical peeling, hair transplantation, and microneedling procedures were reported to be 1.57 million cases combined. Also, the top two procedures using laser were represented in wrinkle treatment as well as sun damage correction, while the lowest two trends for laser usage were for treatments of tattoos and birthmarks. Cryolipolysis was found to be at the head of body sculpting procedures with 287,435 cases, while tumescent liposuction was reported as the least performed body sculpting procedure (18,286 cases). In conclusion, comparing the procedural trends for the last 7 years has indicated that there has been a 78% increase in soft tissue filler treatment compared to 2012. In addition, it was further noted that laser procedures scored 74% increase in the last 7 years while body contouring procedures have had four folds increase in general compared to 2012.

Keywords: cosmetic dermatology, ASDS procedure survey, laser, body sculpting

Procedia PDF Downloads 122
2071 Genetic Association and Functional Significance of Matrix Metalloproteinase-14 Promoter Variants rs1004030 and rs1003349 in Gallbladder Cancer Pathogenesis

Authors: J. Vinay , Kusumbati Besra, Niharika Pattnaik, Shivaram Prasad Singh, Manjusha Dixit

Abstract:

Gallbladder cancer (GBC) is rare but highly malignant cancer; its prevalence is more in certain geographical regions and ethnic groups, which include the Northern and Eastern states of India. Previous studies in India have reported genetic predisposition as one of the risk factors in GBC pathogenesis. Although the matrix metalloproteinase-14 (MMP14) is a well-known modulator of the tumor microenvironment and tumorigenesis and TCGA data also suggests its upregulation yet, its role in the genetic predisposition for GBC is completely unknown. We elucidated the role of MMP14 promoter variants as genetic risk factors and their implications in expression modulation. We screened MMP14 promoter variants association with GBC using Sanger’s sequencing in approximately 300 GBC and 300 control subjects and 26 GBC tissue samples of Indian ethnicity. The immunohistochemistry was used to check the MMP14 protein expression in GBC tissue samples. The role of promoter variants on expression levels was elucidated using a luciferase reporter assay. The variants rs1004030 (p-value = 0.0001) and rs1003349 (p-value = 0.0008) were significantly associated with gallbladder cancer. The luciferase assay in two different cell lines, HEK-293 (p = 0.0006) and TGBC1TKB (p = 0.0036) showed a significant increase in relative luciferase activity in the presence of risk alleles for both the single nucleotide polymorphisms (SNPs). Similarly, genotype-phenotype correlation in patients samples confirmed that the presence of risk alleles at rs1004030 and rs1003349 increased MMP14 expression. Overall, this study unravels the genetic association of MMP14 promoter variants with gallbladder cancer, which may contribute to pathogenesis by increasing its expression.

Keywords: gallbladder cancer, matrix metalloproteinase-14, single nucleotide polymorphism, case control study, genetic association study

Procedia PDF Downloads 178
2070 Aspirin Loaded Poly-L-Lactic Acid Nanofibers and Their Potentials as Small Diameter Vascular Grafts

Authors: Mahboubeh Kabiri, Saba Aslani

Abstract:

Among various approaches used for the treatment of cardiovascular diseases, the occlusion of the small-diameter vascular graft (SDVG) is still an unresolved problem which seeks further research to address them. Though autografts are now the gold standards to be replaced for blocked coronary arteries, they suffer from inadequate quality and quantity. On the other hand, the major problems of the tissue engineered grafts are thrombosis and intimal hyperplasia. Provision of a suitable spatiotemporal release pattern of anticoagulant agents such as heparin and aspirin can be a step forward to overcome such issues . Herein, we fabricated electrospun scaffolds from FDA (Food and Drug Administration) approved poly-L-lactic acid (PLLA) with aspirin loaded into the nanofibers. Also, we surface coated the scaffolds with Amniotic Membrane lysate as a source for natural elastic polymers and a mimic of endothelial basement membrane. The scaffolds were characterized thoroughly structurally and mechanically for their morphology, fiber orientation, tensile strength, hydrophilicity, cytotoxicity, aspirin release and cell attachment support. According to the scanning electron microscopy (SEM) images, the size of fibers ranged from 250 to 500 nm. The scaffolds showed appropriate tensile strength expected for vascular grafts. Cellular attachment, growth, and infiltration were proved using SEM and MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide) assay. Drug-loaded scaffolds showed a sustained release profile of aspirin in 7 days. An enhanced cytocompatibility was observed in AM-coated electrospun PLLA fibers compared to uncoated scaffolds. Our results together indicated that AM lysate coated ASA releasing scaffolds have promising potentials for development of a biocompatible SDVG.

Keywords: vascular tissue engineering, vascular grafts, anticoagulant agent, aspirin, amniotic membrane

Procedia PDF Downloads 158
2069 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses

Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash

Abstract:

Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.

Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section

Procedia PDF Downloads 273
2068 Experimental and Theoretical Studies: Biochemical Properties of Honey on Type 2 Diabetes

Authors: Said Ghalem

Abstract:

Honey is primarily composed of sugars: glucose and fructose. Depending honey, it's either fructose or glucose predominates. More the fructose concentration and the less the glycemic index (GI) is high. Thus, changes in the insulin response shows a decrease of the amount of insulin secreted at an increased fructose honey. Honey is also a compound that can reduce the lipid in the blood. Several studies on animals, but which remain to be checked in humans, have shown that the honey can have interesting effects when combined with other molecules: associated with Metformin (a medicine taken by diabetics), it shows the benefits and effects of diabetes preserves the tissue; associated ginger, it increases the antioxidant activity and thus avoids neurologic complications, neuropathic. Molecular modeling techniques are widely used in chemistry, biology, and the pharmaceutical industry. Most of the currently existing drugs target enzymes. Inhibition of DPP-4 is an important approach in the treatment of type 2 diabetes. We have chosen for the inhibition of DPP-4 the following molecules: Linagliptin (BI1356), Sitagliptin (Januvia), Vildagliptin, Saxagliptin, Alogliptin, and Metformin (Glucophage), that are involved in the disease management of type 2 diabetes and added to honey. For this, we used software Molecular Operating Environment. A Wistar rat study was initiated in our laboratory with a well-studied protocol; after sacrifice, according to international standards and respect for the animal This theoretical approach predicts the mode of interaction of a ligand with its target. The honey can have interesting effects when combined with other molecules, it shows the benefits and effects of honey preserves the tissue, it increases the antioxidant activity, and thus avoids neurologic complications, neuropathic or macrovascular. The organs, especially the kidneys of Wistar, shows that the parameters to renal function let us conclude that damages caused by diabetes are slightly perceptible than those observed without the addition of a high concentration of fructose honey.

Keywords: honey, molecular modeling, DPP4 enzyme, metformin

Procedia PDF Downloads 93
2067 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 274
2066 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 109
2065 Contribution of mTOR to Oxidative/Nitrosative Stress via NADPH Oxidase System Activation in Zymosan-Induced Systemic Inflammation in Rats

Authors: Seyhan Sahan-Firat, Meryem Temiz-Resitoglu, Demet Sinem Guden, Sefika Pinar Kucukkavruk, Bahar Tunctan, Ayse Nihal Sari, Zumrut Kocak

Abstract:

We hypothesized that mTOR inhibition may prevent the multiple organ failures following severe multiple tissue injury associated with increased NADPH oxidase system activity occur in zymosan-induced systemic inflammation. Therefore, we investigated the role of mTOR in oxidative/nitrosative stress associated with increase in NADPH oxidase activity in zymosan-induced systemic inflammation model in rats. Male Wistar rats received saline (4 ml/kg, i.p.) and zymosan (500 mg/kg, i.p.) at time 0. Saline, or zymosan-treated rats were given rapamycin (1 mg/kg, i.p.) 1 h after saline or zymosan injections. Rats were sacrified 4 h after zymosan challenge and kidney, heart, thoracic aorta, and superior mesenteric artery were collected. NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels were measured in tissue samples. Zymosan administration caused an increase in NADPH oxidase activity, p22phox, gp91phox, and p47phox protein expression and nitrotyrosine levels in kidney, heart, thoracic aorta, and superior mesenteric artery. These changes caused by zymosan reversed by rapamycin, a selective mTOR inhibitor. Rapamycin alone had no effect on the parameters measured. Our results demonstrated that zymosan-induced oxidative/nitrosative stress presumably due to enhanced activity of NADPH oxidase, expression of p22phox, gp91phox, and p47phox and production of peroxynitrite were mediated by mTOR. [This work was financially supported by Research Foundation of Mersin University (2016-2-AP3-1900)].

Keywords: oxidative stress, mTOR, nitrosative stress, zymosan

Procedia PDF Downloads 311
2064 LTF Expression Profiling Which is Essential for Cancer Cell Proliferation and Metastasis, Correlating with Clinical Features, as Well as Early Stages of Breast Cancer

Authors: Azar Heidarizadi, Mahdieh Salimi, Hossein Mozdarani

Abstract:

Introduction: As a complex disease, breast cancer results from several genetic and epigenetic changes. Lactoferrin, a member of the transferrin family, is reported to have a number of biological functions, including DNA synthesis, immune responses, iron transport, etc., any of which could play a role in tumor progression. The aim of this study was to investigate the bioinformatics data and experimental assay to find the pattern of promoter methylation and gene expression of LTF in breast cancer in order to study its potential role in cancer management. Material and Methods: In order to evaluate the methylation status of the LTF promoter, we studied the MS-PCR and Real-Time PCR on samples from patients with breast cancer and normal cases. 67 patient samples were conducted for this study, including tumoral, plasma, and normal tissue adjacent samples, as well as 30 plasma from normal cases and 10 tissue breast reduction cases. Subsequently, bioinformatics analyses such as cBioPortal databases, string, and genomatix were conducted to disclose the prognostic value of LTF in breast cancer progression. Results: The analysis of LTF expression showed an inverse relationship between the expression level of LTF and the stages of tissues of breast cancer patients (p<0.01). In fact, stages 1 and 2 had a high expression in LTF, while, in stages 3 and 4, a significant reduction was observable (p < 0.0001). LTF expression frequently alters with a decrease in the expression in ER⁺, PR⁺, and HER2⁺ patients (P < 0.01) and an increase in the expression in the TNBC, LN¯, ER¯, and PR- patients (P < 0.001). Also, LTF expression is significantly associated with metastasis and lymph node involvement factors (P < 0.0001). The sensitivity and specificity of LTF were detected, respectively. A negative correlation was detected between the results of level expression and methylation of the LTF promoter. Conclusions: The altered expression of LTF observed in breast cancer patients could be considered as a promotion in cell proliferation and metastasis even in the early stages of cancer.

Keywords: LTF, expression, methylation, breast cancer

Procedia PDF Downloads 63
2063 Molecular and Serological Diagnosis of Newcastle and Ornithobacterium rhinotracheale Broiler in Chicken in Fars Province, Iran

Authors: Mohammadjavad Mehrabanpour, Maryam Ranjbar Bushehri, Dorsa Mehrabanpour

Abstract:

Respiratory diseases are the most important problems in the country’s poultry industry, particularly when it comes to broiler flocks. Ornithobacterium rhinotracheale (ORT) is a species that causes poor performance in growth rate, egg production, and mortality. This pathogen causes a respiratory infection including pulmonary alveolar inflammation, and pneumonia of birds throughout the world. Newcastle disease (ND) is a highly contagious disease in poultry, and also, it causes considerable losses to the poultry industry. The aim of this study was to evaluate the simultaneous occurrence of ORT and ND and NDV isolation by inoculation in embryonated eggs and confirmed by RT-PCR in broiler chicken flocks in Fars province. In this study, 318 blood and 85 tissue samples (brain, trachea, liver, and cecal tonsils) were collected from 15 broiler chicken farms. Survey serum antibody titers against ORT by using a commercial enzyme-linked immunosorbent assay (ELISA) kit performed. Evaluation of antibody titer against ND virus is performed by hemagglutination inhibition test. Virus isolation with chick embryo eggs 9-11 and RT-PCR method were carried out. A total of 318 serum samples, 135 samples (42.5%) were positive for antibodies to ORT and titer of HI antibodies against NDV in 122 serum samples (38/4%) were 7-10 (log2) and 61 serum samples (19/2%) had occurrence antibody titer against Newcastle virus and ORT. Results of the present study indicated that 20 tissue samples were positive in embryonated egg and in rapid hemagglutination (HA) test. HI test with specific ND positive serum confirmed that 6 of 20 samples. PCR confirmed that all six samples were positive and PCR products of samples indicated 535-base pair fragments in electrophrosis. Due to the great economic importance of these two diseases in the poultry industry, it is necessary to design and implement a comprehensive plan for prevention and control of these diseases.

Keywords: ELISA, Ornithobacterium rhinotracheale, newcastle disease, seroprevalence

Procedia PDF Downloads 304
2062 Effect of Ethanolic Extract of Keladi Tikus (Typhonium flagelliforme) on the Level of Ifn Γ (Interferon Gamma), Vascular Endothelial Growth Factor (VEGF) and Caspase 3 Expression

Authors: Chodidjah, Edi Dharmana, Hardhono, Sarjadi

Abstract:

Breast cancer treatment options including surgery, radiation therapy, chemotherapy, and immunotherapy have not been effective. Besides, they have side effects. Keladi Tikus (Typhonium flagelliforme) has been shown to improve immune system, suppress tumor growth and induce apoptosis. One of the parameters for immune system, tumor growth and apoptosis is IFNγ (Interferon γ), VEGF (Vascular Endothelial Growth Factor) and Caspase 3 respectively. The aim of this study was to examine the effect of the administration of Keladi Tikus tuber extract at the dose of 200 mg/kgBW, 400 mg/KgBW, and 800 mg/kgBW on the level of IFNγ, VEGF and caspase 3 expression. In this experimental study using post test randomized control group design, 24 CH3 mice with tumor were randomly divided into 4 groups including control group and treated groups: Treated with 0.2 cc extract of Keladi Tikus at the dose of 200 mg/kgBW, 400 mg/kgBW, 800 mg/kgBW, respectively for 30 days. On day 31 the lymphatic tissue was taken and evaluated for its level of IFNγ, using ELISA. The tumor tissue was taken and subjected to immunohistochemistry staining for VEGF and caspase 3 expression evaluation. The data on IFNγ, VEGF and Caspase 3 expression were analyzed using One Way Anova with significant level of 0.05. One Way Anova resulted in p<0.05. LSD test showed that the level of IFNγ and Caspase 3 for control group was different from that of treated groups. There was no significant different between the treated group of 400 mg/KgBW and 800mg/KgBW. VEGF expressions for all the treated groups were significant. In conclusion, the oral administration of ethanolic extract of Keladi Tikus (Typhonium flagelliforme) at the dose of 200mg/kgBW, 400 mg/kgBW,800 mg/kgBW increases IFNγ, Caspase 3 and decreases VEGF expression in C3H mice with adenocarsinoma mamma.

Keywords: Typhonium flagelliforme, IFNγ, caspase 3, VEGF

Procedia PDF Downloads 419
2061 Gastro-Protective Actions of Melatonin and Murraya koenigii Leaf Extract Combination in Piroxicam Treated Male Wistar Rats

Authors: Syed Benazir Firdaus, Debosree Ghosh, Aindrila Chattyopadhyay, Kuladip Jana, Debasish Bandyopadhyay

Abstract:

Gastro-toxic effect of piroxicam, a classical non-steroidal anti-inflammatory drug (NSAID), has restricted its use in arthritis and similar diseases. The present study aims to find if a combination of melatonin and Murraya koenigii leaf extract therapy can protect against piroxicam induced ulcerative damage in rats. For this study, rats were divided into four groups namely control group where rats were orally administered distilled water, only combination treated group, piroxicam treated group and combination pre-administered piroxicam treated group. Each group of rats consisted of six animals. Melatonin at a dose of 20mg/kg body weight and antioxidant rich Murraya koenigii leaf extract at a dose of 50 mg /kg body weight were successively administered at 30 minutes interval one hour before oral administration of piroxicam at a dose of 30 mg/kg body weight to Wistar rats in the combination pre-administered piroxicam treated group. The rats of the animal group which was only combination treated were administered both the drugs respectively without piroxicam treatment whereas the piroxicam treated animal group was administered only piroxicam at 30mg/kg body weight without any pre-treatment with the combination. Macroscopic examination along with histo-pathological study of gastric tissue using haemotoxylin-eosin staining and alcian blue dye staining showed protection of the gastric mucosa in the combination pre-administered piroxicam treated group. Determination of adherent mucus content biochemically and collagen content through Image J analysis of picro-sirius stained sections of rat gastric tissue also revealed protective effects of the combination in piroxicam mediated toxicity. Gelatinolytic activity of piroxicam was significantly reduced by pre-administration of the drugs which was well exhibited by the gelatin zymography study of the rat gastric tissue. Mean ulcer index determined from macroscopic study of rat stomach reduced to a minimum (0±0.00; Mean ± Standard error of mean and number of animals in the group=6) indicating the absence of ulcer spots on pre-treatment of rats with the combination. Gastro-friendly prostaglandin (PGE2) which otherwise gets depleted on piroxicam treatment was also well protected when the combination was pre-administered in the rats prior to piroxicam treatment. The requirement of the individual drugs in low doses in this combinatorial therapeutic approach will possibly minimize the cost of therapy as well as it will eliminate the possibility of any pro-oxidant side effects on the use of high doses of antioxidants. Beneficial activity of this combination therapy in the rat model raises the possibility that similar protective actions might be also observed if it is adopted by patients consuming NSAIDs like piroxicam. However, the introduction of any such therapeutic approach is subject to future studies in human.

Keywords: gastro-protective action, melatonin, Murraya koenigii leaf extract, piroxicam

Procedia PDF Downloads 305
2060 The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience

Authors: Parisa Mansour

Abstract:

Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration.

Keywords: glial activity, manganese-enhanced magnetic resonance imaging, neuroarchitecture, neuronal activity, neuronal tract tracing, visual pathway, eye

Procedia PDF Downloads 35
2059 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery

Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats

Abstract:

Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.

Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform

Procedia PDF Downloads 449
2058 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold

Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher

Abstract:

Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.

Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve

Procedia PDF Downloads 135
2057 Post-Operative Pain Management in Ehlers-Danlos Hypermobile-Type Syndrome Following Wisdom Teeth Extraction: A Case Report and Literature Review

Authors: Aikaterini Amanatidou

Abstract:

We describe the case of a 20-year-old female patient diagnosed with Ehlers-Danlos Syndrome (EDS) who was scheduled to undergo a wisdom teeth extraction in outpatient surgery. EDS is a hereditary connective tissue disorder characterized by joint hypermobility, skin hyper-extensibility, and vascular and soft tissue fragility. There are six subtypes of Ehlers-Danlos, and in our case, the patient had EDS hyper-mobility (HT) type disorder. One important clinical feature of this syndrome is chronic pain, which is often poorly understood and treated. Our patient had a long history of articular and lumbar pain when she was diagnosed. She was prescribed analgesic treatment for acute and neuropathic pain and had multiple sessions of psychotherapy and physiotherapy to ease the pain. Unfortunately, her extensive medical history was underrated by our anesthetic team, and no further measures were taken for the operation. Despite an uneventful intra-operative phase, the patient experienced several episodes of hyperalgesia during the immediate post-operative care. Management of pain was challenging for the anesthetic team: initial opioid treatment had only a temporary effect and a paradoxical reaction after a while. Final pain relief was eventually obtained with psycho-physiologic treatment, high doses of ketamine, and patient-controlled analgesia infusion of morphine-ketamine-dehydrobenzperidol. We suspected an episode of Opioid-Induced hyperalgesia. This case report supports the hypothesis that anti-hyperalgesics such as ketamine as well as lidocaine, and dexmedetomidine should be considered intra-operatively to avoid opioid-induced hyperalgesia and may be an alternative solution to manage complex chronic pain like others in neuropathic pain syndromes.

Keywords: Ehlers-Danlos, post-operative management, hyperalgesia, opioid-induced hyperalgesia, rare disease

Procedia PDF Downloads 88
2056 Characterization of Fe Doped ZnO Synthesised by Sol-Gel and Combustion Routes

Authors: M. Ravindiran, P. Shankar

Abstract:

This paper deals with the comparison of two synthesis methods, namely, sol-gel, and combustion to prepare Fe doped ZnO nano material. Characterization results for structural, optical and magnetic properties were analyzed for the sol gel and combustion synthesis derived materials. Magnetic studies of the prepared compounds reveal that the combustion synthesis derived material has good magnetization of 50 emu/gm with a better hysteresis loop curve.

Keywords: DMS, combustion, ferromagnetic, synthesis methods

Procedia PDF Downloads 423
2055 All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone

Authors: T. P. Yu, J. J. Liu, X. L. Zhu, Y. Yin, W. Q. Wang, J. M. Ouyang, F. Q. Shao

Abstract:

A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future.

Keywords: BW process, electron-positron pairs, gamma rays emission, ultra-intense laser

Procedia PDF Downloads 258
2054 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 424
2053 A Compact Extended Laser Diode Cavity Centered at 780 nm for Use in High-Resolution Laser Spectroscopy

Authors: J. Alvarez, J. Pimienta, R. Sarmiento

Abstract:

Diode lasers working in free mode present different shifting and broadening determined by external factors such as temperature, current or mechanical vibrations, and they are not more useful in applications such as spectroscopy, metrology, and cooling of atoms, among others. Different configurations can reduce the spectral width of a laser; one of the most effective is to extend the optical resonator of the laser diode and use optical feedback either with the help of a partially reflective mirror or with a diffraction grating; this latter configuration is not only allowed to reduce the spectral width of the laser line but also to coarsely adjust its working wavelength, within a wide range typically ~ 10nm by slightly varying the angle of the diffraction grating. Two settings are commonly used for this purpose, the Littrow configuration and the Littmann Metcalf. In this paper, we present the design, construction, and characterization of a compact extended laser cavity in Littrow configuration. The designed cavity is compact and was machined on an aluminum block using computer numerical control (CNC); it has a mass of only 380 g. The design was tested on laser diodes with different wavelengths, 650nm, 780nm, and 795 nm, but can be equally efficient at other wavelengths. This report details the results obtained from the extended cavity working at a wavelength of 780 nm, with an output power of around 35mW and a line width of less than 1Mhz. The cavity was used to observe the spectrum of the corresponding Rubidium D2 line. By modulating the current and with the help of phase detection techniques, a dispersion signal with an excellent signal-to-noise ratio was generated that allowed the stabilization of the laser to a transition of the hyperfine structure of Rubidium with an integral proportional controller (PI) circuit made with precision operational amplifiers.

Keywords: Littrow, Littman-Metcalf, line width, laser stabilization, hyperfine structure

Procedia PDF Downloads 224
2052 The Angiogenic Activity of α-Mangostin in the Development of Zebrafish Embryo In Vivo

Authors: Titis Indah Adi Rahayu

Abstract:

Angiogenesis is the process of generating new capillary from pre-existing blood vessels. VEGFA is a major regulator in angiogenesis that binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR) which regulate pathological and physiological angiogenesis. Disruption of VEGFA and VEGFR2 regulation lead to many diseases. The study of α-Mangostin (derivate of xanthone) as anti-oxidant and anti inflammation has been explored recently and both of them have relation to vasculature however the effect of α-Mangostin in blood vessel formation in healthy tissue in vivo has not been studied. Zebrafish is a powerful model in studying angiogenesis and shared many advantages that is a viable whole animal model for screening small molecules that affect blood vessel formation. Therefore the aim of this study is to evaluate angiogenic activity of α-Mangostin in healthy tissue in vivo in zebrafish embryo in relation of patterning blood vessel. Blood vessel patterning is highly characteristic in the developing of zebrafish embryo and the subintestinal vessel (SIV) can be stained and visualized microscopically as a primary screen for α-Mangostin that effect angiogenesis. The zebrafish embryos are divided into 2 groups. Group one consists of the zebrafish embryos at 1 dpf for 4 days which are tested to α-Mangostin in several concentration 2 µM, 4 µM, 6 µM, 8 µM and 10 µM whereas in group two the zebrafish larva at 4 dpf are exposed to α-Mangostin 1,75 µM, 2,3 µM, 2,9 µM, 3,8 µM dan 5 µM for 2 days. DMSO is served as a control for each group. The level expression of vegfa and vegfr2 are observed quantitatively using real time q-PCR and patterning of SIV are then analized via alkaline phospatase staining. Result shows that the level expression of vegfa and vegfr2 is repressed quantitatively as shown in real time q-PCR in the group of 1-4 days of α-Mangostin exposure where it is increased in the group of 4-6 days of α-Mangostin exposure. The result is then compared to alkaline phospatase staining of SIV using stereo microscope. It indicates that α-Mangostin does not disturb the patterning of SIV formation in zebrafish.

Keywords: angiogenesis, Danio rerio, α-Mangostin, SIV, vegfa, vegfr2

Procedia PDF Downloads 341
2051 Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor

Authors: Jorge Prada, Christina Cordes, Carsten Harms, Walter Lang

Abstract:

The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process.

Keywords: biosensor, cyclo-olefin copolymer, hot embossing, thermal bonding, thermoplastics

Procedia PDF Downloads 236
2050 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region

Procedia PDF Downloads 198
2049 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.

Keywords: liquid crystals, polymers, small-angle scattering, optical properties

Procedia PDF Downloads 616
2048 Towards a Systematic Evaluation of Web Design

Authors: Ivayla Trifonova, Naoum Jamous, Holger Schrödl

Abstract:

A good web design is a prerequisite for a successful business nowadays, especially since the internet is the most common way for people to inform themselves. Web design includes the optical composition, the structure, and the user guidance of websites. The importance of each website leads to the question if there is a way to measure its usefulness. The aim of this paper is to suggest a methodology for the evaluation of web design. The desired outcome is to have an evaluation that is concentrated on a specific website and its target group.

Keywords: evaluation methodology, factor analysis, target group, web design

Procedia PDF Downloads 627