Search results for: natural features
8165 Pragmatic Language Characteristics of Individuals with Asperger Syndrome: Systematic Literature Review and Meta-analysis
Authors: Sadeq Alyaari, Muhammad Alkhunayn, Montaha Al Yaari, Ayman Al Yaari, Ayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Fatehi Eissa
Abstract:
Introduction. The purpose of this Systematic Literature Review and Meta-analysis ((SLR & Meta-analysis) was to examine the differences between Asperger syndrome (AS) individuals and typically developing and achieving individuals (TD) regarding language competence and how these differences related to AS individuals’ age and the significance such differences add to our knowledge of understanding their language performance as issues that are still underdiagnosed and ill-treated entities. Methods. The study followed SLR & Meta-analysis protocol and was armed with data of 456 AS subjects and controls (231 and 225, respectively) abstracted from 14 studies that have been collected from different electronic bibliographic databases including web of science, Scopus, EMBASE, Cochrane library, PubMed, PsycInfo and google scholar along with unpublished literature. Results. Outlined results show deterioration in language competence of AS subjects in comparison to TD controls. Such deterioration impairs conversational implicature more than it does conventional maxims of AS individuals’ pragmatic language and has no relationship with their age. Results also show that the difference in intelligence features of the mental reality in the language competence becomes smaller with increasing age and that the difference in representational content features becomes larger. Conclusions. These findings help experts in the field not only predict pragmatic language impairments in AS individuals but also enable AS individuals themselves to decode and/or interpret speech inputs; therefore, perceive the world around them and interact with their community members. Outcomes should be considered to lay out a path for further exploration of genetics, etiology, and response to treatment of all these premises that are currently unsearched in AS individuals.Keywords: pragmatic language characteristics, language competence, mental faculty, mental reality, features, language performance, pragmatics, conventional maxims
Procedia PDF Downloads 358164 Dry-Extrusion of Asian Carp, a Sustainable Source of Natural Methionine for Organic Poultry Production
Authors: I. Upadhyaya, K. Arsi, A. M. Donoghue, C. N. Coon, M. Schlumbohm, M. N. Riaz, M. B. Farnell, A. Upadhyay, A. J. Davis, D. J. Donoghue
Abstract:
Methionine, a sulfur containing amino acid, is essential for healthy poultry production. Synthetic methionine is commonly used as a supplement in conventional poultry. However, for organic poultry, a natural, cost effective source of methionine that can replace synthetic methionine is unavailable. Invasive Asian carp (AC) are a potential natural methionine source; however, there is no proven technology to utilize this fish methionine. Commercially available rendering is environmentally challenging due to the offensive smell produced during production. We explored extrusion technology as a potential cost effective alternative to fish rendering. We also determined the amino acid composition, digestible amino acids and total metabolizable energy (TMEn) for the extruded AC fish meal. Dry extrusion of AC was carried out by mixing the fish with soybean meal (SBM) in a 1:1 proportion to reduce high moisture in the fishmeal using an Insta Pro Jr. dry extruder followed by drying and grinding of the product. To determine the digestible amino acids and TMEn of the extruded product, a colony of cecectomized Bovans White Roosters was used. Adult roosters (48 weeks of age) were fasted for 30 h and tube fed 35 grams of 3 treatments: (1) extruded AC fish meal, (2) SBM and (3) corn. Excreta from each individual bird was collected for the next 48 h. An additional 10 unfed roosters served as endogenous controls. The gross energy and protein content of the feces from the treatments were determined to calculate the TMEn. Fecal samples and treatment feeds were analyzed for amino acid content and percent digestible amino acid. Results from the analysis suggested that addition of Asian carp increased the methionine content of SBM from 0.63 to 0.83%. Also, the digestibility of amino acid and the TMEn values were greater for the AC meal with SBM than SBM alone. The dry extruded AC meal analysis is indicative that the product can replace SBM alone and enhance natural methionine in a standard poultry ration. The results from feed formulation using different concentrations of the AC fish meal depict a potential diet which can supplement the required methionine content in organic poultry production.Keywords: Asian carp, extrusion, natural methionine, organic poultry
Procedia PDF Downloads 2178163 Urban Green Space Analysis Incorporated at Bodakdev, Ahmedabad City Based on the RS and GIS Techniques
Authors: Nartan Rajpriya
Abstract:
City is a multiplex ecological system made up of social, economic and natural sub systems. Green space system is the foundation of the natural system. It is also suitable part of natural productivity in the urban structure. It is dispensable for constructing a high quality human settlements and a high standard ecocity. Ahmedabad is the fastest growing city of India. Today urban green space is under strong pressure in Ahmedabad city. Due to increasing urbanization, combined with a spatial planning policy of densification, more people face the prospect of living in less green residential environments. In this research analyzes the importance of available Green Space at Bodakdev Park, Ahmedabad, using remote sensing and GIS technologies. High resolution IKONOS image and LISS IV data has been used in this project. This research answers the questions like: • Temporal changes in urban green space area. • Proximity to heavy traffic or roads or any recreational facilities. • Importance in terms of health. • Availability of quality infrastructure. • Available green space per area, per sq. km and per total population. This projects incorporates softwares like ArcGIS, Ecognition and ERDAS Imagine, GPS technologies etc. Methodology includes the field work and collection of other relevant data while preparation of land use maps using the IKONOS imagery which is corrected using GPS.Keywords: urban green space, ecocity, IKONOS, LISS IV
Procedia PDF Downloads 3868162 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model
Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech
Abstract:
Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM
Procedia PDF Downloads 1368161 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates
Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer
Abstract:
The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.Keywords: vibration, composite materials, finite element, APDL ANSYS
Procedia PDF Downloads 438160 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction
Authors: Qais M. Yousef, Yasmeen A. Alshaer
Abstract:
Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.Keywords: artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization
Procedia PDF Downloads 1758159 Next Generation of Tunnel Field Effect Transistor: NCTFET
Authors: Naima Guenifi, Shiromani Balmukund Rahi, Amina Bechka
Abstract:
Tunnel FET is one of the most suitable alternatives FET devices for conventional CMOS technology for low-power electronics and applications. Due to its lower subthreshold swing (SS) value, it is a strong follower of low power applications. It is a quantum FET device that follows the band to band (B2B) tunneling transport phenomena of charge carriers. Due to band to band tunneling, tunnel FET is suffering from a lower switching current than conventional metal-oxide-semiconductor field-effect transistor (MOSFET). For improvement of device features and limitations, the newly invented negative capacitance concept of ferroelectric material is implemented in conventional Tunnel FET structure popularly known as NC TFET. The present research work has implemented the idea of high-k gate dielectric added with ferroelectric material on double gate Tunnel FET for implementation of negative capacitance. It has been observed that the idea of negative capacitance further improves device features like SS value. It helps to reduce power dissipation and switching energy. An extensive investigation for circularity uses for digital, analog/RF and linearity features of double gate NCTFET have been adopted here for research work. Several essential designs paraments for analog/RF and linearity parameters like transconductance(gm), transconductance generation factor (gm/IDS), its high-order derivatives (gm2, gm3), cut-off frequency (fT), gain-bandwidth product (GBW), transconductance generation factor (gm/IDS) has been investigated for low power RF applications. The VIP₂, VIP₃, IMD₃, IIP₃, distortion characteristics (HD2, HD3), 1-dB, the compression point, delay and power delay product performance have also been thoroughly studied.Keywords: analog/digital, ferroelectric, linearity, negative capacitance, Tunnel FET, transconductance
Procedia PDF Downloads 1958158 Clustering Based Level Set Evaluation for Low Contrast Images
Authors: Bikshalu Kalagadda, Srikanth Rangu
Abstract:
The important object of images segmentation is to extract objects with respect to some input features. One of the important methods for image segmentation is Level set method. Generally medical images and synthetic images with low contrast of pixel profile, for such images difficult to locate interested features in images. In conventional level set function, develops irregularity during its process of evaluation of contour of objects, this destroy the stability of evolution process. For this problem a remedy is proposed, a new hybrid algorithm is Clustering Level Set Evolution. Kernel fuzzy particles swarm optimization clustering with the Distance Regularized Level Set (DRLS) and Selective Binary, and Gaussian Filtering Regularized Level Set (SBGFRLS) methods are used. The ability of identifying different regions becomes easy with improved speed. Efficiency of the modified method can be evaluated by comparing with the previous method for similar specifications. Comparison can be carried out by considering medical and synthetic images.Keywords: segmentation, clustering, level set function, re-initialization, Kernel fuzzy, swarm optimization
Procedia PDF Downloads 3528157 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab
Authors: Jeries Khoury
Abstract:
The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three ‘palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism
Procedia PDF Downloads 1998156 Intelligent Production Machine
Authors: A. Şahinoğlu, R. Gürbüz, A. Güllü, M. Karhan
Abstract:
This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified.Keywords: cutting process, sound processing, intelligent late, sound analysis
Procedia PDF Downloads 3348155 Morphological Variation of the Mesenteric Lymph Node in Dromedary Camels: The Impact of Rearing Systems
Authors: Khenenou Tarek, Mohamed Amine Fares, Djallal Eddine Rahmoun
Abstract:
The study intends to evaluate the morphological changes in the mesenteric lymph nodes of dromedaries in different rearing systems. we aimed to evaluate the adaptative behavior of the animal’s immune system with environmental variations, and to conduct a comparative analysis on the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued, with two different rearing systems, with different practices and different purposes. The study was conducted using histo-morphometric techniques to analyze the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued. Two groups of dromedaries were used in the study, one group raised in a free-roaming housing system and another group raised in a restricted-roaming housing system. The results revealed that there were significant differences between the two groups in terms of active follicle ratio and size and also the cellular population of functional zones. Animals living and roaming outside the farm barriers were more exposed to pathogens, which leads to the installation of an adaptative process, whereas the animals living under restricted-roaming housing system were not exposed to pathogens. This study indicated that the adaptative behavior of the animal’s immune system with environmental variations is the functional translation of morphological changes. The obtained findings revealed that the morphological features of the mesenteric lymph node of the one-humped camel (Camelus dromedarius) in the region of El Oued are directly linked to the rearing system practicesKeywords: adaptative behavior, dromedary, lymph node, morphology, rearing systems
Procedia PDF Downloads 228154 Preparation of Natural Polymeric Scaffold with Desired Pore Morphology for Stem Cell Differentiation
Authors: Mojdeh Mohseni
Abstract:
In the context of tissue engineering, the effect of microtopography as afforded by scaffold morphology is an important design parameter. Since the morphology of pores can effect on cell behavior, in this study, porous Chitosan (CHIT) - Gelatin (GEL)- Alginate (ALG) scaffolds with microtubule orientation structure were manufactured by unidirectional freeze-drying method and the effect of pore morphology on differentiation of Mesenchymal Stem Cells (MSCs) was investigated. This study showed that, the provided scaffold with natural polymer had good properties for cell behavior and the pores with highest orientation rate have produced appropriate substrate for the differentiation of stem cells.Keywords: Chitosan, gelatin, Alginate, pore morphology, stem cell differentiation
Procedia PDF Downloads 4608153 The Results of the Archaeological Excavations at the Site of Qurh in Al Ula Region
Authors: Ahmad Al Aboudi
Abstract:
The Department of Archaeology at King Saud University conduct a long Term excavations since 2004 at the archaeological site of (Qurh) in Al-Ula area. The history of the site goes back to the eighth century AD. The main aim of the excavations is the training of the students on the archaeological field work associated with the scientific skills of exploring, surveying, classifying, documentations and other necessary in the field archaeology. During the 12th Season of Excavations, an area of 20 × 40 m2 of the site was excavated. The depth of the excavating the site was reached to 2-3 m. Many of the architectural features of a residential area in the northern part of the site were excavated this season. Circular walls made of mud-brick and a brick column drums and tiles made of clay were revealed this season. Additionally, lots of findings such as Gemstones, jars, ceramic plates, metal, glass, and fabric, as well as some jewelers and coins were discovered. This paper will deal with the main results of this field project including the architectural features and phenomena and their interpretations, the classification of excavated material culture remains and stratigraphy.Keywords: Islamic architecture, Islamic art, excavations, early Islamic city
Procedia PDF Downloads 2748152 Land Suitability Approach as an Effort to Design a Sustainable Tourism Area in Pacet Mojokerto
Authors: Erina Wulansari, Bambang Soemardiono, Ispurwono Soemarno
Abstract:
Designing sustainable tourism area is defined as an attempt to design an area, that brings the natural environmental conditions as components are available with a wealth of social conditions and the conservation of natural and cultural heritage. To understanding tourism area in this study is not only focus on the location of the tourist object, but rather to a tourist attraction around the area, tourism objects such as the existence of residential area (settlement), a commercial area, public service area, and the natural environmental area. The principle of success in designing a sustainable tourism area is able to integrate and balance between the limited space and the variety of activities that’s always continuously to growth up. The limited space in this area of tourism needs to be managed properly to minimize the damage of environmental as a result of tourism activities hue. This research aims to identify space in this area of tourism through land suitability approach as an effort to create a sustainable design, especially in terms of ecological. This study will be used several analytical techniques to achieve the research objectives as superimposing analysis with GIS 9.3 software and Analysis Hierarchy Process. Expected outcomes are in the form of classification and criteria of usable space in designing embodiment tourism area. In addition, this study can provide input to the order of settlement patterns as part of the environment in the area of sustainable tourism.Keywords: sustainable tourism area, land suitability, limited space, environment, criteria
Procedia PDF Downloads 5038151 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges
Authors: V. Reyes, P. Ferreira
Abstract:
In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model
Procedia PDF Downloads 1188150 Evaluation of Colour Perception in Different Correlated Colour Temperature of LED Lighting
Authors: Saadet Akbay, Ayşe Nihan Avcı
Abstract:
The perception of colour is a subjective experience which depends on age, gender, race, cultural and educational backgrounds, etc. of an individual. However, colour perception is also affected by the correlated colour temperature (CCT) of a light source which is considered as one of the most fundamental quantitative lighting characteristics. This study focuses on evaluating colour perception in different CCT of light emitting diodes (LED) lighting. The aim is to compare the inherent colours with the perceived colours under two CCT of ‘warm’ (2700K), and ‘cool’ (4000K) LED lights and to understand how different CTT affect the perception of a colour. Analysis and specifications of colour attributes are made with Natural Colour System (NCS) which is an international colour communication system. The outcome of the study reveals the possible tendencies for perceived colours under different illuminance levels of LED lighting.Keywords: colour perception, correlated colour temperature, inherent and perceived colour, LED lighting, natural colour system (NCS)
Procedia PDF Downloads 2688149 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis
Authors: Syed Asif Hassan, Syed Atif Hassan
Abstract:
Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction
Procedia PDF Downloads 3918148 A Topological Approach for Motion Track Discrimination
Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson
Abstract:
Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis
Procedia PDF Downloads 1148147 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks
Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton
Abstract:
Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.Keywords: modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition
Procedia PDF Downloads 1568146 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 1198145 Usy-Cui Zeolite: An Efficient and Reusable Catalyst for Derivatives Indole Synthesis
Authors: Hassina Harkat, Samiha Taybe, Salima Loucif, Valérie Beneteau, Patrick Pale
Abstract:
Indole and its derivatives have attracted great interest because of their importance in the synthetic organic and medicinal chemistry. They are widely used as anti hypertension, anti tubercular, anticancer activity, antiviral, Alzheimer's disease, antioxidant properties, and free radical induced lipid peroxidation. Many drugs and natural products contain indole moiety, such as the vinca alkaloids, fungal metabolites and marine natural products. Generally applicable synthetic methods for indole moiety involve ring closure to form the pyrrole. Indole derivatives can also be accessed by further functionalization of the indole nucleus. Therefore we report a mild and efficient protocol for the synthesis of analogues of indole catalyzed via zeolithe USY doped with CuI under solvent-free conditions.Keywords: indole, zeolithe, USY-CuI, heterogeneous catalysis
Procedia PDF Downloads 5848144 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3488143 Analysis of Spatial Form and Gene of Historical and Cultural Settlements in Mountainous Areas: Illustrated by the Example of Anju Ancient Town
Authors: Sun Gang
Abstract:
A variety of functional spaces are distributed on the vast mountain waterfront. Their functional positioning presents a spontaneous form of settlement space, and the construction features show a passive impact on the natural environment. As the precious heritage of inheriting human civilization and promoting historical culture, the traditional settlement space in mountainous areas is also the local expression of landscape pattern pattern gene. Under the impact of rapid urban construction and the stimulation of the transformation of social consumption demand, the original texture, scale and ecology of the traditional mountain settlement space, especially the historical and cultural settlement space, have been affected, and the decline of characteristics hinders the development. This paper selects Anju Ancient Town, the fourth largest ancient city in China, which is located in the city of mountains and waters as the research object, and combines spatial analysis and other methods to study the characteristics and causes of its spatial morphology, analyze the internal logic in its formation and development process, build a genetic analysis map, explore the possibility of settlement inheritance and development, and provide reference for the construction, protection and inheritance of traditional mountain settlements.Keywords: mountain traditional settlement, historical and cultural settlement space, spatial form, spatial gene
Procedia PDF Downloads 908142 Characterization of Antioxidant-Antimicrobial Microcapsules Containing Carum Copticum Essential Oil and Their Effect on the Sensory Quality of Yoghurt
Authors: Maryam Rahimi, Maryam Moslehishad, Seyede Marzieh Hosseini
Abstract:
In this study, preparation of spray dried Carum copticum essential oil (CCEO)-loaded microcapsules by maltodextrin and its blending with two other natural biodegradable polymers, gum Arabic (GA) or modified starch (MS) were investigated. Addition of these polymers to maltodextrin resulted in the encasement of encapsulation efficiency (EE). The highest EE (78.22±0.34%) and total phenolic (TP) content (83.86±1.72 mg GAE/100g) was related to MD-MS microcapsules. CCEO-loaded microcapsules showed spherical surface, good antioxidant and antimicrobial properties. In addition, sensory tests confirmed the possible application of CCEO-loaded microcapsules as natural food additives.Keywords: carum copticum, essential oil, encapsulation, spray drying, sensory evaluation, antioxidants
Procedia PDF Downloads 2438141 What Affects Donation Amount and Behavior Upon Disasters
Authors: Rubi Yang, Kuisheng Yuan, Fang Gu
Abstract:
Disasters are a recurring phenomenon, and their impact on people is huge. Understanding people's donation behavior after disasters is of great economic value. However, people's donation behavior is affected by many factors, such as the specific type of disaster, the donor's personal background, etc. Our research is to control and investigate whether people prefer to donate to natural disasters or man-made disasters. We will use both qualitative and quantitative methods to study people's donation behavior, divide disasters into two categories and set up the same disaster scenario, only the factors that lead to the disaster are different. Our results show that under the same disaster scenario, people are more willing to donate to disasters caused by natural factors. Collectivists are more willing to donate than individualists, but in the face of man-made disasters, individualists are more willing to donate than collectivistsKeywords: disaster, behavioral economics, prosocial behavior, consumer behavior, consumer psychology
Procedia PDF Downloads 408140 Adaptive Response of Plants to Environmental Stress: Natural Oil Seepage; The Living Laboratory in Tramutola, Basilicata Region
Authors: Maria Francesca Scannone, Martina Bochicchio
Abstract:
One of the major environmental problems today is hydrocarbon contamination. The promising sustainable technologies for the treatment of these contaminated sites involves the use of biological organisms. In Agri Valley (Basilicata Region) there is a living laboratory (natural oil seeps) where the selective pressure has enriched the environmental matrices with microorganisms, fungi and plant species able to use the hydrocarbons as a source of metabolic energy, to degrade or tolerate hydrocarbons. Observers visiting this area are fascinated by its unspoiled nature, and the condition of the ecosystem does not appear to has been damaged. The amazing resiliency observed in Tramutola site is of key importance to try to bring green remediation technologies, but no research has been done to identify high-performing native species. The aim of this research was to study how natural processes affect the fate of released oil or how individual species or communities of plants and animals are capable of dealing with the burden of otherwise toxic chemicals. The survey of vegetation was carried out, more than 60 species have been identified and divided into tree, shrub and herb layer. Plant data sheets have been completed only for the species that showed the most appropriate properties for phytoremediation. In general, members of the Salicales, Cyperales, Poales, Fagales, Cornales, Equisetales orders were the most commonly identified orders. They are pioneer plants with high adaptive capacity and vegetative propagation. The literature review has highlighted the existence of rhizosphere effect and a green liver model on selected plants. The study provides significant information on the environmental stress adaptation processes of many indigenous plants that are living and growing on a natural leak of crude oil and gas that migrates up through subsurface.Keywords: green liver, hydrocarbon degradation, oil seeps, phytoremediation
Procedia PDF Downloads 1748139 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 1878138 Evaluation of Gesture-Based Password: User Behavioral Features Using Machine Learning Algorithms
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
Graphical-based passwords have existed for decades. Their major advantage is that they are easier to remember than an alphanumeric password. However, their disadvantage (especially recognition-based passwords) is the smaller password space, making them more vulnerable to brute force attacks. Graphical passwords are also highly susceptible to the shoulder-surfing effect. The gesture-based password method that we developed is a grid-free, template-free method. In this study, we evaluated the gesture-based passwords for usability and vulnerability. The results of the study are significant. We developed a gesture-based password application for data collection. Two modes of data collection were used: Creation mode and Replication mode. In creation mode (Session 1), users were asked to create six different passwords and reenter each password five times. In replication mode, users saw a password image created by some other user for a fixed duration of time. Three different duration timers, such as 5 seconds (Session 2), 10 seconds (Session 3), and 15 seconds (Session 4), were used to mimic the shoulder-surfing attack. After the timer expired, the password image was removed, and users were asked to replicate the password. There were 74, 57, 50, and 44 users participated in Session 1, Session 2, Session 3, and Session 4 respectfully. In this study, the machine learning algorithms have been applied to determine whether the person is a genuine user or an imposter based on the password entered. Five different machine learning algorithms were deployed to compare the performance in user authentication: namely, Decision Trees, Linear Discriminant Analysis, Naive Bayes Classifier, Support Vector Machines (SVMs) with Gaussian Radial Basis Kernel function, and K-Nearest Neighbor. Gesture-based password features vary from one entry to the next. It is difficult to distinguish between a creator and an intruder for authentication. For each password entered by the user, four features were extracted: password score, password length, password speed, and password size. All four features were normalized before being fed to a classifier. Three different classifiers were trained using data from all four sessions. Classifiers A, B, and C were trained and tested using data from the password creation session and the password replication with a timer of 5 seconds, 10 seconds, and 15 seconds, respectively. The classification accuracies for Classifier A using five ML algorithms are 72.5%, 71.3%, 71.9%, 74.4%, and 72.9%, respectively. The classification accuracies for Classifier B using five ML algorithms are 69.7%, 67.9%, 70.2%, 73.8%, and 71.2%, respectively. The classification accuracies for Classifier C using five ML algorithms are 68.1%, 64.9%, 68.4%, 71.5%, and 69.8%, respectively. SVMs with Gaussian Radial Basis Kernel outperform other ML algorithms for gesture-based password authentication. Results confirm that the shorter the duration of the shoulder-surfing attack, the higher the authentication accuracy. In conclusion, behavioral features extracted from the gesture-based passwords lead to less vulnerable user authentication.Keywords: authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability
Procedia PDF Downloads 1078137 Utilization of Coconut Husk and Sugarcane Bagasse as a Natural Component in Making Water Resistance Tote Bags
Authors: Cyril Mae B. Mationg, Alexa T. Belizar, Vethany B. Bellen
Abstract:
This study aims to determine the use of coconut husks and sugarcane bagasse as natural components in making water-resistant tote bags. The study consists of three concentrations: 70% Coconut Husk - 30% Sugarcane Bagasse, 70% cellulose, and 30% cellulose. The results of these tests revealed that, out of the three concentration concentrations, the one consisting of 70% Coconut Husk and 30% sugarcane bagasse exhibited superior performance in breaking capacity and water penetration. During tensile strength testing, the coconut husk and sugarcane bagasse withstood a force of 207.7 Newtons (N) in the machine direction and 216.5 N in the cross-machine direction.Keywords: coconut husk, sugarcane bagasse, tote bags, water resistance
Procedia PDF Downloads 728136 Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream
Authors: J. C. Cheng, Y. L. Tsay, Z. D. Chan, C. H. Yang
Abstract:
In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (θH) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in θH is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (Φ).Keywords: block heat sources, 3-D cabinet, thermal interaction, heat transfer
Procedia PDF Downloads 555