Search results for: mobile performance monitoring
15452 Climate Policy Actions for Sustaining International Agricultural Development Projects: The Role of Non-State, Sub-National Stakeholder Engagements, and Monitoring and Evaluation
Authors: EMMANUEL DWAMENA SASU
Abstract:
International climate policy actions require countries under Paris Agreement to design instruments, provide support (financial and technical), and strengthen institutional capacity with tendency to transcending policy formulation to implementation and sustainability. Changes associated with moisture depletion has been a growing phenomenon; especially in developing countries with projected global GDP drop from 7% to 2% between 2005 and 2050. These developments have potential to adversely affect food production in feeding the growing world population, with corresponding rise in global hunger. Incongruously, there is global absence of a harmonized policy direction; capable of providing the required indicators on climate policies for monitoring sustainability of international agricultural development projects. We conduct extensive review and synthesis on existing limitations on global climate policy governance, agricultural food security and sustainability of international agricultural development projects, and conjecture the role of non-state and sub-national climate stakeholder engagements, and monitoring and evaluation strategies for improved climate policy action for sustaining international agricultural development projects.Keywords: climate policy, agriculture, development projects, sustainability
Procedia PDF Downloads 12115451 Psychological Capital and Work Engagement as Predictors of Employee Performance in a Technology Industry During COVID-19 Pandemic: Basis for Performance Management
Authors: Marion Francisco
Abstract:
The study sought to investigate the psychological capital and work engagement of employees as predictors of employee performance in the technology industry in Makati City. It made used of a descriptive correlational method of research and utilized standardized tests, such as Psychological Capital Scale, Utrech Work Engagement Scale, and Employee Performance Scale. A convenience sampling technique was used to gather data samples from 100 populations with the help of Roscoe concept approach. The study revealed that both psychological capital and work engagement have a significant relationship with employee performance. Psychological capital and work engagement can predict employee performance of the respondents. With the results given, the study suggests: (1) to focus on maintaining a high level of psychological capital and work engagement, on achieving a very high level of psychological capital and work engagement, and on improving the low level of psychological capital or work engagement mostly during this COVID-19 pandemic using the proposed employee performance management plan and (2) to create a proposed employee performance management plan as necessary to tailor fit on employees needs to enhance their performance that will help meet company and client’s needs.Keywords: employee performance, performance management, psychological capital, technology industry, work engagement
Procedia PDF Downloads 10815450 Optical Flow Direction Determination for Railway Crossing Occupancy Monitoring
Authors: Zdenek Silar, Martin Dobrovolny
Abstract:
This article deals with the obstacle detection on a railway crossing (clearance detection). Detection is based on the optical flow estimation and classification of the flow vectors by K-means clustering algorithm. For classification of passing vehicles is used optical flow direction determination. The optical flow estimation is based on a modified Lucas-Kanade method.Keywords: background estimation, direction of optical flow, K-means clustering, objects detection, railway crossing monitoring, velocity vectors
Procedia PDF Downloads 51715449 A Smart Monitoring System for Preventing Gas Risks in Indoor
Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Jaheon Gu, Sanguk Ahn, Hiesik Kim
Abstract:
In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.Keywords: gas sensor, leak, gas safety, gas meter, gas risk, wireless communication
Procedia PDF Downloads 41315448 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment
Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal
Abstract:
There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport, the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonder and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.Keywords: auto-rickshaws, business model, GPS device, mobile application
Procedia PDF Downloads 22615447 Detection of Fuel Theft and Vehicle Position Using Third Party Monitoring Software
Authors: P. Senthilraja, C. Rukumani Khandhan, M. Palaniappan, S. L. Rama, P. Sai Sushimitha, R. Madhan, J. Vinumathi, N. Vijayarangan
Abstract:
Nowadays, the logistics achieve a vast improvement in efficient delivery of goods. The technology improvement also helps to improve its development, but still the owners of transport vehicles face problems, i.e., fuel theft in vehicles by the drivers or by an unknown person. There is no proper solution to overcome the problems. This scheme is to determine the amount of fuel that has been stolen and also to determine the position of the vehicle at a particular time using the technologies like GPS, GSM, ultrasonic fuel level sensor and numeric lock system. The ultrasonic sensor uses the ultrasonic waves to calculate the height of the tank up to which the fuel is available. Based on height it is possible to calculate the amount of fuel. The Global Positioning System (GPS) is a satellite-based navigation system. The scientific community uses GPS for its precision timing capability and position information. The GSM provides the periodic information about the fuel level. A numeric lock system has been provided for fuel tank opening lever. A password is provided to access the fuel tank lever and this is authenticated only by the driver and the owner. Once the fuel tank is opened an alert is sent to owner through a SMS including the timing details. Third party monitoring software is a user interface that updates the information automatically into the database which helps to retrieve the data as and when required. Third party monitoring software provides vehicle’s information to the owner and also shows the status of the vehicle. The techniques that are to be proposed will provide an efficient output. This project helps to overcome the theft and hence to put forth fuel economy.Keywords: fuel theft, third party monitoring software, bioinformatics, biomedicine
Procedia PDF Downloads 38915446 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence
Authors: C. J. Rossouw, T. I. van Niekerk
Abstract:
The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring
Procedia PDF Downloads 8715445 Blockchain for the Monitoring and Reporting of Carbon Emission Trading: A Case Study on Its Possible Implementation in the Danish Energy Industry
Authors: Nkechi V. Osuji
Abstract:
The use of blockchain to address the issue of climate change is increasingly a discourse among countries, industries, and stakeholders. For a long time, the European Union (EU) has been combating the issue of climate action in industries through sustainability programs. One of such programs is the EU monitoring reporting and verification (MRV) program of the EU ETS. However, the system has some key challenges and areas for improvement, which makes it inefficient. The main objective of the research is to look at how blockchain can be used to improve the inefficiency of the EU ETS program for the Danish energy industry with a focus on its monitoring and reporting framework. Applying empirical data from 13 semi-structured expert interviews, three case studies, and literature reviews, three outcomes are presented in the study. The first is on the current conditions and challenges of monitoring and reporting CO₂ emission trading. The second is putting into consideration if blockchain is the right fit to solve these challenges and how. The third stage looks at the factors that might affect the implementation of such a system and provides recommendations to mitigate these challenges. The first stage of the findings reveals that the monitoring and reporting of CO₂ emissions is a mandatory requirement by law for all energy operators under the EU ETS program. However, most energy operators are non-compliant with the program in reality, which creates a gap and causes challenges in the monitoring and reporting of CO₂ emission trading. Other challenges the study found out are the lack of transparency, lack of standardization in CO₂ accounting, and the issue of double-counting in the current system. The second stage of the research was guided by three case studies and requirement engineering (RE) to explore these identified challenges and if blockchain is the right fit to address them. This stage of the research addressed the main research question: how can blockchain be used for monitoring and reporting CO₂ emission trading in the energy industry. Through analysis of the study data, the researcher developed a conceptual private permissioned Hyperledger blockchain and elucidated on how it can address the identified challenges. Particularly, the smart contract of blockchain was highlighted as a key feature. This is because of its ability to automate, be immutable, and digitally enforce negotiations without a middleman. These characteristics are unique in solving the issue of compliance, transparency, standardization, and double counting identified. The third stage of the research presents technological constraints and a high level of stakeholder collaboration as major factors that might affect the implementation of the proposed system. The proposed conceptual model requires high-level integration with other technologies such as the Internet of Things (IoT) and machine learning. Therefore, the study encourages future research in these areas. This is because blockchain is continually evolving its technology capabilities. As such, it remains a topic of interest in research and development for addressing climate change. Such a study is a good contribution to creating sustainable practices to solve the global climate issue.Keywords: blockchain, carbon emission trading, European Union emission trading system, monitoring and reporting
Procedia PDF Downloads 12515444 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot
Procedia PDF Downloads 17015443 Access of Refugees in Rural Areas to Regular Medication during COVID-19 Era: International Organization for Migration, Jordan Experience
Authors: Rasha Shoumar
Abstract:
Background: Since the onset of the Syria crisis in 2011, Jordan has hosted many Syrian refugees, many of which are residing in urban and rural areas. Vulnerability of refugees has increased due to the COVID-19 pandemic, adding to their already existing challenge in access to medical services, rendering them vulnerable to the complications of untreated medical conditions and amplifying their risk for severe COVID-19 disease. To improve health outcomes and access to health care services in a COVID-19 context, IOM (The International Organization for Migration) provided health services including awareness raising, direct primary health care through mobile teams and referrals to secondary services were extended to the vulnerable populations of refugees. Method: 6 community health volunteers were trained and deployed to different governorates to provide COVID-19 and non-communicable disease awareness and collect data rated to non-communicable disease and access to medical health services. Primary health care services were extended to 7 governorates through a mobile medical team, providing medical management. The collected Data was reviewed and analyzed. Results: 2150 refugees in rural areas were reached out by community health volunteers, out of which 78 received their medications through the Ministry of Health, 121 received their medications through different non-governmental organizations, 665 patients couldn’t afford buying any medications, 1286 patients were occasionally buying their medications when they were able to afford it. 853 patients received medications and follow up through IOM mobile clinics, the most common conditions were hypertension, diabetes, hyperlipidemia, anemia, heart disease, thyroid disease, asthma, seizures, and psychiatric conditions. 709 of these patients had more than 3 of the comorbidities. Multiple cases were referred for secondary and tertiary lifesaving interventions. Conclusion: Non communicable diseases are highly prevalent among refugee population in Jordan, access to medical services have proven to be a challenge in rural areas especially during the COVID-19 era, many of the patients have multiple uncontrolled medical conditions placing them at risk for complications and risk for severe COVID-19 disease. Deployment of mobile clinics to rural areas plays an essential role in managing such medical conditions, thus improving the continuum of health care approach, physical and mental wellbeing of refugees and reducing the risk for severe COVID-19 disease among this group, taking us one step forward toward universal health access.Keywords: COVID-19, refugees, mobile clinics, primary health care
Procedia PDF Downloads 14015442 A Correlation Analysis of an Effective Music Education with Students’ Mathematical Performance
Authors: Yoon Suh Song
Abstract:
Though music education can broaden one’s capacity for mathematical performance, many countries lag behind in music education. Little empirical evidence is found to identify the connection between math and music. Therefore, this research was set out to explore what music-related variables are associated with mathematical performance. The result of our analysis is as follows: A Pearson's Correlation analysis revealed that PISA math score is strongly correlated with students' Intelligence Quotient (IQ). This lays the foundation for further research as to what factors in students’ IQ lead to a better performance in math.Keywords: music education, mathematical performance, education, IQ
Procedia PDF Downloads 21015441 Promoting Patients' Adherence to Home-Based Rehabilitation: A Randomised Controlled Trial of a Theory-Driven Mobile Application
Authors: Derwin K. C. Chan, Alfred S. Y. Lee
Abstract:
The integrated model of self-determination theory and the theory of planned behaviour has been successfully applied to explain individuals’ adherence to health behaviours, including behavioural adherence toward rehabilitation. This study was a randomised controlled trial that examined the effectiveness of an mHealth intervention (i.e., mobile application) developed based on this integrated model in promoting treatment adherence of patients of anterior cruciate ligament rupture during their post-surgery home-based rehabilitation period. Subjects were 67 outpatients (aged between 18 and 60) who undertook anterior cruciate ligament (ACL) reconstruction surgery for less than 2 months for this study. Participants were randomly assigned either into the treatment group (who received the smartphone application; N = 32) and control group (who receive standard treatment only; N = 35), and completed psychological measures relating to the theories (e.g., motivations, social cognitive factors, and behavioural adherence) and clinical outcome measures (e.g., subjective knee function (IKDC), laxity (KT-1000), muscle strength (Biodex)) relating to ACL recovery at baseline, 2-month, and 4-month. Generalise estimating equation showed the interaction between group and time was significant on intention was only significant for intention (Wald x² = 5.23, p = .02), that of perceived behavioural control (Wald x² = 3.19, p = .07), behavioural adherence (Wald x² = 3.08, p = .08, and subjective knee evaluation (Wald x² = 2.97, p = .09) were marginally significant. Post-hoc between-subject analysis showed that control group had significant drop of perceived behavioural control (p < .01), subjective norm (p < .01) and intention (p < .01), behavioural adherence (p < .01) from baseline to 4-month, but such pattern was not observed in the treatment group. The treatment group had a significant decrease of behavioural adherence (p < .05) in the 2-month, but such a decrease was not observed in 4-month (p > .05). Although the subjective knee evaluation in both group significantly improved at 2-month and 4-month from the baseline (p < .05), and the improvements in the control group (mean improvement at 4-month = 40.18) were slightly stronger than the treatment group (mean improvement at 4-month = 34.52). In conclusion, the findings showed that the theory driven mobile application ameliorated the decline of treatment intention of home-based rehabilitation. Patients in the treatment group also reported better muscle strength than control group at 4-month follow-up. Overall, the mobile application has shown promises on tackling the problem of orthopaedics outpatients’ non-adherence to medical treatment.Keywords: self-determination theory, theory of planned behaviour, mobile health, orthopaedic patients
Procedia PDF Downloads 19715440 Evaluating the Performance of Offensive Lineman in the National Football League
Authors: Nikhil Byanna, Abdolghani Ebrahimi, Diego Klabjan
Abstract:
How does one objectively measure the performance of an individual offensive lineman in the NFL? The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.Keywords: offensive lineman, player performance, NFL, machine learning
Procedia PDF Downloads 14215439 Participation of Students and Lecturers in Social Networking for Teaching and Learning in Public Universities in Rivers State, Nigeria
Authors: Nkeiruka Queendarline Nwaizugbu
Abstract:
The use of social media and mobile devices has become acceptable in virtually all areas of today’s world. Hence, this study is a survey that was carried out to find out if students and lecturers in public universities in Rivers State use social networking for educational purposes. The sample of the study comprised of 240 students and 99 lecturers from the University of Port Harcourt and the Rivers State University of science and Technology. The study had five research questions, two hypotheses and the instrument for data collection was a 4-point Likert-type rating scale questionnaire. The data was analysed using mean, standard deviation and z-test. The findings gotten from the analysed data shows that students participate in social networking using different types of web applications but they hardly use them for educational purposes. Some recommendations were also made.Keywords: internet access, mobile learning, participation, social media, social networking, technology
Procedia PDF Downloads 42215438 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 9015437 Performance Evaluation of the HE4 as a Serum Tumor Marker for Ovarian Carcinoma
Authors: Hyun-jin Kim, Gumgyung Gu, Dae-Hyun Ko, Woochang Lee, Sail Chun, Won-Ki Min
Abstract:
Background: Ovarian carcinoma is the fourth most common cause of cancer-related death in women worldwide. HE4, a novel marker for ovarian cancer could be used for monitoring recurrence or progression of disease in patients with invasive epithelial ovarian carcinoma. It is further intended to be used in conjunction with CA 125 to estimate the risk of epithelial ovarian cancer in women presenting with an adnexal mass. In this study, we aim to evaluate the analytical performance and clinical utility of HE4 assay using Architect i 2000SR(Abbott Diagnostics, USA). Methods: The precision was evaluated according to Clinical and Laboratory Standards Institute(CLSI) EP5 guideline. Three levels of control materials were analyzed twice a day in duplicate manner over 20 days. We calculated within run and total coefficient of variation (CV) at each level of control materials. The linearity was evaluated based on CLSI EP6 guideline. Five levels of calibrator were prepared by mixing high and low level of calibrators. For 43 women with adnexal masses, HE4 and CA 125 were measured and Risk of ovarian malignancy (ROMA) scores were calculated. The patients’ medical records were reviewed to determine the clinical utility of HE4 and ROMA score. Results: In a precision study, the within-run and total CV were 2.0 % and 2.3% for low level of control material, 1.9% and 2.4% for medium level and 0.5 % and 1.1% for high level, respectively. The linear range of HE4 was 14.63 to 1475.15pmol/L. Of the 43 patients, two patients in pre-menopausal group showed the ROMA score above the cut-off level (7.3%). One of them showed CA 125 level within the reference range, while the HE4 was higher than the cut-off. Conclusion: The overall analytical performance of HE4 assay using Architect showed high precision and good linearity within clinically important range. HE4 could be an useful marker for managing patients with adnexal masses.Keywords: HE4, CA125, ROMA, evaluation, performance
Procedia PDF Downloads 33615436 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria
Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh
Abstract:
Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app
Procedia PDF Downloads 14315435 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada
Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone
Abstract:
Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.Keywords: cameras, monitoring, recreational fishing, stock assessment
Procedia PDF Downloads 12215434 Corporate Governance and Bank Performance: A Study on Indian Banks
Authors: Arjun S.
Abstract:
This study examines the impact of corporate governance on financial performance of Indian banks during five years (from 2010 to 2015). Based on 218 observations, a quantitative method of data analysis was employed to investigate the relevance of corporate governance mechanisms. The first finding reveals a significant and negative impact of board size on the performance of Indian banks. The research also finds a significant and negative relationship between CEO duality and bank performance. Finally, the correlation results reveal that there is a significant and negative correlation of Bank size and bank performance.Keywords: Indian banks, financial performance, corporate governance, banksize
Procedia PDF Downloads 35315433 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 14615432 The Role of Serum Fructosamine as a Monitoring Tool in Gestational Diabetes Mellitus Treatment in Vietnam
Authors: Truong H. Le, Ngoc M. To, Quang N. Tran, Luu T. Cao, Chi V. Le
Abstract:
Introduction: In Vietnam, the current monitoring and treatment for ordinary diabetic patient mostly based on glucose monitoring with HbA1c test for every three months (recommended goal is HbA1c < 6.5%~7%). For diabetes in pregnant women or Gestational diabetes mellitus (GDM), glycemic control until the time of delivery is extremly important because it could reduce significantly medical implications for both the mother and the child. Besides, GDM requires continuos glucose monitoring at least every two weeks and therefore an alternative marker of glycemia for short-term control is considering a potential tool for the healthcare providers. There are published studies have indicated that the glycosylated serum protein is a better indicator than glycosylated hemoglobin in GDM monitoring. Based on the actual practice in Vietnam, this study was designed to evaluate the role of serum fructosamine as a monitoring tool in GDM treament and its correlations with fasting blood glucose (G0), 2-hour postprandial glucose (G2) and glycosylated hemoglobin (HbA1c). Methods: A cohort study on pregnant women diagnosed with GDM by the 75-gram oralglucose tolerance test was conducted at Endocrinology Department, Cho Ray hospital, Vietnam from June 2014 to March 2015. Cho Ray hospital is the final destination for GDM patient in the southern of Vietnam, the study population has many sources from other pronvinces and therefore researchers belive that this demographic characteristic can help to provide the study result as a reflection for the whole area. In this study, diabetic patients received a continuos glucose monitoring method which consists of bi-weekly on-site visit every 2 weeks with glycosylated serum protein test, fasting blood glucose test and 2-hour postprandial glucose test; HbA1c test for every 3 months; and nutritious consultance for daily diet program. The subjects still received routine treatment at the hospital, with tight follow-up from their healthcare providers. Researchers recorded bi-weekly health conditions, serum fructosamine level and delivery outcome from the pregnant women, using Stata 13 programme for the analysis. Results: A total of 500 pregnant women was enrolled and follow-up in this study. Serum fructosamine level was found to have a light correlation with G0 ( r=0.3458, p < 0.001) and HbA1c ( r=0.3544, p < 0.001), and moderately correlated with G2 ( r=0.4379, p < 0.001). During study timeline, the delivery outcome of 287 women were recorded with the average age of 38.5 ± 1.5 weeks, 9% of them have macrosomia, 2.8% have premature birth before week 35th and 9.8% have premature birth before week 37th; 64.8% of cesarean section and none of them have perinatal or neonatal mortality. The study provides a reference interval of serum fructosamine for GDM patient was 112.9 ± 20.7 μmol/dL. Conclusion: The present results suggests that serum fructosamine is as effective as HbA1c as a reflection of blood glucose control in GDM patient, with a positive result in delivery outcome (0% perinatal or neonatal mortality). The reference value of serum fructosamine measurement provided a potential monitoring utility in GDM treatment for hospitals in Vietnam. Healthcare providers in Cho Ray hospital is considering to conduct more studies to test this reference as a target value in their GDM treatment and monitoring.Keywords: gestational diabetes mellitus, monitoring tool, serum fructosamine, Vietnam
Procedia PDF Downloads 27915431 Health Monitoring of Primates in a Conservation Unit in Brazil
Authors: Elisângela de Albuquerque Sobreira Borovoski, Ricardo Willian Borovoski
Abstract:
Microbiological infections acquired by animals pose a risk to public health. In public health, monitoring the health of primates is linked to the risk of transmission of zoonoses through scratches, bites and contact with biological samples. The project was approved by the Ethics Committee on the Use of Animals Protocol No. 170/2019. It was authorized by ICMBio Protocol No. 52117-1. The study was carried out in the period 2019-2022 in the municipality of Anápolis. Iron and galvanized wire traps were used and the animals were anesthetized with 4.4mg/kg zolethyl intramuscularly and saliva was collected through swabs. Fifty-three capuchin monkeys were captured from the Onofre Quinan Environmental Park in Anápolis-Goiás for health monitoring purposes. In the laboratory, the samples were deposited on the agar surface and seeded by exhaustion to obtain isolated colonies. These colonies were analyzed according to morphocolonial characteristics. Morphometric characterization and biochemical tests for bacterial identification were performed. A total of 861 bacterial samples were isolated, nine of which were strict anaerobic bacteria of the genus Peptostreptococcus. Previous and constant knowledge of the prevalence of pathogenic agents in biological samples is essential to be prepared to act in pandemic situations.Keywords: Brazil, microbiology, monkeys, public health
Procedia PDF Downloads 7515430 Health and Climate Changes: "Ippocrate" a New Alert System to Monitor and Identify High Risk
Authors: A. Calabrese, V. F. Uricchio, D. di Noia, S. Favale, C. Caiati, G. P. Maggi, G. Donvito, D. Diacono, S. Tangaro, A. Italiano, E. Riezzo, M. Zippitelli, M. Toriello, E. Celiberti, D. Festa, A. Colaianni
Abstract:
Climate change has a severe impact on human health. There is a vast literature demonstrating temperature increase is causally related to cardiovascular problem and represents a high risk for human health, but there are not study that improve a solution. In this work, it is studied how the clime influenced the human parameter through the analysis of climatic conditions in an area of the Apulia Region: Capurso Municipality. At the same time, medical personnel involved identified a set of variables useful to define an index describing health condition. These scientific studies are the base of an innovative alert system, IPPOCRATE, whose aim is to asses climate risk and share information to population at risk to support prevention and mitigation actions. IPPOCRATE is an e-health system, it is designed to provide technological support to analysis of health risk related to climate and provide tools for prevention and management of critical events. It is the first integrated system of prevention of human risk caused by climate change. IPPOCRATE calculates risk weighting meteorological data with the vulnerability of monitored subjects and uses mobile and cloud technologies to acquire and share information on different data channels. It is composed of four components: Multichannel Hub. Multichannel Hub is the ICT infrastructure used to feed IPPOCRATE cloud with a different type of data coming from remote monitoring devices, or imported from meteorological databases. Such data are ingested, transformed and elaborated in order to be dispatched towards mobile app and VoIP phone systems. IPPOCRATE Multichannel Hub uses open communication protocols to create a set of APIs useful to interface IPPOCRATE with 3rd party applications. Internally, it uses non-relational paradigm to create flexible and highly scalable database. WeHeart and Smart Application The wearable device WeHeart is equipped with sensors designed to measure following biometric variables: heart rate, systolic blood pressure and diastolic blood pressure, blood oxygen saturation, body temperature and blood glucose for diabetic subjects. WeHeart is designed to be easy of use and non-invasive. For data acquisition, users need only to wear it and connect it to Smart Application by Bluetooth protocol. Easy Box was designed to take advantage from new technologies related to e-health care. EasyBox allows user to fully exploit all IPPOCRATE features. Its name, Easy Box, reveals its purpose of container for various devices that may be included depending on user needs. Territorial Registry is the IPPOCRATE web module reserved to medical personnel for monitoring, research and analysis activities. Territorial Registry allows to access to all information gathered by IPPOCRATE using GIS system in order to execute spatial analysis combining geographical data (climatological information and monitored data) with information regarding the clinical history of users and their personal details. Territorial Registry was designed for different type of users: control rooms managed by wide area health facilities, single health care center or single doctor. Territorial registry manages such hierarchy diversifying the access to system functionalities. IPPOCRATE is the first e-Health system focused on climate risk prevention.Keywords: climate change, health risk, new technological system
Procedia PDF Downloads 86715429 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping
Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello
Abstract:
Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration
Procedia PDF Downloads 16615428 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders
Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob
Abstract:
Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.Keywords: ASD, social skills, cognitive training, mobile app
Procedia PDF Downloads 21215427 Gas Monitoring and Soil Control at the Natural Gas Storage Site (Minerbio, Italy)
Authors: Ana Maria Carmen Ilie, Carmela Vaccaro
Abstract:
Gas migration through wellbore failure, in particular from abandoned wells, is repeatedly identified as the highest risk mechanism. The vadose zone was subject to monitoring system close to the wellbore in Minerbio, methane storage site. The new technology has been well-developed and used with the purpose to provide reliable estimates of leakage parameters. Of these techniques, soil flux sampling at the soil surface, via the accumulation chamber method and soil flux sampling at the depths of 100cm below the ground surface, have been an important technique for characterizing the gas concentrations at the gas storage site. We present results of soil Radon Bq/m3, CO2%, CH4% and O2% concentration gases. Measurements have been taken for radon concentrations with an Durridge RAD7 Company, Inc., USA, instrument. We used for air and soil quality an Biogas ETG instrument monitoring system, with NDIR CO2, CH4 gas sensor and electrochemical O2 gas sensor. The measurements started in September-October 2015, where no outliers have been identified. The measurements have continued in March-April-July-August-September 2016, almost at the same time in the same place around the gas storage site, values measured 15 minutes for each sampling, to determine their concentration, their distribution and to understand the relationship among gases and atmospheric conditions. At a depth of 100 cm, the maximum soil radon gas concentrations were found to be 1770 ±±582 Bq/m3, the soil consists of 64.31% sand, 20.75% silt and 14.94% clay, and with 0.526 ppm of Uranium. The maximum concentration (September 2016), in soil at 100cm below the ground surface, with 83% sand, 8.96% silt and 7.89% clay, was about 0.06% CH4, and in atmosphere 0.06% CH4 at 40°C (T). In the other months the values have been on the range of 0.01% to 0.03% CH4. Since we did not have outliers in the gas storage site, soil-gas samples for isotopic analysis have not been done.Keywords: leakage gas monitoring, lithology, soil gas, methane
Procedia PDF Downloads 44015426 Factors Determining the Purchasing Intentions towards Online Shopping: An Evidence from Twin Cities of Pakistan
Authors: Muhammad Waiz, Rana Maruf Tahir, Fatima Javaid
Abstract:
Technology in the recent times is available for everyone in the world that no one is left behind. After getting technology into our daily routine, there is a need to study the different factors regarding online shopping. This study examines the impact of online reviews, mobile shopping and computer literacy on online purchasing intention. The sample size was 200 from which 167 complete questionnaires were collected from students and employees of twin cities. SPSS programming software was used to analyze the impact of different factors on purchasing intention. The results of this study showed that those websites which have good ratings and have online shopping application will attract more customers towards them whereas the results showed that the computer literacy has no impact on online purchasing intention. Findings may help for those who want to increase their sales or to start a new online business. Future research, limitations, and implications are discussed.Keywords: computer literacy, mobile shopping, online purchase intention, online reviews, theory of planned behavior
Procedia PDF Downloads 22515425 Structural Health Monitoring of Buildings–Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method
Procedia PDF Downloads 36515424 Local Community Participation and the Adoption of Agricultural Technology in Kayunga District, Uganda
Authors: Barbara Kyampeire, Gerald Karyeijja
Abstract:
This study investigated the influence of local community participation on the adoption of new agricultural technology in Uganda, using the case study of Smooth Cayenne Pineapples in Kayunga District, Uganda. The mechanism of adoption of new technologies is often not fully understood and this prompted the study. The study adopted a descriptive, co relational, survey design. The researcher used questionnaire survey, focus group discussion as methods of data collection. A total of 152 respondents including adopters and non-adopters of new technology for producing pineapples were selected from 8 farmer groups in Kayunga District. The results indicated that the participation of the community in the planning, implementation and the monitoring and evaluation of the adoption of the new technology for producing pineapples was low thus reducing the adoption of the new technology in the District. The researcher concluded that community participation significantly influences the adoption of new agricultural technology by members of a particular community. The study thus recommended that: first, there is need for maximum involvement of members of the community in the planning, implementation and monitoring of any new agricultural technology; secondly, there is need for continued sharing of information about new agricultural technologies being introduced; and finally, community members must be equipped with Monitoring and Evaluation (M&E) skills in order to make them monitor the progress made by the new agricultural technologies.Keywords: adoption, community, technology, implementation
Procedia PDF Downloads 42215423 A Method for Quantitative Assessment of the Dependencies between Input Signals and Output Indicators in Production Systems
Authors: Maciej Zaręba, Sławomir Lasota
Abstract:
Knowing the degree of dependencies between the sets of input signals and selected sets of indicators that measure a production system's effectiveness is of great importance in the industry. This paper introduces the SELM method that enables the selection of sets of input signals, which affects the most the selected subset of indicators that measures the effectiveness of a production system. For defined set of output indicators, the method quantifies the impact of input signals that are gathered in the continuous monitoring production system.Keywords: manufacturing operation management, signal relationship, continuous monitoring, production systems
Procedia PDF Downloads 117