Search results for: huge thick gravel layer
2980 Mix Design Curves for High Volume Fly Ash Concrete
Authors: S. S. Awanti, Aravindakumar B. Harwalkar
Abstract:
Concrete construction in future has to be environmental friendly apart from being safe so that society at large is benefited by the huge investments made in the infrastructure projects. To achieve this, component materials of the concrete system have to be optimized with reference to sustainability. This paper presents a study on development of mix proportions of high volume fly ash concrete (HFC). A series of HFC mixtures with cement replacement levels varying between 50% and 65% were prepared with water/binder ratios of 0.3 and 0.35. Compressive strength values were obtained at different ages. From the experimental results, pozzolanic efficiency ratios and mix design curves for HFC were established.Keywords: age factor, compressive strength, high volume fly ash concrete, pozolanic efficiency ratio
Procedia PDF Downloads 3142979 The Development of a Nanofiber Membrane for Outdoor and Activity Related Purposes
Authors: Roman Knizek, Denisa Knizkova
Abstract:
This paper describes the development of a nanofiber membrane for sport and outdoor use at the Technical University of Liberec (TUL) and the following cooperation with a private Czech company which launched this product onto the market. For making this membrane, Polyurethan was electrospun on the Nanospider spinning machine, and a wire string electrode was used. The created nanofiber membrane with a nanofiber diameter of 150 nm was subsequently hydrophobisied using a low vacuum plasma and Fluorocarbon monomer C6 type. After this hydrophobic treatment, the nanofiber membrane contact angle was higher than 125o, and its oleophobicity was 6. The last step was a lamination of this nanofiber membrane with a woven or knitted fabric to create a 3-layer laminate. Gravure printing technology and polyurethane hot-melt adhesive were used. The gravure roller has a mesh of 17. The resulting 3-layer laminate has a water vapor permeability Ret of 1.6 [Pa.m2.W-1] (– measured in compliance with ISO 11092), it is 100% windproof (– measured in compliance with ISO 9237), and the water column is above 10 000 mm (– measured in compliance with ISO 20811). This nanofiber membrane which was developed in the laboratories of the Technical University of Liberec was then produced industrially by a private company. A low vacuum plasma line and a lamination line were needed for industrial production, and the process had to be fine-tuned to achieve the same parameters as those achieved in the TUL laboratories. The result of this work is a newly developed nanofiber membrane which offers much better properties, especially water vapor permeability, than other competitive membranes. It is an example of product development and the consequent fine-tuning for industrial production; it is also an example of the cooperation between a Czech state university and a private company.Keywords: nanofiber membrane, start-up, state university, private company, product
Procedia PDF Downloads 1422978 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements
Authors: Brody R. Clark, Chaminda Gallage, John Yeaman
Abstract:
Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.Keywords: asphalt, complex modulus, fatigue life, flexural stiffness, four point bending, multigrade bitumen, recycled asphalt pavement
Procedia PDF Downloads 3762977 Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging
Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi
Abstract:
Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food.Keywords: carboxymethyl cellulose film, cold plasma, Polypropylene, surface properties
Procedia PDF Downloads 2822976 Modifying the Electrical Properties of Liquid Crystal Cells by Including TiO₂ Nanoparticles on a Substrate
Authors: V. Marzal, J. C. Torres, B. Garcia-Camara, Manuel Cano-Garcia, Xabier Quintana, I. Perez Garcilopez, J. M. Sanchez-Pena
Abstract:
At the present time, the use of nanostructures in complex media, like liquid crystals, is widely extended to manipulate their properties, either electrical or optical. In addition, these media can also be used to control the optical properties of the nanoparticles, for instance when they are resonant. In this work, the change on electrical properties of a liquid crystal cell by adding TiO₂ nanoparticles on one of the alignment layers has been analyzed. These nanoparticles, with a diameter of 100 nm and spherical shape, were deposited in one of the substrates (ITO + polyimide) by spin-coating in order to produce a homogeneous layer. These substrates were checked using an optical microscope (objective x100) to avoid potential agglomerates. The liquid crystal cell is then fabricated, using one of these substrates and another without nanoparticles, and filled with E7. The study of the electrical response was done through impedance measurements in a long range of frequencies (3 Hz- 6 MHz) and at ambient temperature. Different nanoparticle concentrations were considered, as well as pure E7 and an empty cell for comparison purposes. Results about the effective dielectric permittivity and conductivity are presented along with models of equivalent electric circuits and its physical interpretation. As a summary, it has been observed the clear influence of the presence of the nanoparticles, strongly modifying the electric response of the device. In particular, a variation of both the effective permittivity and the conductivity of the device have been observed. This result requires a deep analysis of the effect of these nanoparticles on the trapping of free ions in the device, allowing a controlled manipulation and frequency tuning of the electrical response of these devices.Keywords: alignment layer, electrical behavior, liquid crystal, TiO₂ nanoparticles
Procedia PDF Downloads 2132975 University Students’ Perception on Public Transit in Dhaka City
Authors: Mosabbir Pasha, Ijaj Mahmud Chowdhury, M. A. Afrahim Bhuiyann
Abstract:
With the increasing population and intensive land use, huge traffic demand is generating worldwide both in developing and developed countries. As a developing country, Bangladesh is also facing the same problem in recent years by producing huge numbers of daily trips. As a matter of fact, extensive traffic demand is increasing day by day. Also, transport system in Dhaka is heterogeneous, reflecting the heterogeneity in the socio-economic and land use patterns. As a matter of fact, trips produced here are for different purposes such as work, business, educational etc. Due to the significant concentration of educational institutions a large share of the trips are generated by educational purpose. And one of the major percentages of educational trips is produced by university going students and most of them are travelled by car, bus, train, taxi, rickshaw etc. The aim of the study was to find out the university students’ perception on public transit ridership. A survey was conducted among 330 students from eight different universities. It was found out that 26% of the trips produced by university going students are travelled by public bus service and only 5% are by train. Percentage of car share is 16% and 12% of the trips are travelled by private taxi. From the study, it has been found that more than 42 percent student’s family resides outside of Dhaka, eventually they prefer bus instead of other options. Again those who chose to walk most of the time, of them, over 40 percent students’ family reside outside of Dhaka and of them over 85 percent students have a tendency to live in a mess. They generally choose a neighboring location to their respective university so that they can reach their destination by walk. On the other hand, those who travel by car 80 percent of their family reside inside Dhaka. The study also revealed that the most important reason that restricts students not to use public transit is poor service. Negative attitudes such as discomfort, uneasiness in using public transit also reduces the usage of public transit. The poor waiting area is another major cause of not using public transit. Insufficient security also plays a significant role in not using public transit. On the contrary, the fare is not a problem for students those who use public transit as a mode of transportation. Students also think stations are not far away from their home or institution and they do not need to wait long for the buses or trains. It was also found accessibility to public transit is moderate.Keywords: traffic demand, fare, poor service, public transit ridership
Procedia PDF Downloads 2682974 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water
Authors: Ahmed A. Alghamdi
Abstract:
Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis
Procedia PDF Downloads 512973 Spatial Direct Numerical Simulation of Instability Waves in Hypersonic Boundary Layers
Authors: Jayahar Sivasubramanian
Abstract:
Understanding laminar-turbulent transition process in hyper-sonic boundary layers is crucial for designing viable high speed flight vehicles. The study of transition becomes particularly important in the high speed regime due to the effect of transition on aerodynamic performance and heat transfer. However, even after many years of research, the transition process in hyper-sonic boundary layers is still not understood. This lack of understanding of the physics of the transition process is a major impediment to the development of reliable transition prediction methods. Towards this end, spatial Direct Numerical Simulations are conducted to investigate the instability waves generated by a localized disturbance in a hyper-sonic flat plate boundary layer. In order to model a natural transition scenario, the boundary layer was forced by a short duration (localized) pulse through a hole on the surface of the flat plate. The pulse disturbance developed into a three-dimensional instability wave packet which consisted of a wide range of disturbance frequencies and wave numbers. First, the linear development of the wave packet was studied by forcing the flow with low amplitude (0.001% of the free-stream velocity). The dominant waves within the resulting wave packet were identified as two-dimensional second mode disturbance waves. Hence the wall-pressure disturbance spectrum exhibited a maximum at the span wise mode number k = 0. The spectrum broadened in downstream direction and the lower frequency first mode oblique waves were also identified in the spectrum. However, the peak amplitude remained at k = 0 which shifted to lower frequencies in the downstream direction. In order to investigate the nonlinear transition regime, the flow was forced with a higher amplitude disturbance (5% of the free-stream velocity). The developing wave packet grows linearly at first before reaching the nonlinear regime. The wall pressure disturbance spectrum confirmed that the wave packet developed linearly at first. The response of the flow to the high amplitude pulse disturbance indicated the presence of a fundamental resonance mechanism. Lower amplitude secondary peaks were also identified in the disturbance wave spectrum at approximately half the frequency of the high amplitude frequency band, which would be an indication of a sub-harmonic resonance mechanism. The disturbance spectrum indicates, however, that fundamental resonance is much stronger than sub-harmonic resonance.Keywords: boundary layer, DNS, hyper sonic flow, instability waves, wave packet
Procedia PDF Downloads 1832972 Assessment of the Effects of Water Harvesting Technology on Downstream Water Availability Using SWAT Model
Authors: Ayalkibet Mekonnen, Adane Abebe
Abstract:
In hydrological cycle there are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream. Water harvesting used in upstream prevents water runoff on downstream mainly disturbance on biodiversity and ecosystems. The main objectives of the study are to assess the effects of water harvesting technologies on downstream water availability in the Woreda. To address the above problem, SWAT model, cost-benefit ratio and optimal control approach was used to analyse the hydrological and socioeconomic impact and tradeoffs on water availability of the community, respectively. The downstream impacts of increasing water consumption in the upstream rain-fed areas of the Bilate and Shala Catchment are simulated using the semi-distributed SWAT model. The two land use scenarios tested at sub basin levels (1) conventional land use represents the current land use practice (Agri-CON) and (2) in-field rainwater harvesting (IRWH), improving soil water availability through rainwater harvesting land use scenario. The simulated water balance results showed that the highest peak mean monthly direct flow obtained from Agri-CON land use (127.1 m3/ha), followed by Agri-IRWH land use (11.5 mm) and LULC 2005 (90.1 m3/ha). The Agri-IRWH scenario reduced direct flow by 10% compared to Agri-CON and more groundwater flow contributed by Agri-IRWH (190 m3/ha) than Agri-CON (125 m3/ha). The overall result suggests that the water yield of the Woreda may not be negatively affected by the Agri-IRWH land use scenario. The technology in the Woreda benefited positively having an average benefit cost ratio of 4.2. Water harvesting for domestic use was not optimal that the value of the water per demand harvested was less than the amount of water needed. Storage tanks, series of check dams, gravel filled dams are an alternative solutions for water harvesting.Keywords: water harvesting, SWAT model, land use scenario, Agri-CON, Agri-IRWH, trade off, benefit cost ratio
Procedia PDF Downloads 3332971 An Experimental (Wind Tunnel) and Numerical (CFD) Study on the Flow over Hills
Authors: Tanit Daniel Jodar Vecina, Adriane Prisco Petry
Abstract:
The shape of the wind velocity profile changes according to local features of terrain shape and roughness, which are parameters responsible for defining the Atmospheric Boundary Layer (ABL) profile. Air flow characteristics over and around landforms, such as hills, are of considerable importance for applications related to Wind Farm and Turbine Engineering. The air flow is accelerated on top of hills, which can represent a decisive factor for Wind Turbine placement choices. The present work focuses on the study of ABL behavior as a function of slope and surface roughness of hill-shaped landforms, using the Computational Fluid Dynamics (CFD) to build wind velocity and turbulent intensity profiles. Reynolds-Averaged Navier-Stokes (RANS) equations are closed using the SST k-ω turbulence model; numerical results are compared to experimental data measured in wind tunnel over scale models of the hills under consideration. Eight hill models with slopes varying from 25° to 68° were tested for two types of terrain categories in 2D and 3D, and two analytical codes are used to represent the inlet velocity profiles. Numerical results for the velocity profiles show differences under 4% when compared to their respective experimental data. Turbulent intensity profiles show maximum differences around 7% when compared to experimental data; this can be explained by not being possible to insert inlet turbulent intensity profiles in the simulations. Alternatively, constant values based on the averages of the turbulent intensity at the wind tunnel inlet were used.Keywords: Atmospheric Boundary Layer, Computational Fluid Dynamic (CFD), Numerical Modeling, Wind Tunnel
Procedia PDF Downloads 3802970 Ion Beam Polishing of Si in W/Si Multilayer X-Ray Analyzers
Authors: Roman Medvedev, Andrey Yakshin, Konstantin Nikolaev, Sergey Yakunin, Fred Bijkerk
Abstract:
Multilayer structures are used as spectroscopic elements in fluorescence analysis. These serve the purpose of analyzing soft x-ray emission spectra of materials upon excitation by x-rays or electrons. The analysis then allows quantitative determination of the x-ray emitting elements in the materials. Shorter wavelength range for this application, below 2.5nm, can be covered by using short period multilayers, with a period of 2.5 nm and lower. Thus the detrimental effect on the reflectivity of morphological roughness between materials of the multilayers becomes increasingly pronounced. Ion beam polishing was previously shown to be effective in reducing roughness in some multilayer systems with Si. In this work, we explored W/Si multilayers with the period of 2.5 nm. Si layers were polishing by Ar ions, employing low energy ions, 100 and 80 eV, with the etched Si thickness being in the range 0.1 to 0.5 nm. CuK X-ray diffuse scattering measurements revealed a significant reduction in the diffused scattering in the polished multilayers. However, Grazing Incidence CuK X-ray showed only a marginal reduction of the overall roughness of the systems. Still, measurements of the structures with Grazing Incidence Small Angle X-ray scattering indicated that the vertical correlation length of roughness was strongly reduced in the polished multilayers. These results together suggest that polishing results in the reduction of the vertical propagation of roughness from layer to layer, while only slightly affecting the overall roughness. This phenomenon can be explained by ion-induced surface roughening inherently present in the ion polishing methods. Alternatively, ion-induced densification of thin Si films should also be considered. Finally, the reflectivity of 40% at 0.84 nm at grazing incidence of 9 degrees has been obtained in this work for W/Si multilayers. Analysis of the obtained results is expected to lead to further progress in reflectance.Keywords: interface roughness, ion polishing, multilayer structures, W/Si
Procedia PDF Downloads 1342969 Corrosion Analysis and Interfacial Characterization of Al – Steel Metal Inert Gas Weld - Braze Dissimilar Joints by Micro Area X-Ray Diffraction Technique
Authors: S. S. Sravanthi, Swati Ghosh Acharyya
Abstract:
Automotive light weighting is of major prominence in the current times due to its contribution in improved fuel economy and reduced environmental pollution. Various arc welding technologies are being employed in the production of automobile components with reduced weight. The present study is of practical importance since it involves preferential substitution of Zinc coated mild steel with a light weight alloy such as 6061 Aluminium by means of Gas Metal Arc Welding (GMAW) – Brazing technique at different processing parameters. However, the fabricated joints have shown the generation of Al – Fe layer at the interfacial regions which was confirmed by the Scanning Electron Microscope and Energy Dispersion Spectroscopy. These Al-Fe compounds not only affect the mechanical strength, but also predominantly deteriorate the corrosion resistance of the joints. Hence, it is essential to understand the phases formed in this layer and their crystal structure. Micro area X - ray diffraction technique has been exclusively used for this study. Moreover, the crevice corrosion analysis at the joint interfaces was done by exposing the joints to 5 wt.% FeCl3 solution at regular time intervals as per ASTM G 48-03. The joints have shown a decreased crevice corrosion resistance with increased heat intensity. Inner surfaces of welds have shown severe oxide cracking and a remarkable weight loss when exposed to concentrated FeCl3. The weight loss was enhanced with decreased filler wire feed rate and increased heat intensity.Keywords: automobiles, welding, corrosion, lap joints, Micro XRD
Procedia PDF Downloads 1232968 Foraminiferal Description and Biostratigraphy of Eocene Deposits in Zagros Basin (Izeh and Interior Fars Sub-Basins) in South-West of Iran
Authors: Ronak Gravand
Abstract:
Eocene deposits in Zagros basin in tow zones of interior Fars and Izeh include limestone and marly limestone succession along with abundant fossils. The significance of this area is due to its hydro carbonic resources. In Dashte Kuh section, limestone and marly limestone deposits with medium to thick creamy layers containing benthic foraminifera could be seen. Bio-zones identified in such deposits include Opertorbitolites Subzone, Somalina Subzone, Alveolina Nummulites Assemblage Subzone and Nummulites fabianii Silvestriella tetraedra Assembelage Zone. In Nil Kuh section, marly limestone of the succession contain abundant plagic foraminifera. The zones identified in this succession include Morozovella aragonesis Range Zone, Hantkenina nuttalli Range Zone, Hantkenina nuttalli Turborotalia cerro-azulensis Interval Zone, Turborotalia cerro-azulensis Range Zone and Morozovella aragonesis Range Zone.Keywords: zagros basin, foraminifera , biozone, Iran
Procedia PDF Downloads 5012967 Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network
Authors: Biruhi Tesfaye, Avinash M. Potdar
Abstract:
The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired.Keywords: CBR, artificial neural network, liquid limit, plastic limit, maximum dry density, OMC
Procedia PDF Downloads 1912966 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field
Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde
Abstract:
The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients
Procedia PDF Downloads 842965 TA6V Selective Laser Melting as an Innovative Method Produce Complex Shapes
Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud
Abstract:
Additive manufacturing is a hot topic for industry. Among the additive techniques, Selective Laser Melting (SLM) becomes even more popular, especially for making parts for aerospace applications, thanks to its design freedom (customized and light structures) and its reduced time to market. However, some functional surfaces have to be machined to achieve small tolerances and low surface roughness to fulfill industry specifications. The complex shapes designed for SLM (ex: titanium turbine blades) necessitate the use of ball end milling operations like in the conventional process after forging. However, the metallurgical state of TA6V is very different from the one obtained usually from forging, because of the laser sintering layer by layer. So this paper aims to investigate the influence of new TA6V metallurgies produced by SLM on the machinability in ball end milling. Machinability is considered as the property of a material to obtain easily and by a cheap way a functional surface. This means, for instance, the property to limit cutting tool wear rate and to get smooth surfaces. So as to reach this objective, SLM parts have been produced and heat treated with various conditions leading to various metallurgies that are compared with a standard equiaxed α+β wrought microstructure. The machinability is analyzed by measuring surface roughness, tool wear and cutting forces for a range of cutting conditions (depth of cut 'ap', feed per tooth 'fz', spindle speed 'N') in accordance with industrial practices. This work has revealed that TA6V produced by SLM can lead to a better machinability that standard wrought alloys.Keywords: ball milling, selective laser melting, surface roughness, titanium, wear
Procedia PDF Downloads 2792964 Precursor Muscle Cell’s Phenotype under Compression in a Biomimetic Mechanical Niche
Authors: Fatemeh Abbasi, Arne Hofemeier, Timo Betz
Abstract:
Muscle growth and regeneration critically depend on satellite cells (SCs) which are muscle stem cells located between the basal lamina and myofibres. Upon damage, SCs become activated, enter the cell cycle, and give rise to myoblasts that form new myofibres, while a sub-population self-renew and re-populate the muscle stem cell niche. In aged muscle as well as in certain muscle diseases such as muscular dystrophy, some of the SCs lose their regenerative ability. Although it is demonstrated that the chemical composition of SCs quiescent niche is different from the activated niche, the mechanism initially activated in the SCs remains unknown. While extensive research efforts focused on potential chemical activation, no such factor has been identified to the author’s best knowledge. However, it is substantiated that niche mechanics affects SCs behaviors, such as stemness and engraftment. We hypothesize that mechanical stress in the healthy niche (homeostasis) is different from the regenerative niche and that this difference could serve as an early signal activating SCs upon fiber damage. To investigate this hypothesis, we develop a biomimetic system to reconstitute both, the mechanical and the chemical environment of the SC niche. Cells will be confined between two elastic polyacrylamide (PAA) hydrogels with controlled elastic moduli and functionalized surface chemistry. By controlling the distance between the PAA hydrogel surfaces, we vary the compression forces exerted by the substrates on the cells, while the lateral displacement of the upper hydrogel will create controlled shear forces. To establish such a system, a simplified system is presented. We engineered a sandwich-like configuration of two elastic PAA layer with stiffnesses between 1 and 10 kPa and confined a precursor myoblast cell line (C2C12) in between these layers. Our initial observations in this sandwich model indicate that C2C12 cells show different behaviors under mechanical compression if compared to a control one-layer gel without compression. Interestingly, this behavior is stiffness-dependent. While the shape of C2C12 cells in the sandwich consisting of two stiff (10 kPa) layers was much more elongated, showing almost a neuronal phenotype, the cell shape in a sandwich situation consisting of one stiff and one soft (1 kPa) layer was more spherical. Surprisingly, even in proliferation medium and at very low cell density, the sandwich situation stimulated cell differentiation with increased striation and myofibre formation. Such behavior is commonly found for confluent cells in differentiation medium. These results suggest that mechanical changes in stiffness and applied pressure might be a relevant stimulation for changes in muscle cell behavior.Keywords: C2C12 cells, compression, force, satellite cells, skeletal muscle
Procedia PDF Downloads 1242963 Physical Characterization of Indoor Dust Particles Using Scanning Electron Microscope (SEM)
Authors: Fatima S. Mohammed, Derrick Crump
Abstract:
Harmattan, a dusty weather condition characterized by thick smog-like suspended particles and dust storm are the peculiar events that happen during ¾ of the year in the Sahelian regions including Damaturu Town, Nigeria), resulting in heavy dust deposits especially indoors. The inhabitants of the Damaturu community are always inflicted with different ailments; respiratory tract infections, asthma, gastrointestinal infections and different ailments associated with the dusty nature of the immediate environment. This brought the need to investigate the nature of the settled indoor dust. Vacuum cleaner bag dust was collected from indoor of some Nigerian and UK homes, as well as outdoors including during seasonal dusty weather event (Harmattan and Storm dust). The dust was sieved, and the (150 µm size) particles were examined using scanning electron microscope (SEM). The physical characterization of the settled dust samples has revealed the various shapes and sizes, and elemental composition of the dust samples is indicating that some of the dust fractions were the respirable fractions and also the dust contained PM10 to PM 2.5 fractions with possible health effects. The elemental compositions were indicative of the diverse nature of the dust particle sources, which showed dust as a complex matrix.Keywords: indoor dust, Harmattan dust, SEM, health effects
Procedia PDF Downloads 2992962 Utilization of Sphagnum Moss as a Jeepney Emission Filter for Smoke Density Reduction
Authors: Monique Joyce L. Disamburum, Nicole C. Faustino, Ashley Angela A. Fazon, Jessie F. Rubonal
Abstract:
Traditional jeepneys contribute significantly to air pollution in the Philippines, negatively affecting both the environment and people. In response, the researchers investigated Sphagnum moss which has high adsorbent properties and can be used as a filter. Therefore, this research aims to create a muffler filter additive to reduce the smoke density emitted by traditional jeepneys. Various materials, such as moss, cornstarch, a metal pipe, bolts, and a papermaking screen frame, were gathered. The moss underwent a blending process with a cornstarch mixture until it achieved a pulp-like consistency, subsequently molded using a papermaking screen frame and left for sun drying. Following this, a metal prototype was created by drilling holes around the tumbler and inserting bolts. The mesh wire containing the filter was carefully placed into the hole, secured by two bolts. In the final phase, there were three setups, each undergoing one trial in the LTO emission testing. Each trial consisted of six rounds of purging, and after that the average smoke density was measured. According to the findings of this study, the filter aided in lowering the average smoke density. The one layer setup produced an average of 1.521, whereas the two layer setup produced an average of 1.082. Using One-Way Anova, it was demonstrated that there is a significant difference between the setups. Furthermore, the Tukey HSD Post Hoc test revealed that Setups A and C differed significantly (p = 0.04604), with Setup C being the most successful in reducing smoke density (mean difference -1.4128). Overall, the researchers came to the conclusion that employing Sphagnum moss as a filter can lower the average smoke density released by traditional jeepneys.Keywords: sphagnum moss, Jeepney filter, smoke density, Jeepney emission
Procedia PDF Downloads 522961 Microvoid Growth in the Interfaces during Aging
Authors: Jae-Yong Park, Gwancheol Seo, Young-Ho Kim
Abstract:
Microvoids, sometimes called Kikendall voids, generally form in the interfaces between Sn-based solders and Cu and degrade the mechanical and electrical properties of the solder joints. The microvoid formation is known as the rapid interdiffusion between Sn and Cu and impurity content in the Cu. Cu electroplating from the acid solutions has been widely used by microelectronic packaging industry for both printed circuit board (PCB) and integrated circuit (IC) applications. The quality of electroplated Cu that can be optimized by the electroplating conditions is critical for the solder joint reliability. In this paper, the influence of electroplating conditions on the microvoid growth in the interfaces between Sn-3.0Ag-0.5Cu (SAC) solder and Cu layer was investigated during isothermal aging. The Cu layers were electroplated by controlling the additive of electroplating bath and current density to induce various microvoid densities. The electroplating bath consisted of sulfate, sulfuric acid, and additives and the current density of 5-15 mA/cm2 for each bath was used. After aging at 180 °C for up to 250 h, typical bi-layer of Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) was gradually growth at the SAC/Cu interface and microvoid density in the Cu3Sn showed disparities in the electroplating conditions. As the current density increased, the microvoid formation was accelerated in all electroplating baths. The higher current density induced, the higher impurity content in the electroplated Cu. When the polyethylene glycol (PEG) and Cl- ion were mixed in an electroplating bath, the microvoid formation was the highest compared to other electroplating baths. On the other hand, the overall IMC thickness was similar in all samples irrespective of the electroplating conditions. Impurity content in electroplated Cu influenced the microvoid growth, but the IMC growth was not affected by the impurity content. In conclusion, the electroplated conditions are properly optimized to avoid the excessive microvoid formation that results in brittle fracture of solder joint under high strain rate loading.Keywords: electroplating, additive, microvoid, intermetallic compound
Procedia PDF Downloads 2592960 Characteristics of Oak Mushroom Cultivar, Bambithyang Developed by Golden Seed Project
Authors: Yeongseon Jang, Rhim Ryoo, Young-Ae Park, Kang-Hyeon Ka, Donha Choi, Sung-Suk Lee
Abstract:
Lentinula edodes (Berk.) Pegler, oak mushroom, is one of the most largely produced mushrooms in the world. To increase the competitiveness of Korean oak mushroom, golden seed project is ongoing. In this project, we develop new oak mushroom varieties to increase its productivity, quality, disease resistance, and so on. Through the project, new oak mushroom cultivar, Bambithyang was developed by mono-mono hybridization method. The optimum temperature for mycelial growth was at 25°C on potato dextrose agar (PDA) media. For the mass production test, it was cultivated using sawdust media with sawdust block type for 100 days. The temperature for primordia formation and fruit body production was broad (between 11°C and 20°C) which is good for spring and fall. Each flush period lasted for 6-7 days and the highest fruit body production was recorded in the first flush. The fruiting is sporadic. The pileus was deep brown. Its diameter was 69.2 mm and width was 17.8 mm. The stipe was ivory. It was 14.7 mm thick and 54.7 mm long. We would continue to develop new varieties while increasing the market share of domestic spawn with this variety.Keywords: Lentinula edodes, mono-mono hybridization, new cultivar, oak mushroom
Procedia PDF Downloads 3462959 Effect of Cement Amount on California Bearing Ratio Values of Different Soil
Authors: Ayse Pekrioglu Balkis, Sawash Mecid
Abstract:
Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties
Procedia PDF Downloads 3972958 Effect of Reinforcement Density on the Behaviour of Reinforced Sand Under a Square Footing
Authors: Dhyaalddin Bahaalddin Noori Zangana
Abstract:
This study involves the behavior of reinforced sand under a square footing. A series of bearing capacity tests were performed on a small-scale laboratory model, which filled with a poorly-graded homogenous bed of sand, which was placed in a medium dense state using sand raining technique. The sand was reinforced with 40 mm wide household aluminum foil strips. The main studied parameters was to consider the effect of reinforcing strip length, with various linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcement below the footing, on load-settlement behavior, bearing capacity ratio and settlement reduction factor. The relation of load-settlement generally showed similar trend in all the tests. Failure was defined as settlement equal to 10% of the footing width. The recommended optimum reinforcing strip length, linear density of reinforcement, number of reinforcement layers and depth of top layer of reinforcing strips that give the maximum bearing capacity improvement and minimum settlement reduction factor were presented and discussed. Different bearing capacity ration versus length of the reinforcing strips and settlement reduction factor versus length of the reinforcing strips relations at failure were showed improvement of bearing capacity ratio by a factor of 3.82 and reduction of settlement reduction factor by a factor of 0.813. The optimum length of reinforcement was found to be 7.5 times the footing width.Keywords: square footing, relative density, linear density of reinforcement, bearing capacity ratio, load-settlement behaviour
Procedia PDF Downloads 982957 Analysis of Big Data
Authors: Sandeep Sharma, Sarabjit Singh
Abstract:
As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.Keywords: big data, unstructured data, volume, variety, velocity
Procedia PDF Downloads 5482956 Combining Nitrocarburisation and Dry Lubrication for Improving Component Lifetime
Authors: Kaushik Vaideeswaran, Jean Gobet, Patrick Margraf, Olha Sereda
Abstract:
Nitrocarburisation is a surface hardening technique often applied to improve the wear resistance of steel surfaces. It is considered to be a promising solution in comparison with other processes such as flame spraying, owing to the formation of a diffusion layer which provides mechanical integrity, as well as its cost-effectiveness. To improve other tribological properties of the surface such as the coefficient of friction (COF), dry lubricants are utilized. Currently, the lifetime of steel components in many applications using either of these techniques individually are faced with the limitations of the two: high COF for nitrocarburized surfaces and low wear resistance of dry lubricant coatings. To this end, the current study involves the creation of a hybrid surface using the impregnation of a dry lubricant on to a nitrocarburized surface. The mechanical strength and hardness of Gerster SA’s nitrocarburized surfaces accompanied by the impregnation of the porous outermost layer with a solid lubricant will create a hybrid surface possessing both outstanding wear resistance and a low friction coefficient and with high adherence to the substrate. Gerster SA has the state-of-the-art technology for the surface hardening of various steels. Through their expertise in the field, the nitrocarburizing process parameters (atmosphere, temperature, dwelling time) were optimized to obtain samples that have a distinct porous structure (in terms of size, shape, and density) as observed by metallographic and microscopic analyses. The porosity thus obtained is suitable for the impregnation of a dry lubricant. A commercially available dry lubricant with a thermoplastic matrix was employed for the impregnation process, which was optimized to obtain a void-free interface with the surface of the nitrocarburized layer (henceforth called hybrid surface). In parallel, metallic samples without nitrocarburisation were also impregnated with the same dry lubricant as a reference (henceforth called reference surface). The reference and the nitrocarburized surfaces, with and without the dry lubricant were tested for their tribological behavior by sliding against a quenched steel ball using a nanotribometer. Without any lubricant, the nitrocarburized surface showed a wear rate 5x lower than the reference metal. In the presence of a thin film of dry lubricant ( < 2 micrometers) and under the application of high loads (500 mN or ~800 MPa), while the COF for the reference surface increased from ~0.1 to > 0.3 within 120 m, the hybrid surface retained a COF < 0.2 for over 400m of sliding. In addition, while the steel ball sliding against the reference surface showed heavy wear, the corresponding ball sliding against the hybrid surface showed very limited wear. Observations of the sliding tracks in the hybrid surface using Electron Microscopy show the presence of the nitrocarburized nodules as well as the lubricant, whereas no traces of the lubricant were found in the sliding track on the reference surface. In this manner, the clear advantage of combining nitrocarburisation with the impregnation of a dry lubricant towards forming a hybrid surface has been demonstrated.Keywords: dry lubrication, hybrid surfaces, improved wear resistance, nitrocarburisation, steels
Procedia PDF Downloads 1222955 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects
Authors: Vigen Barkhudaryan
Abstract:
The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations
Procedia PDF Downloads 3162954 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test
Procedia PDF Downloads 2192953 A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings
Authors: Emmanuel A. Oriaifo, Noel Perera, Alan Guy, Pak. S. Leung, Kian T. Tan
Abstract:
Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC.Keywords: corrosion test, hygrothermal cycling, coating test protocols, water ballast tanks
Procedia PDF Downloads 4352952 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application
Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka
Abstract:
Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET
Procedia PDF Downloads 2962951 Geophysical Contribution to Reveal the Subsurface Structural Setting Using Gravity, Seismic and Seismological Data in the Chott Belts, Southern Atlas of Tunisia
Authors: Nesrine Frifita, Mohamed Gharbi, Kevin Mickus
Abstract:
Physical methods based on gravity, seismic and seismological data were adopted to clarify the relationship between the distribution of seismicity and the crustal deformations under the chott belts and surrounding regions, in southern atlas of Tunisia. Gafsa and its surrounding were described as a moderate seismic zone, and the fault of Gafsa is one of most seismically active faults in Tunisia in general, and in the southern Atlas in particularly. The present work aims to prove a logical relationship between the distribution of seismicity and deformations which strongly related to thickness and density variations within the basement and sedimentary cover along the study area, through several physical methods; gravity, seismic and seismological data were interpreted to calculate physical propriety of the subsurface rocks, the depth and geometry of active faults and causatives bodies. Findings show that depths variation and mixed thin and thick skinned structural style characterizing the chott belts explain the moderate seismicity in the study area.Keywords: potential fields, seismicity, Southern Atlas, Tunisia
Procedia PDF Downloads 112