Search results for: real rolled thickness of strips
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6740

Search results for: real rolled thickness of strips

5630 Mathematical Modeling of Activated Sludge Process: Identification and Optimization of Key Design Parameters

Authors: Ujwal Kishor Zore, Shankar Balajirao Kausley, Aniruddha Bhalchandra Pandit

Abstract:

There are some important design parameters of activated sludge process (ASP) for wastewater treatment and they must be optimally defined to have the optimized plant working. To know them, developing a mathematical model is a way out as it is nearly commensurate the real world works. In this study, a mathematical model was developed for ASP, solved under activated sludge model no 1 (ASM 1) conditions and MATLAB tool was used to solve the mathematical equations. For its real-life validation, the developed model was tested for the inputs from the municipal wastewater treatment plant and the results were quite promising. Additionally, the most cardinal assumptions required to design the treatment plant are discussed in this paper. With the need for computerization and digitalization surging in every aspect of engineering, this mathematical model developed might prove to be a boon to many biological wastewater treatment plants as now they can in no time know the design parameters which are required for a particular type of wastewater treatment.

Keywords: waste water treatment, activated sludge process, mathematical modeling, optimization

Procedia PDF Downloads 139
5629 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire

Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan

Abstract:

Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.

Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer

Procedia PDF Downloads 160
5628 Head-Mounted Displays for HCI Validations While Driving

Authors: D. Reich, R. Stark

Abstract:

To provide reliable and valid findings when evaluating innovative in-car devices in the automotive context highly realistic driving environments are recommended. Nowadays, in-car devices are mostly evaluated due to driving simulator studies followed by real car driving experiments. Driving simulators are characterized by high internal validity, but weak regarding ecological validity. Real car driving experiments are ecologically valid, but difficult to standardize, more time-robbing and costly. One economizing suggestion is to implement more immersive driving environments when applying driving simulator studies. This paper presents research comparing non-immersive standard PC conditions with mobile and highly immersive Oculus Rift conditions while performing the Lane Change Task (LCT). Subjective data with twenty participants show advantages regarding presence and immersion experience when performing the LCT with the Oculus Rift, but affect adversely cognitive workload and simulator sickness, compared to non-immersive PC condition.

Keywords: immersion, oculus rift, presence, situation awareness

Procedia PDF Downloads 181
5627 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing

Procedia PDF Downloads 166
5626 Optimized Scheduling of Domestic Load Based on User Defined Constraints in a Real-Time Tariff Scenario

Authors: Madia Safdar, G. Amjad Hussain, Mashhood Ahmad

Abstract:

One of the major challenges of today’s era is peak demand which causes stress on the transmission lines and also raises the cost of energy generation and ultimately higher electricity bills to the end users, and it was used to be managed by the supply side management. However, nowadays this has been withdrawn because of existence of potential in the demand side management (DSM) having its economic and- environmental advantages. DSM in domestic load can play a vital role in reducing the peak load demand on the network provides a significant cost saving. In this paper the potential of demand response (DR) in reducing the peak load demands and electricity bills to the electric users is elaborated. For this purpose the domestic appliances are modeled in MATLAB Simulink and controlled by a module called energy management controller. The devices are categorized into controllable and uncontrollable loads and are operated according to real-time tariff pricing pattern instead of fixed time pricing or variable pricing. Energy management controller decides the switching instants of the controllable appliances based on the results from optimization algorithms. In GAMS software, the MILP (mixed integer linear programming) algorithm is used for optimization. In different cases, different constraints are used for optimization, considering the comforts, needs and priorities of the end users. Results are compared and the savings in electricity bills are discussed in this paper considering real time pricing and fixed tariff pricing, which exhibits the existence of potential to reduce electricity bills and peak loads in demand side management. It is seen that using real time pricing tariff instead of fixed tariff pricing helps to save in the electricity bills. Moreover the simulation results of the proposed energy management system show that the gained power savings lie in high range. It is anticipated that the result of this research will prove to be highly effective to the utility companies as well as in the improvement of domestic DR.

Keywords: controllable and uncontrollable domestic loads, demand response, demand side management, optimization, MILP (mixed integer linear programming)

Procedia PDF Downloads 298
5625 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data

Authors: Yuqing Chen, Ying Xu, Renfa Li

Abstract:

The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.

Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier

Procedia PDF Downloads 378
5624 Effect of Microstructure and Texture of Magnesium Alloy Due to Addition of Pb

Authors: Yebeen Ji, Jimin Yun, Kwonhoo Kim

Abstract:

Magnesium alloys were limited for industrial applications due to having a limited slip system and high plastic anisotropy. It has been known that specific textures were formed during processing (rolling, etc.), and These textures cause poor formability. To solve these problems, many researchers have studied controlling texture by adding rare-earth elements. However, the high cost limits their use; therefore, alternatives are needed to replace them. Although Pb addition doesn’t directly improve magnesium properties, it has been known to suppress the diffusion of other alloying elements and reduce grain boundary energy. These characteristics are similar to the additions of rare-earth elements, and a similar texture behavior is expected as well. However, there is insufficient research on this. Therefore, this study investigates the behavior of texture and microstructure development after adding Pb to magnesium. This study compared and analyzed AZ61 alloy and Mg-15wt%Pb alloy to determine the effect of adding solute elements. The alloy was hot rolled and annealed to form a single phase and initial texture. Afterward, the specimen was set to contraction and elongate parallel to the rolling surface and the rolling direction and then subjected to high-temperature plane strain compression under the conditions of 723K and 0.05/s. Microstructural analysis and texture measurements were performed by SEM-EBSD. The peak stress in the true strain-stress curve after compression was higher in AZ61, but the shape of the flow curve was similar for both alloys. For both alloys, continuous dynamic recrystallization was confirmed to occur during the compression process. The basal texture developed parallel to the compressed surface, and the pole density was lower in the Mg-15wt%Pb alloy. It is confirmed that this change in behavior is because the orientation distribution of recrystallized grains has a more random orientation compared to the parent grains when Pb is added.

Keywords: Mg, texture, Pb, DRX

Procedia PDF Downloads 47
5623 Effect of Different Diesel Fuels on Formation of the Cavitation Phenomena

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside the diesel injector nozzle is investigated numerically in this study. Reynolds Stress Navier Stokes set of equations (RANS) are utilized to investigate flow behavior inside the nozzle numerically. Moreover, K-ε turbulent model is found to be a better approach comparing to K-ω turbulent model. Winklhofer rectangular shape nozzle is also simulated in order to verify the current numerical scheme, and with, mass flow rate approach, the current solution is verified. Afterward, a six-hole real-size nozzle was simulated, and it was found that among different fuels used in this study with the same condition, diesel fuel provides the largest length of cavitation. Also, it was found that at the same boundary condition, RME fuel leads to the highest value of discharge coefficient and mass flow rate.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, discharge coefficient

Procedia PDF Downloads 150
5622 A Real-Time Moving Object Detection and Tracking Scheme and Its Implementation for Video Surveillance System

Authors: Mulugeta K. Tefera, Xiaolong Yang, Jian Liu

Abstract:

Detection and tracking of moving objects are very important in many application contexts such as detection and recognition of people, visual surveillance and automatic generation of video effect and so on. However, the task of detecting a real shape of an object in motion becomes tricky due to various challenges like dynamic scene changes, presence of shadow, and illumination variations due to light switch. For such systems, once the moving object is detected, tracking is also a crucial step for those applications that used in military defense, video surveillance, human computer interaction, and medical diagnostics as well as in commercial fields such as video games. In this paper, an object presents in dynamic background is detected using adaptive mixture of Gaussian based analysis of the video sequences. Then the detected moving object is tracked using the region based moving object tracking and inter-frame differential mechanisms to address the partial overlapping and occlusion problems. Firstly, the detection algorithm effectively detects and extracts the moving object target by enhancing and post processing morphological operations. Secondly, the extracted object uses region based moving object tracking and inter-frame difference to improve the tracking speed of real-time moving objects in different video frames. Finally, the plotting method was applied to detect the moving objects effectively and describes the object’s motion being tracked. The experiment has been performed on image sequences acquired both indoor and outdoor environments and one stationary and web camera has been used.

Keywords: background modeling, Gaussian mixture model, inter-frame difference, object detection and tracking, video surveillance

Procedia PDF Downloads 467
5621 Cold Formed Steel Sections: Analysis, Design and Applications

Authors: A. Saha Chaudhuri, D. Sarkar

Abstract:

In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.

Keywords: cold form steel sections, applications, present research review, blast resistant design

Procedia PDF Downloads 140
5620 Beyond Typical Textbooks: Adapting Authentic Materials for Engaged Learning in the ELT Classroom

Authors: Fatemeh Miraki

Abstract:

The use of authentic materials in English Language Teaching (ELT) has become increasingly prominent as educators recognize the value of exposing learners to real-world language use and cultural contexts. The integration of authentic materials in ELT aligns with the understanding that language learning is most effective when situated within authentic contexts (Richards & Rodgers, 2001). Tomlinson (1998) highlights the significance of authentic materials in ELT by research indicating that they offer learners exposure to genuine language use and cultural contexts. Tomlinson's work emphasizes the importance of creating meaningful learning experiences through the use of authentic materials. Research by Dörnyei (2001) underscores the potential of authentic materials to enhance students' intrinsic motivation through their relevance to real-life language use. The goal of this review paper is to explore the use of authentic materials in English Language Teaching (ELT) and its impact on language learning. It also discusses best practices for selecting and integrating such authentic materials into ELT curriculum, highlighting the benefits and challenges of using authentic materials to enhance student engagement, motivation, and language proficiency. Drawing on current research and practical examples, this paper provides insights into how teachers can effectively navigate the world of authentic materials to create dynamic and meaningful learning experiences for 21st century ELT learners. The findings of this study advocates for a shift towards embracing authentic materials within the ELT classroom, acknowledging their profound impact on language proficiency, intercultural competence, and learner engagement. It showed the transformative potential of authentic materials, educators can undergo a vibrant and immersive language learning experience, enriched with real-world application and cultural authenticity.

Keywords: authentic materials, ELT Classroom, ELT curriculum, students’ engagement

Procedia PDF Downloads 49
5619 Overexpression of CAS8 Enhances Necroptosis and Metastasis in Iranian Sporadic Colorectal Cancer

Authors: Sayed Ali Garossi, Azar Heidarizadi, Shahla Mohammad Ganji

Abstract:

Context: Colorectal cancer is the second type of cancer-related mortality globally. Expression of cas8 (caspase 8) is closely connected to growth and metastasis of colorectal cancer.Cas8/Rip1 plays a vital role in the apoptosis pathway and resistance to chemotherapy. The aim of the present study is to investigate the pattern of gene expression in colorectal cancer and compare the differences using Real-Time PCR to find a potential biomarker candidate for colorectal cancer. Methodology: This study conducted real-time PCR to evaluate gene expression of Cas8 in colorectal cancer patients. The gene-specific primer sequences exon–exon junction was designed by OLIGO7 software for the expression of the gene under investigation. Forty-six patient samples without any chemotherapy were selected, including tumoral tissue and adjacent normal tissue samples. The age of the patients was 50 and the size of the tumors was 5.5 cm. The categories were before and after age 50. Findings: Here, we found that Caspase 8 was overexpressed in CRC tissues compared to corresponding adjacent colon tissues (Cas8: 5.2 vs. 1 ratio); high expression of Cas8 was associated with poor overall survival and independent risk factors for the prognosis of CRC patients. Conclusion: In conclusion, our study pioneered the reporting of high Casp8 expression as a predictor of poor prognosis and chemical resistance in CRC patients.Cas8 overexpression suppressed Cas 8 / Rip1-dependent apoptosis and activated the proliferation of tumor cells by activating necroptosis. The necroptosis pathway has also emerged as a new approach to anti-tumor in cancer treatment.

Keywords: Cas8, necroptosis, apoptosis, Real-Time PCR

Procedia PDF Downloads 50
5618 The Relationship between Renewable Energy, Real Income, Tourism and Air Pollution

Authors: Eyup Dogan

Abstract:

One criticism of the energy-growth-environment literature, to the best of our knowledge, is that only a few studies analyze the influence of tourism on CO₂ emissions even though tourism sector is closely related to the environment. The other criticism is the selection of methodology. Panel estimation techniques that fail to consider both heterogeneity and cross-sectional dependence across countries can cause forecasting errors. To fulfill the mentioned gaps in the literature, this study analyzes the impacts of real GDP, renewable energy and tourism on the levels of carbon dioxide (CO₂) emissions for the top 10 most-visited countries around the world. This study focuses on the top 10 touristic (most-visited) countries because they receive about the half of the worldwide tourist arrivals in late years and are among the top ones in 'Renewables Energy Country Attractiveness Index (RECAI)'. By looking at Pesaran’s CD test and average growth rates of variables for each country, we detect the presence of cross-sectional dependence and heterogeneity. Hence, this study uses second generation econometric techniques (cross-sectionally augmented Dickey-Fuller (CADF), and cross-sectionally augmented IPS (CIPS) unit root test, the LM bootstrap cointegration test, and the DOLS and the FMOLS estimators) which are robust to the mentioned issues. Therefore, the reported results become accurate and reliable. It is found that renewable energy mitigates the pollution whereas real GDP and tourism contribute to carbon emissions. Thus, regulatory policies are necessary to increase the awareness of sustainable tourism. In addition, the use of renewable energy and the adoption of clean technologies in tourism sector as well as in producing goods and services play significant roles in reducing the levels of emissions.

Keywords: air pollution, tourism, renewable energy, income, panel data

Procedia PDF Downloads 177
5617 Low-Cost Parking Lot Mapping and Localization for Home Zone Parking Pilot

Authors: Hongbo Zhang, Xinlu Tang, Jiangwei Li, Chi Yan

Abstract:

Home zone parking pilot (HPP) is a fast-growing segment in low-speed autonomous driving applications. It requires the car automatically cruise around a parking lot and park itself in a range of up to 100 meters inside a recurrent home/office parking lot, which requires precise parking lot mapping and localization solution. Although Lidar is ideal for SLAM, the car OEMs favor a low-cost fish-eye camera based visual SLAM approach. Recent approaches have employed segmentation models to extract semantic features and improve mapping accuracy, but these AI models are memory unfriendly and computationally expensive, making deploying on embedded ADAS systems difficult. To address this issue, we proposed a new method that utilizes object detection models to extract robust and accurate parking lot features. The proposed method could reduce computational costs while maintaining high accuracy. Once combined with vehicles’ wheel-pulse information, the system could construct maps and locate the vehicle in real-time. This article will discuss in detail (1) the fish-eye based Around View Monitoring (AVM) with transparent chassis images as the inputs, (2) an Object Detection (OD) based feature point extraction algorithm to generate point cloud, (3) a low computational parking lot mapping algorithm and (4) the real-time localization algorithm. At last, we will demonstrate the experiment results with an embedded ADAS system installed on a real car in the underground parking lot.

Keywords: ADAS, home zone parking pilot, object detection, visual SLAM

Procedia PDF Downloads 63
5616 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm

Authors: Monojit Manna, Arpan Adhikary

Abstract:

In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.

Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection

Procedia PDF Downloads 68
5615 Importance of CT and Timed Barium Esophagogram in the Contemporary Treatment of Patients with Achalasia

Authors: Sanja Jovanovic, Aleksandar Simic, Ognjan Skrobic, Dragan Masulovic, Aleksandra Djuric-Stefanovic

Abstract:

Introduction: Achalasia is an idiopathic primary esophageal motility disorder characterized by esophageal peristalsis and impaired swallow-induced relaxation of the lower esophageal sphincter (LES). It is a rare disease that affects both genders with an incidence of 1/100.000 and a prevalence rate of 10/100,000 per year. Objective: Laparoscopic Heller myotomy (LHM) represents a therapy of choice for patients with achalasia, providing excellent outcomes. The aim of this study was to evaluate the significance of computed tomography (CT) in analyzing achalasia subtypes and timed barium esophagogram (TBE) in evaluation of LHM success, as a part of standardized diagnostic protocol. Method: Fifty-one patients with achalasia, confirmed by manometric studies, in addition to standardized diagnostic methods, underwent CT and TBE. CT was done with multiplanar reconstruction, measuring the wall thickness above the esophago-gastric junction in the axial plane. TBE was performed preoperatively and two days postoperatively swallowing low-density barium sulfate, and plane upright frontal films were performed 1, 2 and 5 minutes after the ingestion. In all patients, LHM was done, and pre and postoperative height and weight of the barium column were compared. Results: According to CT findings we divided patients into 3 subtypes of achalasia according to wall thickness: < 4mm as subtype one, between 4 - 9mm as II, and > 10 mm as subtype 3. Correlation of manometric results, as a reference values, and CT findings indicated CT sensitivity of 90% and specificity of 70 % in establishing subtypes of achalasia. The preoperative values of TBE at 1, 2 and 5 minutes were: median barium column height 17.4 ± 7.4, 15.9 ± 6.2 and 13.9 ± 6.2 cm; median column width 5 ± 1.5, 4.7 ± 1.6 and 4.5 ± 1.8 cm respectively. LHM significantly reduced these values (height 7 ± 4.6, 5.8 ± 4.2, 3.7 ± 3.4 cm; width 2.9 ± 1.3, 2.6 ± 1.3 and 2.4 ± 1.4 cm), indicating the quantitative estimates of emptying as excellent (p value < 0.01). Conclusion: CT has high sensitivity and specificity in evaluation of achalasia subtypes, and can be introduced as an additional method for standardized evaluation of these patients. The quantitative assessment of TBE based on measurements of the barium column is an accurate and beneficial method, which adequately estimates esophageal emptying success of LHM.

Keywords: achalasia, computed tomography, esophagography, myotomy

Procedia PDF Downloads 226
5614 An Approach on Robust Multi Inversion of a Nonlinear Model for an Omni-Directional Mobile

Authors: Fernando P. Silva, Valter J. S. Leite, Erivelton G. Nepomuceno

Abstract:

In this paper, a nonlinear controller design for an omnidirectional mobile is presented. The robot controller consists of an inner-loop controller and an outer-loop controller, the first is designed using state feedback (robust allocation) and the second controller is designed based on Robust Multi Inversion (RMI) approach. The objective of RMI controller is rendering the robust inversion of the dynamic, when the model is affected by uncertainties. A model nonlinear MIMO of an omni-directional robot (small-league of Robocup) is used to simulate the RMI approach. The parameters of linear and nonlinear model are varied to cause modelling uncertainties among the model and the real model (real system) generating an error in inner-loop controller signal that must be compensated by RMI controller. The simulation test results show that the RMI is capable of compensating the uncertainties and keep the system stable and controlled under uncertainties.

Keywords: robust multi inversion, omni-directional robot, robocup, nonlinear control

Procedia PDF Downloads 574
5613 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis

Authors: Eric Lacoste

Abstract:

Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.

Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging

Procedia PDF Downloads 127
5612 The Potential of 48V HEV in Real Driving Operation

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This publication focuses on the limits and potentials of 48V hybrid systems, which are especially due to the cost advantages an attractive alternative, compared to established high volt-age HEVs and thus will gain relevant market shares in the future. Firstly, at market overview is given which shows the current known 48V hybrid concepts and demonstrators. These topologies will be analyzed and evaluated regarding the system power and the battery capacity as well as their implemented hybrid functions. The potential in fuel savings and CO2 reduction is calculated followed by the customer-relevant dimensioning of the electric motor and the battery. For both measured data of the real customer operation is used. Subsequently, the CO2 saving potentials of the customer-oriented dimensioned powertrain will be presented for the NEDC and the customer operation. With a comparison of the newly defined drivetrain with existing 48V systems the question can be answered whether current systems are dimensioned optimally for the customer operation or just for legislated driving cycles.

Keywords: 48V hybrid systems, market comparison, requirements and potentials in customer operation, customer-oriented dimensioning, CO2 savings

Procedia PDF Downloads 538
5611 An Industrial Wastewater Management Using Cloud Based IoT System

Authors: Kaarthik K., Harshini S., Karthika M., Kripanandhini T.

Abstract:

Water is an essential part of living organisms. Major water pollution is caused due to contamination of industrial wastewater in the river. The most important step in bringing wastewater contaminants down to levels that are safe for nature is wastewater treatment. The contamination of river water harms both humans who consume it and the aquatic life that lives there. We introduce a new cloud-based industrial IoT paradigm in this work for real-time control and monitoring of wastewater. The proposed system prevents prohibited entry of industrial wastewater into the plant by monitoring temperature, hydrogen power (pH), CO₂ and turbidity factors from the wastewater input that the wastewater treatment facility will process. Real-time sensor values are collected and uploaded to the cloud by the system using an IoT Wi-Fi Module. By doing so, we can prevent the contamination of industrial wastewater entering the river earlier, and the necessary actions will be taken by the users. The proposed system's results are 90% efficient, preventing water pollution due to industry and protecting human lives.

Keywords: sensors, pH, CO₂, temperature, turbidity

Procedia PDF Downloads 104
5610 The Moderation Effect of Financial Distress on the Relationship Between Market Power and Earnings Management of Firms

Authors: Shazia Ali, Yves Mard, Éric Severin

Abstract:

To the best of our knowledge, this is the first study to have analyzed the impact of a) firm-specific product-market power and b) industry competition on earnings management behavior of European firms in distress versus healthy years while controlling for firm-level characteristics. We predicted a significant relationship between firms’ product market power and earnings management tools and their trade-off under the moderation effect of financial distress. We found that the firm-level market power hereinafter referred to as MP (proxied by the industry-adjusted Lerner Index) is positively associated with both real and accrual earnings management. However, MP is associated with a higher level of real earnings management compared to accrual earnings management in distress years compared to healthy years. On the other hand, industry product market power (representing low competition and proxied by the inverse of the total number of firms in an industry hereinafter referred to as NUMB) and firms product market power (proxied by firm market share hereinafter referred to as MS) are associated with lower inflationary accruals and higher deflationary accruals respectively. On the other hand, they are found to be linked with higher real earnings management in distress versus healthy years. When we divided the sample into small and big firms based on their respective industry-year median total assets, we found that all three measures of industry competition (Industry Median Lerner Index (hereinafter referred to as IMLI), NUMB, and Herfindahl–Hirschman Index (hereinafter referred to as HHI) indicate that small firms in low-competitive industries in financial distress are more likely to inflate their earnings through discretionary accruals. While big firms in this situation are more likely to lower the use of both inflationary and deflationary discretionary accruals as indicated by IMLI and HHI and trade-off accruals earnings management for real earnings management as indicated by NUMB. Moreover, IMLI and HHI did not show any interesting results when we divided the sample based on the firm Lerner Index/Market Power. However, the distressed firms with high market power (MP>industry median) are found to engage in income-decreasing discretionary accruals in low-competitive industries (high NUMB). Whereas firms with low market power in the same industry use downward discretionary accruals but inflate income using real activities (abnCFO). Our findings are robust across alternate measures of discretionary accruals and financial distress, such as the Altman Z-Score. The finding of the study is valuable for accounting standard setters, competition authorities, policymakers, and investors alike to help in informed decision-making.

Keywords: financial distress, earnings management, market competition

Procedia PDF Downloads 107
5609 Implementing Contextual Approach to Improve EFL Learners’ English Speaking Skill

Authors: Samanik

Abstract:

This writing is correlated with English teaching material development, Contextual Teaching Learning (CTL). CTL is believed to facilitate students with real world challenge. Contextual Teaching and Learning is identified as a promising strategy that actively engages students and promotes skills development. It is based on the notion that learning can only occur when students are able to connect between content and context. It also helps teachers link between the materials taught with real-world situations and encourage students to make connection between the knowledge possessed by its application. Besides, it directs students to be critical and analytical. In accordance, this paper looks for the opportunity to improve EFL learners’ English speaking skill through tour guide presentation. A single case study will be conducted to highlight EFL learners’ experience of doing tour guide presentation in the English class room setting. The writer assumes that CLT will contribute positively to EFL learners’ English speaking skill.

Keywords: English speaking skill, contextual teaching learning, tour guide presentation

Procedia PDF Downloads 259
5608 Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors

Authors: Fatima Zohra Mahi, Luca Varani

Abstract:

We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.

Keywords: detectivity, photodetectors, continuity equation, current noise

Procedia PDF Downloads 636
5607 A Study on the Establishment of Performance Evaluation Criteria for MR-Based Simulation Device to Train K-9 Self-Propelled Artillery Operators

Authors: Yonggyu Lee, Byungkyu Jung, Bom Yoon, Jongil Yoon

Abstract:

MR-based simulation devices have been recently used in various fields such as entertainment, medicine, manufacturing, and education. Different simulation devices are also being developed for military equipment training. This is to address the concerns regarding safety accidents as well as cost issues associated with training with expensive equipment. An important aspect of developing simulation devices to replicate military training is that trainees experience the same effect as training with real devices. In this study, the criteria for performance evaluation are established to compare the training effect of an MR-based simulation device to that of an actual device. K-9 Self-propelled artillery (SPA) operators are selected as training subjects. First, MR-based software is developed to simulate the training ground and training scenarios currently used for training SPA operators in South Korea. Hardware that replicates the interior of SPA is designed, and a simulation device that is linked to the software is developed. Second, criteria are established to evaluate the simulation device based on real-life training scenarios. A total of nine performance evaluation criteria were selected based on the actual SPA operation training scenarios. Evaluation items were selected to evaluate whether the simulation device was designed such that trainees would experience the same effect as training in the field with a real SPA. To eval-uate the level of replication by the simulation device of the actual training environments (driving and passing through trenches, pools, protrusions, vertical obstacles, and slopes) and driving conditions (rapid steering, rapid accelerating, and rapid braking) as per the training scenarios, tests were performed under the actual training conditions and in the simulation device, followed by the comparison of the results. In addition, the level of noise felt by operators during training was also selected as an evaluation criterion. Due to the nature of the simulation device, there may be data latency between HW and SW. If the la-tency in data transmission is significant, the VR image information delivered to trainees as they maneuver HW might not be consistent. This latency in data transmission was also selected as an evaluation criterion to improve the effectiveness of the training. Through this study, the key evaluation metrics were selected to achieve the same training effect as training with real equipment in a training ground during the develop-ment of the simulation device for military equipment training.

Keywords: K-9 self-propelled artillery, mixed reality, simulation device, synchronization

Procedia PDF Downloads 58
5606 Identification of How Pre-Service Physics Teachers Understand Image Formations through Virtual Objects in the Field of Geometric Optics and Development of a New Material to Exploit Virtual Objects

Authors: Ersin Bozkurt

Abstract:

The aim of the study is to develop materials for understanding image formations through virtual objects in geometric optics. The images in physics course books are formed by using real objects. This results in mistakes in the features of images because of generalizations which leads to conceptual misunderstandings in learning. In this study it was intended to identify pre-service physics teachers misunderstandings arising from false generalizations. Focused group interview was used as a qualitative method. The findings of the study show that students have several misconceptions such as "the image in a plain mirror is always virtual". However a real image can be formed in a plain mirror. To explain a virtual object's image formation in a more understandable way an overhead projector and episcope and their design was illustrated. The illustrations are original and several computer simulations will be suggested.

Keywords: computer simulations, geometric optics, physics education, students' misconceptions in physics

Procedia PDF Downloads 397
5605 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 63
5604 Optimization of Heterojunction Solar Cell Using AMPS-1D

Authors: Benmoussa Dennai, H. Benslimane, A. Helmaoui

Abstract:

Photovoltaic conversion is the direct conversion of electromagnetic energy into electrical energy continuously. This electromagnetic energy is the most solar radiation. In this work we performed a computer modelling using AMPS 1D optimization of hetero-junction solar cells GaInP / GaAs configuration for p / n. We studied the influence of the thickness the base layer in the cell offers on the open circuit voltage, the short circuit current and efficiency.

Keywords: optimization, photovoltaic cell, GaInP / GaAs AMPS-1D, hetetro-junction

Procedia PDF Downloads 513
5603 Real-Time Neuroimaging for Rehabilitation of Stroke Patients

Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge

Abstract:

Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).

Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation

Procedia PDF Downloads 379
5602 Microscale observations of a gas cell wall rupture in bread dough during baking and confrontation to 2/3D Finite Element simulations of stress concentration

Authors: Kossigan Bernard Dedey, David Grenier, Tiphaine Lucas

Abstract:

Bread dough is often described as a dispersion of gas cells in a continuous gluten/starch matrix. The final bread crumb structure is strongly related to gas cell walls (GCWs) rupture during baking. At the end of proofing and during baking, part of the thinnest GCWs between expanding gas cells is reduced to a gluten film of about the size of a starch granule. When such size is reached gluten and starch granules must be considered as interacting phases in order to account for heterogeneities and appropriately describe GCW rupture. Among experimental investigations carried out to assess GCW rupture, no experimental work was performed to observe the GCW rupture in the baking conditions at GCW scale. In addition, attempts to numerically understand GCW rupture are usually not performed at the GCW scale and often considered GCWs as continuous. The most relevant paper that accounted for heterogeneities dealt with the gluten/starch interactions and their impact on the mechanical behavior of dough film. However, stress concentration in GCW was not discussed. In this study, both experimental and numerical approaches were used to better understand GCW rupture in bread dough during baking. Experimentally, a macro-scope placed in front of a two-chamber device was used to observe the rupture of a real GCW of 200 micrometers in thickness. Special attention was paid in order to mimic baking conditions as far as possible (temperature, gas pressure and moisture). Various differences in pressure between both sides of GCW were applied and different modes of fracture initiation and propagation in GCWs were observed. Numerically, the impact of gluten/starch interactions (cohesion or non-cohesion) and rheological moduli ratio on the mechanical behavior of GCW under unidirectional extension was assessed in 2D/3D. A non-linear viscoelastic and hyperelastic approach was performed to match the finite strain involved in GCW during baking. Stress concentration within GCW was identified. Simulated stresses concentration was discussed at the light of GCW failure observed in the device. The gluten/starch granule interactions and rheological modulus ratio were found to have a great effect on the amount of stress possibly reached in the GCW.

Keywords: dough, experimental, numerical, rupture

Procedia PDF Downloads 114
5601 Active Learning in Engineering Courses Using Excel Spreadsheet

Authors: Promothes Saha

Abstract:

Recently, transportation engineering industry members at the study university showed concern that students lacked the skills needed to solve real-world engineering problems using spreadsheet data analysis. In response to the concerns shown by industry members, this study investigated how to engage students in a better way by incorporating spreadsheet analysis during class - also, help them learn the course topics. Helping students link theoretical knowledge to real-world problems can be a challenge. In this effort, in-class activities and worksheets were redesigned to integrate with Excel to solve example problems using built-in tools including cell referencing, equations, data analysis tool pack, solver tool, conditional formatting, charts, etc. The effectiveness of this technique was investigated using students’ evaluations of the course, enrollment data, and students’ comments. Based on the data of those criteria, it is evident that the spreadsheet activities may increase student learning.

Keywords: civil, engineering, active learning, transportation

Procedia PDF Downloads 134