Search results for: plastic deformation capacity
4680 Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations' Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit
Authors: Liliia N. Butymova, Vladimir Y. Modorsky, Nikolai A. Shevelev
Abstract:
Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature.Keywords: aeroelasticity, ANSYS CFX, oscillation, phase shift, clocking effect, vibrations
Procedia PDF Downloads 2694679 Techno-Economic Comparative Analysis of Grid Connected Solar Photovoltaic (PV) to Solar Concentrated Solar Power (CSP) for Developing Countries: A Case Study of Kenya and Zimbabwe
Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu
Abstract:
The potential of power generation from solar resources has been established as being robust in sub Saharan Africa. Consequently many governments in the region have encouraged the exploitation of this resource through, inter alia direct funding, subsidies and legislation (such as feed in tariffs). Through a case study of Kenya and Zimbabwe it is illustrated that a good deal of proposed grid connected solar power projects and related feed in tariffs have failed to take into account key economic and technical considerations in the selection of solar technologies to be implemented. This paper therefore presents a comparison between concentrated solar power (CSP) and solar photovoltaic (PV) to assess which technology is better suited to meet the energy demand for a given set of prevailing conditions. The evaluation criteria employed is levelized cost of electricity (LCOE), net present value (NPV) and plant capacity factor. The outcome is therefore a guide to aid policy makers and project developers in choosing between CSP and PV given certain solar irradiance values, planned nominal plant capacity, availability of water resource and a consideration of whether or not the power plant is intended to compete with existing technologies, primarily fossil fuel powered, in meeting the peak load.load.Keywords: capacity factor, peak load, solar PV, solar CSP
Procedia PDF Downloads 2874678 Hydrogen Storage in Carbonized Coconut Meat (Kernel)
Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava
Abstract:
Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca
Procedia PDF Downloads 4224677 A Heuristic Based Decomposition Approach for a Hierarchical Production Planning Problem
Authors: Nusrat T. Chowdhury, M. F. Baki, A. Azab
Abstract:
The production planning problem is concerned with specifying the optimal quantities to produce in order to meet the demand for a prespecified planning horizon with the least possible expenditure. Making the right decisions in production planning will affect directly the performance and productivity of a manufacturing firm, which is important for its ability to compete in the market. Therefore, developing and improving solution procedures for production planning problems is very significant. In this paper, we develop a Dantzig-Wolfe decomposition of a multi-item hierarchical production planning problem with capacity constraint and present a column generation approach to solve the problem. The original Mixed Integer Linear Programming model of the problem is decomposed item by item into a master problem and a number of subproblems. The capacity constraint is considered as the linking constraint between the master problem and the subproblems. The subproblems are solved using the dynamic programming approach. We also propose a multi-step iterative capacity allocation heuristic procedure to handle any kind of infeasibility that arises while solving the problem. We compare the computational performance of the developed solution approach against the state-of-the-art heuristic procedure available in the literature. The results show that the proposed heuristic-based decomposition approach improves the solution quality by 20% as compared to the literature.Keywords: inventory, multi-level capacitated lot-sizing, emission control, setup carryover
Procedia PDF Downloads 1384676 Surface Deformation Studies in South of Johor Using the Integration of InSAR and Resistivity Methods
Authors: Sirajo Abubakar, Ismail Ahmad Abir, Muhammad Sabiu Bala, Muhammad Mustapha Adejo, Aravind Shanmugaveloo
Abstract:
Over the years, land subsidence has been a serious threat mostly to urban areas. Land subsidence is the sudden sinking or gradual downward settling of the ground’s surface with little or no horizontal motion. In most areas, land subsidence is a slow process that covers a large area; therefore, it is sometimes left unnoticed. South of Johor is the area of interest for this project because it is going through rapid urbanization. The objective of this research is to evaluate and identify potential deformations in the south of Johor using integrated remote sensing and 2D resistivity methods. Synthetic aperture radar interferometry (InSAR) which is a remote sensing technique has the potential to map coherent displacements at centimeter to millimeter resolutions. Persistent scatterer interferometry (PSI) stacking technique was applied to Sentinel-1 data to detect the earth deformation in the study area. A dipole-dipole configuration resistivity profiling was conducted in three areas to determine the subsurface features in that area. This subsurface features interpreted were then correlated with the remote sensing technique to predict the possible causes of subsidence and uplifts in the south of Johor. Based on the results obtained, West Johor Bahru (0.63mm/year) and Ulu Tiram (1.61mm/year) are going through uplift due to possible geological uplift. On the other end, East Johor Bahru (-0.26mm/year) and Senai (-1.16mm/year) undergo subsidence due to possible fracture and granitic boulders loading. Land subsidence must be taken seriously as it can cause serious damages to infrastructures and human life. Monitoring land subsidence and taking preventive actions must be done to prevent any disasters.Keywords: interferometric synthetic aperture radar, persistent scatter, minimum spanning tree, resistivity, subsidence
Procedia PDF Downloads 1474675 Dynamic Stability of a Wings for Drone Aircraft Subjected to Parametric Excitation
Authors: Iyd Eqqab Maree, Habil Jurgen Bast
Abstract:
Vibration control of machines and structures incorporating viscoelastic materials in suitable arrangement is an important aspect of investigation. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. Multilayered cantilever sandwich beam like structures can be used in aircrafts and other applications such as robot arms for effective vibration control. These members may experience parametric instability when subjected to time dependant forces. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. The purpose of the present work is to investigate the dynamic stability of a three layered symmetric sandwich beam (Drone Aircraft wings ) subjected to an end periodic axial force . Equations of motion are derived using finite element method (MATLAB software). It is observed that with increase in core thickness parameter fundamental buckling load increases. The fundamental resonant frequency and second mode frequency parameter also increase with increase in core thickness parameter. Fundamental loss factor and second mode loss factor also increase with increase in core thickness parameter. Increase in core thickness parameter enhances the stability of the beam. With increase in core loss factor also the stability of the beam enhances. There is a very good agreement of the experimental results with the theoretical findings.Keywords: steel cantilever beam, viscoelastic material core, loss factor, transition region, MATLAB R2011a
Procedia PDF Downloads 4734674 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy
Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly
Abstract:
In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening
Procedia PDF Downloads 724673 Vibration Analysis of FGM Sandwich Panel with Cut-Outs Using Refined Higher-Order Shear Deformation Theory (HSDT) Based on Isogeometric Analysis
Authors: Lokanath Barik, Abinash Kumar Swain
Abstract:
This paper presents vibration analysis of FGM sandwich structure with a complex profile governed by refined higher-order shear deformation theory (RHSDT) using isogeometric analysis (IGA). Functionally graded sandwich plates provide a wide range of applications in aerospace, defence, and aircraft industries due to their ability to distribute material functions to influence the thermo-mechanical properties as desired. In practical applications, these structures generally have intrinsic profiles, and their response to loads is significantly affected due to cut-outs. IGA is primarily a NURBS-based technique that is effective in solving higher-order differential equations due to its inherent C1 continuity imposition in solution space for a single patch. Complex structures generally require multiple patches to accurately represent the geometry, and hence, there is a loss of continuity at adjoining patch junctions. Therefore, patch coupling is desired to maintain continuity requirements throughout the domain. In this work, a novel strong coupling approach is provided that generates a well-defined NURBS-based model while achieving continuity. The methodology is validated by free vibration analysis of sandwich plates with present literature. The results are in good agreement with the analytical solution for different plate configurations and power law indexes. Numerical examples of rectangular and annular plates are discussed with variable boundary conditions. Additionally, parametric studies are provided by varying the aspect ratio, porosity ratio and their influence on the natural frequency of the plate.Keywords: vibration analysis, FGM sandwich structure, multipatch geometry, patch coupling, IGA
Procedia PDF Downloads 824672 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study
Authors: Anjana R. Menon, Anjana Bhasi
Abstract:
Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis
Procedia PDF Downloads 754671 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants
Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning
Abstract:
Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.Keywords: preparation, titanate, cs-137, removal, nuclear
Procedia PDF Downloads 2684670 Effect of Thermal Annealing Used in the Hydrothermal Synthesis of Titanium Dioxide on Its Electrochemical Properties As Li-Ion Electrode
Authors: Gabouze Nourredine, Saloua Merazga
Abstract:
Due to their exceptional durability, low-cost, high-power density, and reliability, cathodes based on titanium dioxide, and more specifically spinel LTO (Li4Ti5O12), present an attractive alternative to conventional lithium cathode materials for multiple applications. The aim of this work is to synthesize and characterize the nanopowders of titanium dioxide (TiO₂) and lithium titanate (Li₄Ti5O₁₂) by the hydrothermal method and to use them as a cathode in a lithium-ion battery. The structural and morphological characterizations of the synthesized powders were performed by XRD, SEM, EDS, and FTIR-ATR. Nevertheless, the study of the electrochemical performances of the elaborated electrode materials was carried out by: cyclic voltametry (CV) and galvanostatic charge/discharge (CDG). The prepared electrode by the powder annealed at 800 °C has a good specific capacity of about 173 mAh/g and a good cyclic stabilityKeywords: lithuim-ion, battery, LTO, tio2, capacity
Procedia PDF Downloads 854669 Analysis of Gas Transport and Sorption Processes in Coal under Confining Pressure Conditions
Authors: Anna Pajdak, Mateusz Kudasik, Norbert Skoczylas, Leticia Teixeira Palla Braga
Abstract:
A substantial majority of gas transport and sorption researches into coal are carried out on samples that are free of stress. In natural conditions, coal occurs at considerable depths, which often exceed 1000 meters. In such conditions, coal is subjected to geostatic pressure. Thus, in natural conditions, the sorption capacity of coal subjected to geostatic pressure can differ considerably from the sorption capacity of coal, determined in laboratory conditions, which is free of stress. The work presents the results of filtration and sorption tests of gases in coal under confining pressure conditions. The tests were carried out on the author's device, which ensures: confining pressure regulation in the range of 0-30 MPa, isobaric gas pressure conditions, and registration of changes in sample volume during its gas saturation. Based on the conducted research it was found, among others, that the sorption capacity of coal relative to CO₂ was reduced by about 15% as a result of the change in the confining pressure from 1.5 MPa to 30 MPa exerted on the sample. The same change in sample load caused a significant, more than tenfold reduction in carbon permeability to CO₂. The results confirmed that a load of coal corresponding to a hydrostatic pressure of 1000 meters underground reduces its permeability and sorption properties. These results are so important that the effect of load on the sorption properties of coal should be taken into account in laboratory studies on the applicability of CO₂ Enhanced Coal Bed Methane Recovery (CO₂-ECBM) technology.Keywords: coal, confining pressure, gas transport, sorption
Procedia PDF Downloads 1214668 The Flood Disaster Management of Communities in Ubon Ratchathani Province, Thailand
Authors: Eakarat Boonreang, Anothai Harasarn
Abstract:
The objectives of this study are to investigate the flood disaster management capacity of communities in Ubon Ratchathani province, Thailand, and to recommend the sustainable flood management approaches of communities in Ubon Ratchathani province, Thailand. The selected population consisted of the community leaders and committees, the executives of local administrative organizations, and the head of Ubon Ratchathani provincial office of disaster prevention and mitigation. The data was collected by in-depth interview, focus group, and observation. The data was analyzed and classified in order to determine the communities’ capacity in flood disaster management. The results revealed that communities’ capacity were as follows, before flood disaster, the community leaders held a meeting with the community committees in order to plan disaster response and determined evacuation routes, and the villagers moved their belongings to higher places and prepared vehicles for evacuation. During flood disaster, the communities arranged motorboats for transportation and villagers evacuated to a temporary evacuation center. Moreover, the communities asked for survival bags, motorboats, emergency toilets, and drinking water from the local administrative organizations and the 22nd Military Circle. After flood disaster, the villagers cleaned and fixed their houses and also collaborated in cleaning the temple, school, and other places in the community. The recommendation approaches for sustainable flood disaster management consisted of structural measures, such as the establishment of reservoirs and building higher houses, and non-structural measures such as raising awareness and fostering self-reliance, establishing disaster management plans, rehearsal of disaster response procedures every year, and transferring disaster knowledge among younger generations. Moreover, local administrative organizations should formulate strategic plans that focus on disaster management capacity building at the community level, particularly regarding non-structural measures. Ubon Ratchathani provincial offices of disaster prevention and mitigation should continually monitor and evaluate the outcomes of community based disaster risk management program, including allocating more flood disaster management-related resources among local administrative organizations and communities.Keywords: capacity building, community based disaster risk management, flood disaster management, Thailand
Procedia PDF Downloads 1674667 The Potential Effectiveness of Marine Algae in Removal of Heavy Metal from Aqueous Medium
Authors: Wed Albalawi, Ebtihaj Jambi, Maha Albazi, Shareefa AlGhamdi
Abstract:
Heavy metal pollution has become a hard threat to marine ecosystems alongside extremely industrialized and urban (urbanized) zones because of their toxicity, resolution, and non-biodegradable nature. Great interest has been given to a new technique -biosorption- which exploits the cell envelopes of organisms to remove metals from water solutions. The main objective of the present study is to explore the potential of marine algae from the Red Sea for the removal of heavy metals from an aqueous medium. The subsequent objective is to study the effect of pH and agitation time on the adsorption capacity of marine algae. Randomly chosen algae from the Red Sea (Jeddah) with known altitude and depth were collected. Analysis of heavy metal ion concentration was measured by ICP-OES (Inductively coupled plasma - optical emission spectrometry) using air argon gas. A standard solution of heavy metal ions was prepared by diluting the original standard solution with ultrapure water. Types of seaweed were used to study the effect of pH on the biosorption of different heavy metals. The biosorption capacity of Cr is significantly lower in Padina Pavonica (P.P) compared to the biosorption capacity in Sargassum Muticum (S.M). The S.M exhibited significantly higher in Cr removal than the P.P at pH 2 and pH 7. However, the P.P exhibited significantly higher in Cr removal than the S.M at pH 3, pH 4, pH 5, pH 6, and pH 8. In conclusion, the dried cells of algae can be used as an effective tool for the removal of heavy metals.Keywords: biosorption, heavy metal, pollution, pH value, brown algae
Procedia PDF Downloads 764666 Treatment with RRx-001, a Minimally Toxic NLRP3 Inhibitor in Phase 3 Clinical Trials, Improves Exercise and Skeletal Muscle Oxidative Capacity in Untrained Mice
Authors: Pedro Cabrales, Scott Caroen, Tony R. Reid, Bryan Oronsky
Abstract:
Introduction and Purpose RRx-001 is an NLRP3 inhibitor and Nrf2 agonist in Phase 3 trials for the treatment of cancer. The purpose of this study was to examine whether treatment with RRx-001, given itsanti-inflammatory and antioxidant properties, improvedexercise and skeletal muscle oxidative capacity in mice on the generalpremiss that better health outcomes correlatewith more activity. Material and Methods Male and female adult mice (n=6 per group) were subjected to an endurance exercise capacity (EEC)test until exhaustion on a motorized treadmill after 3 once weekly doses of either RRx-001 5 mg/kg, RRx-001 2 mg/kg, or vehicle. The EEC protocol consisted of a treadmill velocity of 30meters per min at an uphill inclination (slope of 10%) until the mice reached fatigue, which was defined as the inability of the mice to maintain the appropriate pace despitecontinuous hand stimulation for 1 min. The concentration of malondialdehyde (MDA), an indicator of lipid peroxidation, and creatine kinase (CK), an indicator of muscle damage, in the blood samples collected immediately after the acute exercise was determined with a commercial ELISA assay kit. ResultsThe exhaustive exercise times of the RRx-001 groups were significantly longer than that of the vehicle group (p<0.05) by weeks 2 and 3. In addition, MDA levels in the gastrocnemius, soleus, and extensor digitorum longus muscles were significantly lower than those of the vehicle group were (p<0.05), as were the serum CK levels(p<0.05). ConclusionsIn conclusion, this study found that RRx-001 has anti-fatigue properties, as evidenced by an increase in exercise capacity with RRx-001 treatment, and protects against strenuous exercise-induced muscle damage and lipid peroxidation. This data potentially supports the use of RRx-001 in the clinic to improve exercise performance and reduce physical fatigue.Keywords: RRx-001, anti-fatigue, muscle protection, increased exercise tolerance, lipid peroxidation
Procedia PDF Downloads 984665 A Development of a Simulation Tool for Production Planning with Capacity-Booking at Specialty Store Retailer of Private Label Apparel Firms
Authors: Erika Yamaguchi, Sirawadee Arunyanrt, Shunichi Ohmori, Kazuho Yoshimoto
Abstract:
In this paper, we suggest a simulation tool to make a decision of monthly production planning for maximizing a profit of Specialty store retailer of Private label Apparel (SPA) firms. Most of SPA firms are fabless and make outsourcing deals for productions with factories of their subcontractors. Every month, SPA firms make a booking for production lines and manpower in the factories. The booking is conducted a few months in advance based on a demand prediction and a monthly production planning at that time. However, the demand prediction is updated month by month, and the monthly production planning would change to meet the latest demand prediction. Then, SPA firms have to change the capacities initially booked within a certain range to suit to the monthly production planning. The booking system is called “capacity-booking”. These days, though it is an issue for SPA firms to make precise monthly production planning, many firms are still conducting the production planning by empirical rules. In addition, it is also a challenge for SPA firms to match their products and factories with considering their demand predictabilities and regulation abilities. In this paper, we suggest a model for considering these two issues. An objective is to maximize a total profit of certain periods, which is sales minus costs of production, inventory, and capacity-booking penalty. To make a better monthly production planning at SPA firms, these points should be considered: demand predictabilities by random trends, previous and next month’s production planning of the target month, and regulation abilities of the capacity-booking. To decide matching products and factories for outsourcing, it is important to consider seasonality, volume, and predictability of each product, production possibility, size, and regulation ability of each factory. SPA firms have to consider these constructions and decide orders with several factories per one product. We modeled these issues as a linear programming. To validate the model, an example of several computational experiments with a SPA firm is presented. We suppose four typical product groups: basic, seasonal (Spring / Summer), seasonal (Fall / Winter), and spot product. As a result of the experiments, a monthly production planning was provided. In the planning, demand predictabilities from random trend are reduced by producing products which are different product types. Moreover, priorities to produce are given to high-margin products. In conclusion, we developed a simulation tool to make a decision of monthly production planning which is useful when the production planning is set every month. We considered the features of capacity-booking, and matching of products and factories which have different features and conditions.Keywords: capacity-booking, SPA, monthly production planning, linear programming
Procedia PDF Downloads 5194664 Prevalence of Anemia and Iron Deficiency in Women of Childbearing Age in the North-West of Libya
Authors: Mustafa Ali Abugila, Basma Nuri Kajruba, Hanan Elhadi, Rehab Ramadan Wali
Abstract:
Iron deficiency anemia is characterized by a decrease of Hb (hemoglobin), serum iron, ferritin, and RBC (red blood cells) (shape and size). Also, it is characterized by an increase in total iron binding capacity (TIBC). Red blood cells become microctytic and hypochromic due to a decrease in iron content. This study was conducted in the north west of Libya and included 210 women in childbearing age (18-45 years) who were visiting women clinic. After filling the questionnaire, blood samples were taken and analyzed for hematological and biochemical profiles. Biochemical tests included measurement of serum iron, ferritin, and total iron binding capacity (TIBC). Among the total sample (210 women), there were 87 (41.42%) pregnant and 123 (58.57%) non-pregnant women (includes married and single). Pregnant women (87) were classified according to the gestational age into first, second, and third trimesters. The means of biochemical and hematological parameters in the studied samples were: Hb = 10.37± 2.02 g/dl, RBC = 3.78± 1.037 m/m3, serum iron 61.86± 40.28 µg/dl, and TIBC = 386.01 ± 94.91 µg/dl. In this study, we considered that any women have hemoglobin below 11.5 g/dl is anemic. 89.1%, 69.5%, and 47.8% of pregnant women who belong to third trimester had low (below normal value) Hb, serum iron, and ferritin, i.e. iron deficiency anemia was more common in third trimester among the first and the second trimesters. Third trimester pregnant women also had high TIBC more than first and second trimesters.Keywords: red blood cells, hemoglobin, total iron binding capacity, ferritin
Procedia PDF Downloads 5304663 Analysis of Various Factors Affecting Hardness and Content of Phases Resulting from 1030 Carbon Steel Heat Treatment Using AC3 Software
Authors: Saeid Shahraki, Mohammad Mahdi Kaekha
Abstract:
1030 steel, a kind of carbon steel used in homogenization, cold-forming, quenching, and tempering conditions, is generally utilized in small parts resisting medium stress, such as connection foundations, hydraulic cylinders, tiny gears, pins, clamps, automotive normal forging parts, camshafts, levers, pundits, and nuts. In this study, AC3 software was used to measure the effect of carbon and manganese percentage, dimensions and geometry of pieces, the type of the cooling fluid, temperature, and time on hardness and the content of 1030 steel phases. Next, the results are compared with the analytical values obtained from the Lumped Capacity Method.Keywords: 1030Steel, AC3software, heat treatment, lumped capacity method
Procedia PDF Downloads 2814662 Seismotectonics and Seismology the North of Algeria
Authors: Djeddi Mabrouk
Abstract:
The slow coming together between the Afro-Eurasia plates seems to be the main cause of the active deformation in the whole of North Africa which in consequence come true in Algeria with a large zone of deformation in an enough large limited band, southern through Saharan atlas and northern through tell atlas. Maghrebin and Atlassian Chain along North Africa are the consequence of this convergence. In junction zone, we have noticed a compressive regime NW-SE with a creases-faults structure and structured overthrust. From a geological point of view the north part of Algeria is younger then Saharan platform, it’s changing so unstable and constantly in movement, it’s characterized by creases openly reversed, overthrusts and reversed faults, and undergo perpetually complex movement vertically and horizontally. On structural level the north of Algeria it's a part of erogenous alpine peri-Mediterranean and essentially the tertiary age It’s spread from east to the west of Algeria over 1200 km.This oogenesis is extended from east to west on broadband of 100 km.The alpine chain is shaped by 3 domains: tell atlas in north, high plateaus in mid and Saharan atlas in the south In extreme south we find the Saharan platform which is made of Precambrian bedrock recovered by Paleozoic practically not deformed. The Algerian north and the Saharan platform are separated by an important accident along of 2000km from Agadir (Morocco) to Gabes (Tunisian). The seismic activity is localized essentially in a coastal band in the north of Algeria shaped by tell atlas, high plateaus, Saharan atlas. Earthquakes are limited in the first 20km of the earth's crust; they are caused by movements along faults of inverted orientation NE-SW or sliding tectonic plates. The center region characterizes Strong Earthquake Activity who locates mainly in the basin of Mitidja (age Neogene).The southern periphery (Atlas Blidéen) constitutes the June, more Important seism genic sources in the city of Algiers and east (Boumerdes region). The North East Region is also part of the tellian area, but it is characterized by a different strain in other parts of northern Algeria. The deformation is slow and low to moderate seismic activity. Seismic activity is related to the tectonic-slip earthquake. The most pronounced is that of 27 October 1985 (Constantine) of seismic moment magnitude Mw = 5.9. North-West region is quite active and also artificial seismic hypocenters which do not exceed 20km. The deep seismicity is concentrated mainly a narrow strip along the edge of Quaternary and Neogene basins Intra Mountains along the coast. The most violent earthquakes in this region are the earthquake of Oran in 1790 and earthquakes Orléansville (El Asnam in 1954 and 1980).Keywords: alpine chain, seismicity north Algeria, earthquakes in Algeria, geophysics, Earth
Procedia PDF Downloads 4074661 Nurse's Use of Power to Standardize Nursing Terminology in Electronic Health Record
Authors: Samira Ali
Abstract:
Aim: The purpose of this study was to describe nurses’ potential use of power levels to influence the standardization of nursing terminology (SNT) in electronic health records. Also, to examine the relationship between nurses’ use of power levels and variables such as position, communication and the potential goal of achieving SNT in electronic health records. Background: In an era of evidence-based nursing care, with an emphasis on nursing’s ability to measure the care rendered and improve outcomes of care, little is known about the nurse’s potential use of their power to SNT in electronic health records and lack of use of an SNT in electronic health records. Method: This descriptive, correlational, and cross-sectional study was conducted using survey methodology to assess the nurse’s use of power to influence the SNT in electronic health records. The Theory of Group Power within Organizations (TGPO) provided the conceptual framework for this study. A total of (n=232) nurses responded to the survey, posted on three nursing organizations’ websites. Results revealed the mean Cronbach’s alpha of the subscales was .94, suggesting high internal consistency. The mean power capability score was moderately high, at 134.22 (SD = 18.49). Power Capacity was significantly correlated with Power Capability (r = .96, p < .001). Power Capacity subscales were significantly correlated with Power Capacity and Power Capability. Conclusion: The mean Cronbach’s alpha of the subscales was .94 suggestive of reliability of the instrument. Nurses could potentially use power to achieve their goals, such as the implementation of SNT in electronic health records.Keywords: nurses, power, actualized power, nursing terminology, electronic health records
Procedia PDF Downloads 2524660 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication
Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali
Abstract:
Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws
Procedia PDF Downloads 54659 De-Densifying Congested Cores of Cities and Their Emerging Design Opportunities
Authors: Faith Abdul Rasak Asharaf
Abstract:
Every city has a threshold known as urban carrying capacity based on which it can withstand a particular density of people, above which the city might need to resort to measures like expanding its boundaries or growing vertically. As a result of this circumstance, the number of squatter communities is growing, as is the claustrophobic feeling of being confined inside a "concrete jungle." The expansion of suburbs, commercial areas, and industrial real estate in the areas surrounding medium-sized cities has resulted in changes to their landscapes and urban forms, as well as a systematic shift in their role in the urban hierarchy when functional endowment and connections to other territories are considered. The urban carrying capacity idea provides crucial guidance for city administrators and planners in better managing, designing, planning, constructing, and distributing urban resources to satisfy the huge demands of an evergrowing urban population. An ecological footprint is a criterion of urban carrying capacity, which is the amount of land required to provide humanity with renewable resources and absorb its trash. However, as each piece of land has its unique carrying capacity, including ecological, social, and economic considerations, these metropolitan areas begin to reach a saturation point over time. Various city models have been tried throughout the years to meet the increasing urban population density by moving the zones of work, life, and leisure to achieve maximum sustainable growth. The current scenario is that of a vertical city and compact city concept, in which the maximum density of people is attempted to fit into a definite area using efficient land use and a variety of other strategies, but this has proven to be a very unsustainable method of growth, as evidenced by the COVID-19 period. Due to a shortage of housing and basic infrastructure, densely populated cities gave rise to massive squatter communities, unable to accommodate the overflowing migrants. To achieve optimum carrying capacity, planning measures such as polycentric city and diffuse city concepts can be implemented, which will help to relieve the congested city core by relocating certain sectors of the town to the city periphery, which will help to create newer spaces for design in terms of public space, transportation, and housing, which is a major concern in the current scenario. The study's goal is focused on suggesting design options and solutions in terms of placemaking for better urban quality and urban life for the citizens once city centres have been de-densified based on urban carrying capacity and ecological footprint, taking the case of Kochi as an apt example of a highly densified city core, focusing on Edappally, which is an agglomeration of many urban factors.Keywords: urban carrying capacity, urbanization, urban sprawl, ecological footprint
Procedia PDF Downloads 794658 Production of Date Juice Infused with Natural Antioxidants from Qatari Herbs
Authors: Tahra ElObeid, Noura Al-Wahiemed, Jawaher Al-shammari, Wedad Al-Asmar
Abstract:
The aim of this study is to utilize Qatari raw materials in the production of a date juice high in antioxidants. The antioxidants were extracted from five Qatari herbs: Caspian manna, Tetraena mongolica, Capparis spinosa, Ziziphus Vulgaris and Lycium shawii. The date juice was prepared in the lab and was infused with the polyphenolic extracts from the 5 different Qatari herbs. The date juice was then infused with the antioxidant containing the highest antioxidant activity and was within the acceptable range in sensory evaluation scale. The phenolic content for Lycium shawii, Alhagi maurorum, Ziziphus Vulgaris, Capparis spinosa and Tetraena mongolica was 4294 ppm, 3843 ppm, 804.59 ppm, 189.14 ppm and 226 ppm respectively, whereas their antioxidant capacity of was 6.21 %, 45.27 %, 69.81 %, 2.96 % and 8.63 % respectively. The highest antioxidant capacity was found in Ziziphus Vulgaris 69.8 % and the highest phenolic content was found in Lycium shawii 4294 ppm. Alhagi maurorum, Tetraena mongolica and Lycium shawii showed good results in terms of taste and aroma however Ziziphus Vulgaris exhibited bitter flavor. Alhagi maurorum antioxidant extract was used to be added to the date juice due to its high phenolic content, high antioxidant capacity, good taste and aroma.Keywords: Qatar, dates, herbs, antioxidants
Procedia PDF Downloads 3124657 Enforcement against Illegal Logging: Issues and Challenges
Authors: Muhammad Nur Haniff Mohd Noor, Rokiah Kadir, Suriyani Muhamad
Abstract:
Sustainable forest management and forest protection can be hampered by illegal logging. Illegal logging is not uncommon in many wood-producing countries. Hence, law enforcement, especially in timber-producing countries, is crucial in ensuring compliance with forestry related regulations, as well as confirming that all parties obey the rules and regulations prescribed by the authorities. However, enforcement officers are encountering various challenges and difficulties which have undermined the enforcement capacity and efficiency. The appropriate policy responses for these issues are important to resolve the problems in the long term and empowering enforcement capacity to meet future challenges of forest law enforcement. This paper is written according to extensive review of the articles and publications by The International Criminal Police Organization (INTERPOL), The International Tropical Timber Organization (ITTO), Chatham House and The Food and Agriculture Organization of the United Nations (FAO). Subsequently, various books and journal articles are reviewed to gain further insight towards enforcement issues and challenges. This paper identifies several issues which consist of (1) insufficient enforcement capacity and resources (2) lack of coordination between various enforcement agencies, (3) corruption in the government and private sectors and (4) unclear legal frameworks related to the forestry sector. Next, this paper discusses appropriate policy responses to address each enforcement challenges according to various publications. This includes specific reports concerning forest law enforcement published by international forestry-related organizations. Therefore, lack of resources, inadequate synchronization between agencies, corruption, and legal issues present challenges to enforcement officers in their daily routines. Recommendations regarding proper policy responses to overcome the issues are of great importance in assisting forest authorities in prioritizing their resources appropriately.Keywords: corruption, enforcement challenges, enforcement capacity, forest law enforcement, insufficient agency coordination, legislative ambiguity
Procedia PDF Downloads 1874656 A Comparative Study for the Axial Load Capacity of Circular High Strength CFST Columns
Authors: Eylem Guzel, Faruk Osmanoglu, Muhammet Kurucu
Abstract:
The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete-filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian standard
Procedia PDF Downloads 4004655 Towards Developing a Strategic Framework for Sustainable Knowledge Economy
Authors: Hamid Alalwany, Nabeel A. Koshak, Mohammad K. Ibrahim
Abstract:
Both knowledge economy and sustainable development are considered key dimensions in the policy action lines of many developed and developing countries. In this context, universities and other higher education institutes have a vital role in developing and sustaining wellbeing communities. In this paper, the authors’ aim is to address the links between the concepts of innovation and entrepreneurial capacity and knowledge economy, and to utilize the approach of intellectual capital development in building a sustainable knowledge economy. The paper will contribute to two discourses: (1) Developing a common understanding of the intersection aspects between the three concepts: Knowledge economy, Innovation and entrepreneurial system, and sustainable development; (2) Paving the road towards developing an integrated multidimensional framework for sustainable knowledge economy.Keywords: innovation and entrepreneurial capacity, intellectual capital development, sustainable development, sustainable knowledge economy.
Procedia PDF Downloads 5334654 Bioremoval of Malachite Green Dye from Aqueous Solution Using Marine Algae: Isotherm, Kinetic and Mechanistic Study
Authors: M. Jerold, V. Sivasubramanian
Abstract:
This study reports the removal of Malachite Green (MG) from simulated wastewater by using marine macro algae Ulva lactuca. Batch biosorption experiments were carried out to determine the biosorption capacity. The biosorption capacity was found to be maximum at pH 10. The effect of various other operation parameters such as biosorbent dosage, initial dye concentration, contact time and agitation was also investigated. The equilibrium attained at 120 min with 0.1 g/L of biosorbent. The isotherm experimental data fitted well with Langmuir Model with R² value of 0.994. The maximum Langmuir biosorption capacity was found to be 76.92 mg/g. Further, Langmuir separation factor RL value was found to be 0.004. Therefore, the adsorption is favorable. The biosorption kinetics of MG was found to follow pseudo second-order kinetic model. The mechanistic study revealed that the biosorption of malachite onto Ulva lactuca was controlled by film diffusion. The solute transfer in a solid-liquid adsorption process is characterized by the film diffusion and/or particle diffusion. Thermodynamic study shows ΔG° is negative indicates the feasibility and spontaneous nature for the biosorption of malachite green. The biosorbent was characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and elemental analysis (CHNS: Carbon, Hydrogen, Nitrogen, Sulphur). This study showed that Ulva lactuca can be used as promising biosorbent for the removal of MG from wastewater.Keywords: biosorption, Ulva lactuca, wastewater, malachite green, isotherm, kinetics
Procedia PDF Downloads 1574653 Understanding Seismic Behavior of Masonry Buildings in Earthquake
Authors: Alireza Mirzaee, Soosan Abdollahi, Mohammad Abdollahi
Abstract:
Unreinforced Masonry (URM) wall is vulnerable in resisting horizontal load such as wind and seismic loading. It is due to the low tensile strength of masonry, the mortar connection between the brick units. URM structures are still widely used in the world as an infill wall and commonly constructed with door and window openings. This research aimed to investigate the behavior of URM wall with openings when horizontal load acting on it and developed load-drift relationship of the wall. The finite element (FE) method was chosen to numerically simulate the behavior of URM with openings. In this research, ABAQUS, commercially available FE software with explicit solver was employed. In order to ensure the numerical model can accurately represent the behavior of an URM wall, the model was validated for URM wall without openings using available experimental results. Load-displacement relationship of numerical model is well agreed with experimental results. Evidence shows the same load displacement curve shape obtained from the FE model. After validating the model, parametric study conducted on URM wall with openings to investigate the influence of area of openings and pre-compressive load on the horizontal load capacity of the wall. The result showed that the increasing of area of openings decreases the capacity of the wall in resisting horizontal loading. It is also well observed from the result that capacity of the wall increased with the increasing of pre-compressive load applied on the top of the walls.Keywords: masonry constructions, performance at earthquake, MSJC-08 (ASD), bearing wall, tie-column
Procedia PDF Downloads 2514652 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating
Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi
Abstract:
In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran
Procedia PDF Downloads 3514651 Development of a Sustainable Municipal Solid Waste Management for an Urban Area: Case Study from a Developing Country
Authors: Anil Kumar Gupta, Dronadula Venkata Sai Praneeth, Brajesh Dubey, Arundhuti Devi, Suravi Kalita, Khanindra Sharma
Abstract:
Increase in urbanization and industrialization have led to improve in the standard of living. However, at the same time, the challenges due to improper solid waste management are also increasing. Municipal Solid Waste management is considered as a vital step in the development of urban infrastructure. The present study focuses on developing a solid waste management plan for an urban area in a developing country. The current scenario of solid waste management practices at various urban bodies in India is summarized. Guwahati city in the northeastern part of the country and is also one of the targeted smart cities (under the governments Smart Cities program) was chosen as case study to develop and implement the solid waste management plan. The whole city was divided into various divisions and waste samples were collected according to American Society for Testing and Materials (ASTM) - D5231-92 - 2016 for each division in the city and a composite sample prepared to represent the waste from the entire city. The solid waste characterization in terms of physical and chemical which includes mainly proximate and ultimate analysis were carried out. Existing primary and secondary collection systems were studied and possibilities of enhancing the collection systems were discussed. The composition of solid waste for the overall city was found to be as: organic matters 38%, plastic 27%, paper + cardboard 15%, Textile 9%, inert 7% and others 4%. During the conference presentation, further characterization results in terms of Thermal gravimetric analysis (TGA), pH and water holding capacity will be discussed. The waste management options optimizing activities such as recycling, recovery, reuse and reduce will be presented and discussed.Keywords: proximate, recycling, thermal gravimetric analysis (TGA), solid waste management
Procedia PDF Downloads 191