Search results for: random coefficients model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18859

Search results for: random coefficients model

7579 Proposal of a Damage Inspection Tool After Earthquakes: Case of Algerian Buildings

Authors: Akkouche Karim, Nekmouche Aghiles, Bouzid Leyla

Abstract:

This study focuses on the development of a multifunctional Expert System (ES) called post-seismic damage inspection tool (PSDIT), a powerful tool which allows the evaluation, the processing and the archiving of the collected data stock after earthquakes. PSDIT can be operated by two user types; an ordinary user (engineer, expert or architect) for the damage visual inspection and an administrative user for updating the knowledge and / or for adding or removing the ordinary user. The knowledge acquisition is driven by a hierarchical knowledge model, the Information from investigation reports and those acquired through feedback from expert / engineer questionnaires are part.

Keywords: buildings, earthquake, seismic damage, damage assessment, expert system

Procedia PDF Downloads 91
7578 Determining the Direction of Causality between Creating Innovation and Technology Market

Authors: Liubov Evstigneeva

Abstract:

In this paper an attempt is made to establish causal nexuses between innovation and international trade in Russia. The topicality of this issue is determined by the necessity of choosing policy instruments for economic modernization and transition to innovative development. The vector auto regression (VAR) model and Granger test are applied for the Russian monthly data from 2005 until the second quartile of 2015. Both lagged import and export at the national level cause innovation, the latter starts to stimulate foreign trade since it is a remote lag. In comparison to aggregate data, the results by patent’s categories are more diverse. Importing technologies from foreign countries stimulates patent activity, while innovations created in Russia are only Granger causality for import to Commonwealth of Independent States.

Keywords: export, import, innovation, patents

Procedia PDF Downloads 323
7577 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy

Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani

Abstract:

In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.

Keywords: gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy

Procedia PDF Downloads 181
7576 Leading People in a Digital Era: A Theoretical Study of Challenges and Opportunities of Online Networking Platforms

Authors: Pawel Korzynski

Abstract:

Times where leaders communicate mainly while walking along the hallways have passed away. Currently, millennials, people that were born between the early 1980s and the early 2000s, extensively use applications based on Web 2.0 model that assumes content creation and edition by all Internet users in a collaborative fashion. Leaders who are willing to engage their subordinates in a digital era, increasingly often use above-mentioned applications. This paper discusses challenges and opportunities that are related to leaders’ online networking. First, online networking-related terms that appeared in literature are analyzed. Then, types of online networking platforms for leaders and ways how these platforms can be used are discussed. Finally, several trends in online networking studies and extrapolation of some findings to leadership are explained.

Keywords: social media, digital era, leadership, online networking

Procedia PDF Downloads 298
7575 The Driving Force for Taiwan Social Innovation Business Model Transformation: A Case Study of Social Innovation Internet Celebrity Training Project

Authors: Shih-Jie Ma, Jui-Hsu Hsiao, Ming-Ying Hsieh, Shin-Yan Yang, Chun-Han Yeh, Kuo-Chun Su

Abstract:

In Taiwan, social enterprises and non-profit organizations (NPOs) are not familiar with innovative business models, such as live streaming. In 2019, a brand new course called internet celebrity training project is introduced to them by the Social Innovation Lab. The Goal of this paper is to evaluate the effect of this project, to explore the role of new technology (internet live stream) in business process management (BPM), and to analyze how live stream programs can assist social enterprises in creating new business models. Social Innovation, with the purpose to solve social issues in innovative ways, is one of the most popular topics in the world. Social Innovation Lab was established in 2017 by Executive Yuan in Taiwan. The vision of Social Innovation Lab is to exploit technology, innovation and experimental methods to solve social issues, and to maximize the benefits from government investment. Social Innovation Lab aims at creating a platform for both supply and demand sides of social issues, to make social enterprises and start-ups communicate with each other, and to build an eco-system in which stakeholders can make a social impact. Social Innovation Lab keeps helping social enterprises and NPOs to gain better publicity and to enhance competitiveness by facilitating digital transformation. In this project, Social Innovation Lab exerted the influence of social media such as YouTube and Facebook, to make social enterprises and start-ups adjust their business models by using the live stream of social media, which becomes one of the tools to expand their market and diversify their sales channels. Internet live stream training courses were delivered in different regions of Taiwan in 2019, including Taitung, Taichung, Kaohsiung and Hualien. Through these courses, potential groups and enterprises were cultivated to become so-called internet celebrities. With their concern about social issues in mind, these internet celebrities know how to manipulate social media to make a social impact in different fields, such as aboriginal people, food and agriculture, LOHAS (Lifestyles of Health and Sustainability), environmental protection and senior citizens. Participants of live stream training courses in Taiwan are selected to take in-depth interviews and questionnaire surveys. Results indicate that the digital transformation process of social enterprises and NPOs can be successful by implementing business process reengineering, a significant change made by social innovation internet celebrities. Therefore, this project can be the new driving force to facilitate the business model transformation in Taiwan.

Keywords: business process management, digital transformation, live stream, social innovation

Procedia PDF Downloads 149
7574 Motion Planning and Posture Control of the General 3-Trailer System

Authors: K. Raghuwaiya, B. Sharma, J. Vanualailai

Abstract:

This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general 3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.

Keywords: artificial potential fields, 3-trailer systems, motion planning, posture

Procedia PDF Downloads 431
7573 Magnetohydrodynamic Flow over an Exponentially Stretching Sheet

Authors: Raj Nandkeolyar, Precious Sibanda

Abstract:

The flow of a viscous, incompressible, and electrically conducting fluid under the influence of aligned magnetic field acting along the direction of fluid flow over an exponentially stretching sheet is investigated numerically. The nonlinear partial differential equations governing the flow model is transformed to a set of nonlinear ordinary differential equations using suitable similarity transformation and the solution is obtained using a local linearization method followed by the Chebyshev spectral collocation method. The effects of various parameters affecting the flow and heat transfer as well as the induced magnetic field are discussed using suitable graphs and tables.

Keywords: aligned magnetic field, exponentially stretching sheet, induced magnetic field, magnetohydrodynamic flow

Procedia PDF Downloads 456
7572 Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm

Authors: Mohamed Mahmoud

Abstract:

This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found.

Keywords: enhanced deduction algorithm, backtracking strategy, automatic test equipment, verfication

Procedia PDF Downloads 123
7571 Terraria AI: YOLO Interface for Decision-Making Algorithms

Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado

Abstract:

This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.

Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5

Procedia PDF Downloads 99
7570 Modeling of Austenitic Stainless Steel during Face Milling Using Response Surface Methodology

Authors: A. A. Selaimia, H. Bensouilah, M. A. Yallese, I. Meddour, S. Belhadi, T. Mabrouki

Abstract:

The objective of this work is to model the output responses namely; surface roughness (Ra), cutting force (Fc), during the face milling of the austenitic stainless steel X2CrNi18-9 with coated carbide tools (GC4040). For raison, response surface methodology (RMS) is used to determine the influence of each technological parameter. A full factorial design (L27) is chosen for the experiments, and the ANOVA is used in order to evaluate the influence of the technological cutting parameters namely; cutting speed (Vc), feed per tooth, and depth of cut (ap) on the out-put responses. The results reveal that (Ra) is mostly influenced by (fz) and (Fc) is found considerably affected by (ap).

Keywords: austenitic stainless steel, ANOVA, coated carbide, response surface methodology (RSM)

Procedia PDF Downloads 374
7569 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes

Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen

Abstract:

Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.

Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades

Procedia PDF Downloads 165
7568 The Consequences of Complaint Offenses against Copyright Protection

Authors: Chryssantus Kastowo, Theresia Anita Christiani, Anny Retnowati

Abstract:

Copyright infringement as a form of infringement does not always mean causing harm to the creator. This can be proven with so many copyright violations in society and there is no significant law enforcement effort when compared with the violations that occurred. Copyright law as a form of appreciation from the state to the creator becomes counter productive if there is omission of violations. The problem raised in this article is how is the model of copyright regulation in accordance with the purpose of the law of copyright protection. This article is based on normative legal research focusing on secondary data. The analysis used is a conceptual approach. The analysis shows that the regulation of copyright emphasizes as a subjective right that is wholly within the author's power. This perspective will affect the claim of rights by the creator or allow violations. The creator is obliged to maintain the overall performance of copyright protection, especially in the event of a violation.

Keywords: copyright, enforcement, law, violation

Procedia PDF Downloads 138
7567 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 124
7566 Research on the Optimization of Satellite Mission Scheduling

Authors: Pin-Ling Yin, Dung-Ying Lin

Abstract:

Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.

Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling

Procedia PDF Downloads 34
7565 Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows

Authors: M. Yaqub Khan, Usman Shabbir

Abstract:

History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas.

Keywords: entropy, velocity shear, ion temperature gradient mode, drift

Procedia PDF Downloads 391
7564 Practical Problems as Tools for the Development of Secondary School Students’ Motivation to Learn Mathematics

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses plausible reasoning use for solution to practical problems. Such reasoning is the major driver of motivation and implementation of mathematical, scientific and educational research activity. A general, practical problem solving algorithm is presented which includes an analysis of specific problem content to build, solve and interpret the underlying mathematical model. The author explores the role of practical problems such as the stimulation of students' interest, the development of their world outlook and their orientation in the modern world at the different stages of learning mathematics in secondary school. Particular attention is paid to the characteristics of those problems which were systematized and presented in the conclusions.

Keywords: mathematics, motivation, secondary school, student, practical problem

Procedia PDF Downloads 300
7563 Streamlining the Fuzzy Front-End and Improving the Usability of the Tools Involved

Authors: Michael N. O'Sullivan, Con Sheahan

Abstract:

Researchers have spent decades developing tools and techniques to aid teams in the new product development (NPD) process. Despite this, it is evident that there is a huge gap between their academic prevalence and their industry adoption. For the fuzzy front-end, in particular, there is a wide range of tools to choose from, including the Kano Model, the House of Quality, and many others. In fact, there are so many tools that it can often be difficult for teams to know which ones to use and how they interact with one another. Moreover, while the benefits of using these tools are obvious to industrialists, they are rarely used as they carry a learning curve that is too steep and they become too complex to manage over time. In essence, it is commonly believed that they are simply not worth the effort required to learn and use them. This research explores a streamlined process for the fuzzy front-end, assembling the most effective tools and making them accessible to everyone. The process was developed iteratively over the course of 3 years, following over 80 final year NPD teams from engineering, design, technology, and construction as they carried a product from concept through to production specification. Questionnaires, focus groups, and observations were used to understand the usability issues with the tools involved, and a human-centred design approach was adopted to produce a solution to these issues. The solution takes the form of physical toolkit, similar to a board game, which allows the team to play through an example of a new product development in order to understand the process and the tools, before using it for their own product development efforts. A complimentary website is used to enhance the physical toolkit, and it provides more examples of the tools being used, as well as deeper discussions on each of the topics, allowing teams to adapt the process to their skills, preferences and product type. Teams found the solution very useful and intuitive and experienced significantly less confusion and mistakes with the process than teams who did not use it. Those with a design background found it especially useful for the engineering principles like Quality Function Deployment, while those with an engineering or technology background found it especially useful for design and customer requirements acquisition principles, like Voice of the Customer. Products developed using the toolkit are added to the website as more examples of how it can be used, creating a loop which helps future teams understand how the toolkit can be adapted to their project, whether it be a small consumer product or a large B2B service. The toolkit unlocks the potential of these beneficial tools to those in industry, both for large, experienced teams and for inexperienced start-ups. It allows users to assess the market potential of their product concept faster and more effectively, arriving at the product design stage with technical requirements prioritized according to their customers’ needs and wants.

Keywords: new product development, fuzzy front-end, usability, Kano model, quality function deployment, voice of customer

Procedia PDF Downloads 110
7562 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials

Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu

Abstract:

The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.

Keywords: analytic solution, braided composites, elasticity properties, technology factor

Procedia PDF Downloads 241
7561 Investigation of the Turbulent Cavitating Flows from the Viewpoint of the Lift Coefficient

Authors: Ping-Ben Liu, Chien-Chou Tseng

Abstract:

The objective of this study is to investigate the relationship between the lift coefficient and dynamic behaviors of cavitating flow around a two-dimensional Clark Y hydrofoil at 8° angle of attack, cavitation number of 0.8, and Reynolds number of 7.10⁵. The flow field is investigated numerically by using a vapor transfer equation and a modified turbulence model which applies the filter and local density correction. The results including time-averaged lift/drag coefficient and shedding frequency agree well with experimental observations, which confirmed the reliability of this simulation. According to the variation of lift coefficient, the cycle which consists of growth and shedding of cavitation can be divided into three stages, and the lift coefficient at each stage behaves similarly due to the formation and shedding of the cavity around the trailing edge.

Keywords: Computational Fluid Dynamics, cavitation, turbulence, lift coefficient

Procedia PDF Downloads 354
7560 Framework for the Modeling of the Supply Chain Collaborative Planning Process

Authors: D. Pérez, M. M. E. Alemany

Abstract:

In this work a Framework to model the Supply Chain (SC) Collaborative Planning (CP) Process is proposed, and particularly its Decisional view. The main Framework contributions with regards to previous related works are the following, 1) the consideration of not only the Decision view, the most important one due to the Process type, but other additional three views which are the Physical, Organisation and Information ones, closely related and complementing the Decision View, 2) the joint consideration of two interdependence types, the Temporal (among Decision Centres belonging to different Decision Levels) and Spatial (among Decision Centres belonging to the same Decision Level) to support the distributed Decision-Making process in SC where several decision Centres interact among them in a collaborative manner.

Keywords: collaborative planning, decision view, distributed decision-making, framework

Procedia PDF Downloads 471
7559 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms

Authors: Prabhakar Sathujoda

Abstract:

Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.

Keywords: Continuous Wavelet Transform, Flexible Coupling, Rotor System, Sub Critical Speed

Procedia PDF Downloads 166
7558 QCARNet: Networks for Quality-Adaptive Compression Artifact

Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho

Abstract:

We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.

Keywords: compression artifact reduction, deblocking, image denoising, image restoration

Procedia PDF Downloads 146
7557 Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance

Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi

Abstract:

This paper explores a kinetic building facade designed for optimal energy capture and architectural expression. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of facade systems are necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, the design leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, Three-dimensional 3D printing, and laser cutting, were utilized to fabricate physical components. A modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of this facade system to an existing library building at Polytechnic University of Milan is presented. The system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. This work demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, this approach paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.

Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building

Procedia PDF Downloads 43
7556 The Efficacy of Thymbra spicata Ethanolic Extract and its Main Component Carvacrol on In vitro Model of Metabolically-Associated Dysfunctions

Authors: Farah Diab, Mohamad Khalil, Francesca Storace, Francesca Baldini, Piero Portincasaa, Giulio Lupidi, Laura Vergani

Abstract:

Thymbra spicata is a thyme-like plant belonging to the Lamiaceae family that shows a global distribution, especially in the eastern Mediterranean region. Leaves of T. spicata contain large amounts of phenols such as phenolic acids (rosmarinic acid), phenolic monoterpenes (carvacrol), and flavonoids. In Lebanon, T. spicata is currently used as a culinary herb in salad and infusion, as well as for traditional medicinal purposes. Carvacrol (5-isopropyl-2-methyl phenol), the most abundant polyphenol in the organic extract and essential oils, has a great array of pharmacological properties. In fact, carvacrol is largely employed as a food additive and neutraceutical agent. Our aim is to investigate the beneficial effects of T. spicata ethanolic extract (TE) and its main component, carvacrol, using in vitro models of hepatic steatosis and endothelial dysfunction. As a further point, we focused on investigating if and how the binding of carvacrol to albumin, the physiological transporter for drugs in the blood, might be altered by the presence of high levels of fatty acids (FAs), thus impairing the carvacrol bio-distribution in vivo. For that reason, hepatic FaO cells treated with exogenous FAs such as oleate and palmitate mimic hepatosteatosis; endothelial HECV cells exposed to hydrogen peroxide are a model of endothelial dysfunction. In these models, we measured lipid accumulation, free radical production, lipoperoxidation, and nitric oxide release before and after treatment with carvacrol. The carvacrol binding to albumin with/without high levels of long-chain FAs was assessed by absorption and emission spectroscopies. Our findings show that both TE and carvacrol (i) counteracted lipid accumulation in hepatocytes by decreasing the intracellular and extracellular lipid contents in steatotic FaO cells; (ii) decreased oxidative stress in endothelial cells by significantly reducing lipoperoxidation and free radical production, as well as, attenuating the nitric oxide release; (ii) high levels of circulating FAs reduced the binding of carvacrol to albumin. The beneficial effects of TE and carvacrol on both hepatic and endothelial cells point to a nutraceutical potential. However, high levels of circulating FAs, such as those occurring in metabolic disorders, might hinder the carvacrol transport, bio-distribution, and pharmacodynamics.

Keywords: carvacrol, endothelial dysfunction, fatty acids, non-alcoholic fatty liver diseases, serum albumin

Procedia PDF Downloads 198
7555 Mature Field Rejuvenation Using Hydraulic Fracturing: A Case Study of Tight Mature Oilfield with Reveal Simulator

Authors: Amir Gharavi, Mohamed Hassan, Amjad Shah

Abstract:

The main characteristics of unconventional reservoirs include low-to ultra low permeability and low-to-moderate porosity. As a result, hydrocarbon production from these reservoirs requires different extraction technologies than from conventional resources. An unconventional reservoir must be stimulated to produce hydrocarbons at an acceptable flow rate to recover commercial quantities of hydrocarbons. Permeability for unconventional reservoirs is mostly below 0.1 mD, and reservoirs with permeability above 0.1 mD are generally considered to be conventional. The hydrocarbon held in these formations naturally will not move towards producing wells at economic rates without aid from hydraulic fracturing which is the only technique to assess these tight reservoir productions. Horizontal well with multi-stage fracking is the key technique to maximize stimulated reservoir volume and achieve commercial production. The main objective of this research paper is to investigate development options for a tight mature oilfield. This includes multistage hydraulic fracturing and spacing by building of reservoir models in the Reveal simulator to model potential development options based on sidetracking the existing vertical well. To simulate potential options, reservoir models have been built in the Reveal. An existing Petrel geological model was used to build the static parts of these models. A FBHP limit of 40bars was assumed to take into account pump operating limits and to maintain the reservoir pressure above the bubble point. 300m, 600m and 900m lateral length wells were modelled, in conjunction with 4, 6 and 8 stages of fracs. Simulation results indicate that higher initial recoveries and peak oil rates are obtained with longer well lengths and also with more fracs and spacing. For a 25year forecast, the ultimate recovery ranging from 0.4% to 2.56% for 300m and 1000m laterals respectively. The 900m lateral with 8 fracs 100m spacing gave the highest peak rate of 120m3/day, with the 600m and 300m cases giving initial peak rates of 110m3/day. Similarly, recovery factor for the 900m lateral with 8 fracs and 100m spacing was the highest at 2.65% after 25 years. The corresponding values for the 300m and 600m laterals were 2.37% and 2.42%. Therefore, the study suggests that longer laterals with 8 fracs and 100m spacing provided the optimal recovery, and this design is recommended as the basis for further study.

Keywords: unconventional, resource, hydraulic, fracturing

Procedia PDF Downloads 300
7554 A Model for a Continuous Professional Development Program for Early Childhood Teachers in Villages: Insights from the Coaching Pilot in Indonesia

Authors: Ellen Patricia, Marilou Hyson

Abstract:

Coaching has been showing great potential to strengthen the impact of brief group trainings and help early childhood teachers solve specific problems at work with the goal of raising the quality of early childhood services. However, there have been some doubts about the benefits that village teachers can receive from coaching. It is perceived that village teachers may struggle with the thinking skills needed to make coaching beneficial. Furthermore, there are reservations about whether principals and supervisors in villages are open to coaching’s facilitative approach, as opposed to the directive approach they have been using. As such, the use of coaching to develop the professionalism of early childhood teachers in the villages needs to be examined. The Coaching Pilot for early childhood teachers in Indonesia villages provides insights for the above issues. The Coaching Pilot is part of the ECED Frontline Pilot, which is a collaboration project between the Government of Indonesia and the World Bank with the support from the Australian Government (DFAT). The Pilot started with coordinated efforts with the local government in two districts to select principals and supervisors who have been equipped with basic knowledge about early childhood education to take part in 2-days coaching training. Afterwards, the participants were asked to collect 25 hours of coaching early childhood teachers who have participated in the Enhanced Basic Training for village teachers. The participants who completed this requirement were then invited to come for an assessment of their coaching skills. Following that, a qualitative evaluation was conducted using in-depth interviews and Focus Group Discussion techniques. The evaluation focuses on the impact of the coaching pilot in helping the village teachers to develop in their professionalism, as well as on the sustainability of the intervention. Results from the evaluation indicated that although their low education may limit their thinking skills, village teachers benefited from the coaching that they received. Moreover, the evaluation results also suggested that with enough training and support, principals and supervisors in the villages were able to provide an adequate coaching service for the teachers. On top of that, beyond this small start, interest is growing, both within the pilot districts and even beyond, due to word of mouth of the benefits that the Coaching Pilot has created. The districts where coaching was piloted have planned to continue the coaching program, since a number of early childhood teachers have requested to be coached, and a number of principals and supervisors have also requested to be trained as a coach. Furthermore, the Association for Early Childhood Educators in Indonesia has started to adopt coaching into their program. Although further research is needed, the Coaching Pilot suggests that coaching can positively impact early childhood teachers in villages, and village principals and supervisors can become a promising source of future coaches. As such, coaching has a significant potential to become a sustainable model for a continuous professional development program for early childhood teachers in villages.

Keywords: coaching, coaching pilot, early childhood teachers, principals and supervisors, village teachers

Procedia PDF Downloads 244
7553 Photoreflectance Anisotropy Spectroscopy of Coupled Quantum Wells

Authors: J. V. Gonzalez Fernandez, T. Mozume, S. Gozu, A. Lastras Martinez, L. F. Lastras Martinez, J. Ortega Gallegos, R. E. Balderas Navarro

Abstract:

We report on a theoretical-experimental study of photoreflectance anisotropy (PRA) spectroscopy of coupled double quantum wells. By probing the in-plane interfacial optical anisotropies, we demonstrate that PRA spectroscopy has the capacity to detect and distinguish layers with quantum dimensions. In order to account for the experimental PRA spectra, we have used a theoretical model at k=0 based on a linear electro-optic effect through a piezoelectric shear strain.

Keywords: coupled double quantum well (CDQW), linear electro-optic (LEO) effect, photoreflectance anisotropy (PRA), piezoelectric shear strain

Procedia PDF Downloads 699
7552 Monte Carlo Pathwise Sensitivities for Barrier Options with Application to Coco-Bond Calibration

Authors: Thomas Gerstner, Bastian von Harrach, Daniel Roth

Abstract:

The Monte Carlo pathwise sensitivities approach is well established for smooth payoff functions. In this work, we present a new Monte Carlo algorithm that is able to calculate the pathwise sensitivities for discontinuous payoff functions. Our main tool is the one-step survival idea of Glasserman and Staum. Although this technique yields to new terms per observation, while differentiating, the algorithm is still efficient. As an application, we use the results for a two-dimensional calibration of a Coco-Bond, which we model with different types of discretely monitored barrier options.

Keywords: Monte Carlo, discretely monitored barrier options, pathwise sensitivities, Coco-Bond

Procedia PDF Downloads 362
7551 Numerical Studying the Real Analysis of the Seismic Response of the Soil

Authors: Noureddine Litim

Abstract:

This work is to theoretical and numerical studying the real analysis of the seismic response of the soil with an Elasto-plastic behavior. To perform this analysis, we used different core drilling performed at the tunnel T4 in El Horace section of the highway east-west. The two-dimensional model (2d) was established by the code of finite element plaxis to estimate the displacement amplification and accelerations caused by the seismic wave in the different core drilling and compared with the factor of acceleration given by the RPA (2003) in the area studying. Estimate the displacement amplification and accelerations caused by the seismic wave.

Keywords: seismic response, deposition of soil, plaxis, elasto-plastic

Procedia PDF Downloads 109
7550 Availability Analysis of a Power Plant by Computer Simulation

Authors: Mehmet Savsar

Abstract:

Reliability and availability of power stations are extremely important in order to achieve a required level of power generation. In particular, in the hot desert climate of Kuwait, reliable power generation is extremely important because of cooling requirements at temperatures exceeding 50-centigrade degrees. In this paper, a particular power plant, named Sabiya Power Plant, which has 8 steam turbines and 13 gas turbine stations, has been studied in detail; extensive data are collected; and availability of station units are determined. Furthermore, a simulation model is developed and used to analyze the effects of different maintenance policies on availability of these stations. The results show that significant improvements can be achieved in power plant availabilities if appropriate maintenance policies are implemented.

Keywords: power plants, steam turbines, gas turbines, maintenance, availability, simulation

Procedia PDF Downloads 623