Search results for: production flow coordination
1027 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes
Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert
Abstract:
The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry
Procedia PDF Downloads 871026 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather
Procedia PDF Downloads 1641025 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends
Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman
Abstract:
Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment
Procedia PDF Downloads 3381024 Effect of Plant Growth Promoting Rhizobacteria on the Germination and Early Growth of Onion (Allium cepa)
Authors: Dragana R. Stamenov, Simonida S. Djuric, Timea Hajnal Jafari
Abstract:
Plant growth promoting rhizobacteria (PGPR) are a heterogeneous group of bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, enhancing the growth of the plant either directly and/or indirectly. Increased crop productivity associated with the presence of PGPR has been observed in a broad range of plant species, such as raspberry, chickpeas, legumes, cucumber, eggplant, pea, pepper, radish, tobacco, tomato, lettuce, carrot, corn, cotton, millet, bean, cocoa, etc. However, until now there has not been much research about influences of the PGPR on the growth and yield of onion. Onion (Allium cepa L.), of the Liliaceae family, is a species of great economic importance, widely cultivated all over the world. The aim of this research was to examine the influence of plant growth promoting bacteria Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, Bacillus subtillis and Azotobacter sp. on the seed germination and early growth of onion (Allium cepa). PGPR Azotobacter sp., Bacillus subtilis, Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, from the collection of the Faculty of Agriculture, Novi Sad, Serbia, were used as inoculants. The number of cells in 1 ml of the inoculum was 10⁸ CFU/ml. The control variant was not inoculated. The effect of PGPR on seed germination and hypocotyls length of Allium cepa was evaluated in controlled conditions, on filter paper in the dark at 22°C, while effect on the plant length and mass in semicontrol conditions, in 10 l volume vegetative pots. Seed treated with fungicide and untreated seed were used. After seven days the percentage of germination was determined. After seven and fourteen days hypocotil length was measured. Fourteen days after germination, length and mass of plants were measured. Application of Pseudomonas sp. Dragana and Kiš and Bacillus subtillis had a negative effect on onion seed germination, while the use of Azotobacter sp. gave positive results. On average, application of all investigated inoculants had a positive effect on the measured parameters of plant growth. Azotobacter sp. had the greatest effect on the hypocotyls length, length and mass of the plant. In average, better results were achieved with untreated seeds in compare with treated. Results of this study have shown that PGPR can be used in the production of onion.Keywords: germination, length, mass, microorganisms, onion
Procedia PDF Downloads 2361023 Information Technology Capabilities and Organizational Performance: Mediating Role of Strategic Benefits of It: A Comparison between China and Pakistan
Authors: Rehan Ullah
Abstract:
The primary purpose of the study is to observe the relationship that exists between the organizational information technology (IT) capabilities and the organizational performance in China and Pakistan. Nations like China and Pakistan utilize modern techno-how to enhance their production endeavors. Therefore, making a wide-ranging comparison of the manufacturing services between China and Pakistan was chosen due to numerous reasons. One reason for carrying out this comparison is to determine how IT of the two countries enhances organizational competency on small and medium-sized manufacturing enterprises (SMEs). The study hypothesized that organizational IT capabilities (IT infrastructure, IT competence) have a positive influence on organizational performance and the strategic benefits of IT have a mediating effect on the relationship between IT capability and organizational performance. To investigate the relationship between IT capabilities and organizational performance, surveys were sent to managers of small, medium-sized manufacturing organizations located in the southwestern region, Sichuan province of China, and Pakistani companies, which are located in Islamabad, Lahore, and Karachi. These cities were selected as typical representatives of each country. Organizational performance has been measured in terms of profitability, organizational success, growth, market share, and innovativeness. Out of 400 surveys distributed to different manufacturing organizations, 303 usable and valid responses were received that are analyzed in this research. The data were examined using SPSS and Smart PLS computer software. The results of the study, including the descriptive statistics of each variable, are used. The outer model has been measured with considerations to content validity, discriminant validity, and convergent validity. The path coefficients among the constructs were also computed when analyzing the structural model using the bootstrapping technique. The analysis of data from both China and Pakistan yields an identical but unique result. The results show that IT infrastructure, IT competence, strategic benefits of IT are all correlated to the performance of the organizations. Moreover, strategic benefits of IT have been proved to mediate the relationship between IT capabilities and organization performance. The author, concerning the role of IT on the performance of an organization, highlights the different aspects as well as its benefits in an organization. The overall study concludes several implications for both managers and academicians. It also provides the limitations of the study and offers recommendations for future studies and practice.Keywords: organizational performance, IT capabilities, IT infrastructure, IT competence, strategic benefits of IT, China, Pakistan
Procedia PDF Downloads 931022 Modification of a Commercial Ultrafiltration Membrane by Electrospray Deposition for Performance Adjustment
Authors: Elizaveta Korzhova, Sebastien Deon, Patrick Fievet, Dmitry Lopatin, Oleg Baranov
Abstract:
Filtration with nanoporous ultrafiltration membranes is an attractive option to remove ionic pollutants from contaminated effluents. Unfortunately, commercial membranes are not necessarily suitable for specific applications, and their modification by polymer deposition is a fruitful way to adapt their performances accordingly. Many methods are usually used for surface modification, but a novel technique based on electrospray is proposed here. Various quantities of polymers were deposited on a commercial membrane, and the impact of the deposit is investigated on filtration performances and discussed in terms of charge and hydrophobicity. The electrospray deposition is a technique which has not been used for membrane modification up to now. It consists of spraying small drops of polymer solution under a high voltage between the needle containing the solution and the metallic support on which membrane is stuck. The advantage of this process lies in the small quantities of polymer that can be coated on the membrane surface compared with immersion technique. In this study, various quantities (from 2 to 40 μL/cm²) of solutions containing two charged polymers (13 mmol/L of monomer unit), namely polyethyleneimine (PEI) and polystyrene sulfonate (PSS), were sprayed on a negatively charged polyethersulfone membrane (PLEIADE, Orelis Environment). The efficacy of the polymer deposition was then investigated by estimating ion rejection, permeation flux, zeta-potential and contact angle before and after the polymer deposition. Firstly, contact angle (θ) measurements show that the surface hydrophilicity is notably improved by coating both PEI and PSS. Moreover, it was highlighted that the contact angle decreases monotonously with the amount of sprayed solution. Additionally, hydrophilicity enhancement was proved to be better with PSS (from 62 to 35°) than PEI (from 62 to 53°). Values of zeta-potential (ζ were estimated by measuring the streaming current generated by a pressure difference on both sides of a channel made by clamping two membranes. The ζ-values demonstrate that the deposits of PSS (negative at pH=5.5) allow an increase of the negative membrane charge, whereas the deposits of PEI (positive) lead to a positive surface charge. Zeta-potentials measurements also emphasize that the sprayed quantity has little impact on the membrane charge, except for very low quantities (2 μL/m²). The cross-flow filtration of salt solutions containing mono and divalent ions demonstrate that polymer deposition allows a strong enhancement of ion rejection. For instance, it is shown that rejection of a salt containing a divalent cation can be increased from 1 to 20 % and even to 35% by deposing 2 and 4 μL/cm² of PEI solution, respectively. This observation is coherent with the reversal of the membrane charge induced by PEI deposition. Similarly, the increase of negative charge induced by PSS deposition leads to an increase of NaCl rejection from 5 to 45 % due to electrostatic repulsion of the Cl- ion by the negative surface charge. Finally, a notable fall in the permeation flux due to the polymer layer coated at the surface was observed and the best polymer concentration in the sprayed solution remains to be determined to optimize performances.Keywords: ultrafiltration, electrospray deposition, ion rejection, permeation flux, zeta-potential, hydrophobicity
Procedia PDF Downloads 1861021 Assessing Social Sustainability for Biofuels Supply Chains: The Case of Jet Biofuel in Brazil
Authors: Z. Wang, F. Pashaei Kamali, J. A. Posada Duque, P. Osseweijer
Abstract:
Globally, the aviation sector is seeking for sustainable solutions to comply with the pressure to reduce greenhouse gas emissions. Jet fuels derived from biomass are generally perceived as a sustainable alternative compared with their fossil counterparts. However, the establishment of jet biofuels supply chains will have impacts on environment, economy, and society. While existing studies predominantly evaluated environmental impacts and techno-economic feasibility of jet biofuels, very few studies took the social / socioeconomic aspect into consideration. Therefore, this study aims to provide a focused evaluation of social sustainability for aviation biofuels with a supply chain perspective. Three potential jet biofuel supply chains based on different feedstocks, i.e. sugarcane, eucalyptus, and macauba were analyzed in the context of Brazil. The assessment of social sustainability is performed with a process-based approach combined with input-output analysis. Over the supply chains, a set of social sustainability issues including employment, working condition (occupational accident and wage level), labour right, education, equity, social development (GDP and trade balance) and food security were evaluated in a (semi)quantitative manner. The selection of these social issues is based on two criteria: (1) the issues are highly relevant and important to jet biofuel production; (2) methodologies are available for assessing these issues. The results show that the three jet biofuel supply chains lead to a differentiated level of social effects. The sugarcane-based supply chain creates the highest number of jobs whereas the biggest contributor of GDP turns out to be the macauba-based supply chain. In comparison, the eucalyptus-based supply chain stands out regarding working condition. It is also worth noting that biojet fuel supply chain with high level of social benefits could result in high level of social concerns (such as occupational accident, violation of labour right and trade imbalance). Further research is suggested to investigate the possible interactions between different social issues. In addition, the exploration of a wider range of social effects is needed to expand the comprehension of social sustainability for biofuel supply chains.Keywords: biobased supply chain, jet biofuel, social assessment, social sustainability, socio-economic impacts
Procedia PDF Downloads 2631020 Production and Evaluation of Physicochemical, Nutritional, Sensorial and Microbiological Properties of Mixed Fruit Juice Blend Prepared from Apple, Orange and Mosambi
Authors: Himalaya Patir, Bitupon Baruah, Sanjay Gayary, Subhajit Ray
Abstract:
In recent age significant importance is given for the development of nutritious and health beneficial foods. Fruit juices collected from different fruits when blended that improves not only the physicochemical and nutritional properties but also enhance the sensorial or organoleptic properties. The study was carried out to determine the physico-chemical, nutritional, microbiological analysis and sensory evaluation of mixed fruit juice blend. Juice of orange (Citrus sinensis), apple (Malus domestica), mosambi (Citrus limetta) were blended in the ratio of sample-I (30% apple:30% orange:40% mosambi), sample-II ( 40% apple :30% orange :30% mosambi), sample-III (30% apple :40% orange :30% mosambi) , sample-IV (50% apple :30% orange :20% mosambi), sample-V (30% apple:20% orange:50% mosambi), sample-VI (20% apple :50% orange :30% mosambi) to evaluate all quality characteristics. Their colour characteristics in terms of hue angle, chroma and colour difference (∆E) were evaluated. The physico-chemical parameters analysis carried out were total soluble solids (TSS), total titratable acidity (TTA), pH, acidity (FA), volatile acidity (VA), pH, and vitamin C. There were significant differences (p˂0.05) in the TSS of the samples. However, sample-V (30% apple: 20% orange: 50% mosambi) provides the highest TSS of 9.02gm and significantly differed from other samples (p˂0.05). Sample-IV (50% apple: 30% orange: 20% mosambi) was shown the highest titratable acidity (.59%) in comparison to other samples. The highest value of pH was found as 5.01 for sample-IV (50% apple: 30% orange: 20% mosambi). Sample-VI (20% apple: 50% orange :30% mosambi) blend has the highest hue angle, chroma and colour changes of 72.14,25.29 and 54.48 and vitamin C, i.e. Ascorbic acid (.33g/l) content compared to other samples. The nutritional compositions study showed that, sample- VI (20% apple: 50% orange: 30% mosambi) has the significantly higher carbohydrate (51.67%), protein (.78%) and ash (1.24%) than other samples, while sample-V (30% apple: 20% orange: 50% mosambi) has higher dietary fibre (12.84%) and fat (2.82%) content. Microbiological analysis of all samples in terms of total plate count (TPC) ranges from 44-60 in 101 dilution and 4-5 in 107 dilutions and was found satisfactory. Moreover, other pathogenic bacterial count was found nil. The general acceptability of the mixed fruit juice blend samples were moderately liked by the panellists, and sensorial quality studies showed that sample-V (30% apple: 20% orange: 50% mosambi) contains highest overall acceptability of 8.37 over other samples and can be considered good for consumption.Keywords: microbiological, nutritional, physico-chemical, sensory properties
Procedia PDF Downloads 1771019 Solids and Nutrient Loads Exported by Preserved and Impacted Low-Order Streams: A Comparison among Water Bodies in Different Latitudes in Brazil
Authors: Nicolas R. Finkler, Wesley A. Saltarelli, Taison A. Bortolin, Vania E. Schneider, Davi G. F. Cunha
Abstract:
Estimating the relative contribution of nonpoint or point sources of pollution in low-orders streams is an important tool for the water resources management. The location of headwaters in areas with anthropogenic impacts from urbanization and agriculture is a common scenario in developing countries. This condition can lead to conflicts among different water users and compromise ecosystem services. Water pollution also contributes to exporting organic loads to downstream areas, including higher order rivers. The purpose of this research is to preliminarily assess nutrients and solids loads exported by water bodies located in watersheds with different types of land uses in São Carlos - SP (Latitude. -22.0087; Longitude. -47.8909) and Caxias do Sul - RS (Latitude. -29.1634, Longitude. -51.1796), Brazil, using regression analysis. The variables analyzed in this study were Total Kjeldahl Nitrogen (TKN), Nitrate (NO3-), Total Phosphorus (TP) and Total Suspended Solids (TSS). Data were obtained in October and December 2015 for São Carlos (SC) and in November 2012 and March 2013 for Caxias do Sul (CXS). Such periods had similar weather patterns regarding precipitation and temperature. Altogether, 11 sites were divided into two groups, some classified as more pristine (SC1, SC4, SC5, SC6 and CXS2), with predominance of native forest; and others considered as impacted (SC2, SC3, CXS1, CXS3, CXS4 and CXS5), presenting larger urban and/or agricultural areas. Previous linear regression was applied for data on flow and drainage area of each site (R² = 0.9741), suggesting that the loads to be assessed had a significant relationship with the drainage areas. Thereafter, regression analysis was conducted between the drainage areas and the total loads for the two land use groups. The R² values were 0.070, 0.830, 0.752 e 0.455 respectively for SST, TKN, NO3- and TP loads in the more preserved areas, suggesting that the loads generated by runoff are significant in these locations. However, the respective R² values for sites located in impacted areas were respectively 0.488, 0.054, 0.519 e 0.059 for SST, TKN, NO3- and P loads, indicating a less important relationship between total loads and runoff as compared to the previous scenario. This study suggests three possible conclusions that will be further explored in the full-text article, with more sampling sites and periods: a) In preserved areas, nonpoint sources of pollution are more significant in determining water quality in relation to the studied variables; b) The nutrient (TKN and P) loads in impacted areas may be associated with point sources such as domestic wastewater discharges with inadequate treatment levels; and c) The presence of NO3- in impacted areas can be associated to the runoff, particularly in agricultural areas, where the application of fertilizers is common at certain times of the year.Keywords: land use, linear regression, point and non-point pollution sources, streams, water resources management
Procedia PDF Downloads 3031018 Qualitative Modeling of Transforming Growth Factor Beta-Associated Biological Regulatory Network: Insight into Renal Fibrosis
Authors: Ayesha Waqar Khan, Mariam Altaf, Jamil Ahmad, Shaheen Shahzad
Abstract:
Kidney fibrosis is an anticipated outcome of possibly all types of progressive chronic kidney disease (CKD). Epithelial-mesenchymal transition (EMT) signaling pathway is responsible for production of matrix-producing fibroblasts and myofibroblasts in diseased kidney. In this study, a discrete model of TGF-beta (transforming growth factor) and CTGF (connective tissue growth factor) was constructed using Rene Thomas formalism to investigate renal fibrosis turn over. The kinetic logic proposed by Rene Thomas is a renowned approach for modeling of Biological Regulatory Networks (BRNs). This modeling approach uses a set of constraints which represents the dynamics of the BRN thus analyzing the pathway and predicting critical trajectories that lead to a normal or diseased state. The molecular connection between TGF-beta, Smad 2/3 (transcription factor) phosphorylation and CTGF is modeled using GenoTech. The order of BRN is CTGF, TGF-B, and SMAD3 respectively. The predicted cycle depicts activation of TGF-B (TGF-β) via cleavage of its own pro-domain (0,1,0) and presentation to TGFR-II receptor phosphorylating SMAD3 (Smad2/3) in the state (0,1,1). Later TGF-B is turned off (0,0,1) thereby activating SMAD3 that further stimulates the expression of CTGF in the state (1,0,1) and itself turns off in (1,0,0). Elevated CTGF expression reactivates TGF-B (1,1,0) and the cycle continues. The predicted model has generated one cycle and two steady states. Cyclic behavior in this study represents the diseased state in which all three proteins contribute to renal fibrosis. The proposed model is in accordance with the experimental findings of the existing diseased state. Extended cycle results in enhanced CTGF expression through Smad2/3 and Smad4 translocation in the nucleus. The results suggest that the system converges towards organ fibrogenesis if CTGF remains constructively active along with Smad2/3 and Smad 4 that plays an important role in kidney fibrosis. Therefore, modeling regulatory pathways of kidney fibrosis will escort to the progress of therapeutic tools and real-world useful applications such as predictive and preventive medicine.Keywords: CTGF, renal fibrosis signaling pathway, system biology, qualitative modeling
Procedia PDF Downloads 1771017 Properties of Ettringite According to Hydration, Dehydration and Carbonation Process
Authors: Bao Chen, Frederic Kuznik, Matthieu Horgnies, Kevyn Johannes, Vincent Morin, Edouard Gengembre
Abstract:
The contradiction between energy consumption, environment protection, and social development is increasingly intensified during recent decade years. At the same time, as avoiding fossil-fuels-thirsty, people turn their view on the renewable green energy, such as solar energy, wind power, hydropower, etc. However, due to the unavoidable mismatch on geography and time for production and consumption, energy storage seems to be one of the most reasonable solutions to enlarge the use of renewable energies. Thermal energy storage (TES), a branch of energy storage solution, mainly concerns the capture, storage and consumption of thermal energy for later use in different scales (individual house, apartment, district, and city). In TES research field, sensible heat and latent heat storage have been widely studied and presented at an advanced stage of development. Compared with them, thermochemical energy storage is still at initial phase but provides a relatively higher theoretical energy density and a long shelf life without heat dissipation during storage. Among thermochemical energy storage materials, inorganic pure or composite compounds like micro-porous silica gel, SrBr₂ hydrate and MgSO₄-Zeolithe have been reported as promising to be integrated into thermal energy storage systems. However, the cost of these materials, one of main obstacles, may hinder the wide use of energy storage systems in real application scales (individual house, apartment, district and even city). New studies on ettringite show promising application for thermal energy storage since its high energy density and large resource from cementitious materials. Ettringite, or calcium trisulfoaluminate hydrate, of which chemical formula is 3CaO∙Al₂O₃∙3CaSO₄∙32H₂O, or C₆AS̅₃H₃₂ as known in cement chemistry notation, is one of the most important members of AFt group. As a common compound in hydrated cements, ettringite has been widely studied for its performances in construction but barely known as a thermochemical material. For this study, we summarize available data about the structure and properties of ettringite and its metastable phase (meta-ettringite), including the processes of hydration, thermal conversion and carbonation durability for thermal energy storage.Keywords: building materials, ettringite, meta-ettringite, thermal energy storage
Procedia PDF Downloads 2111016 Investigation of Dry-Blanching and Freezing Methods of Fruits
Authors: Epameinondas Xanthakis, Erik Kaunisto, Alain Le-Bail, Lilia Ahrné
Abstract:
Fruits and vegetables are characterized as perishable food matrices due to their short shelf life as several deterioration mechanisms are being involved. Prior to the common preservation methods like freezing or canning, fruits and vegetables are being blanched in order to inactivate deteriorative enzymes. Both conventional blanching pretreatments and conventional freezing methods hide drawbacks behind their beneficial impacts on the preservation of those matrices. Conventional blanching methods may require longer processing times, leaching of minerals and nutrients due to the contact with the warm water which in turn leads to effluent production with large BOD. An important issue of freezing technologies is the size of the formed ice crystals which is also critical for the final quality of the frozen food as it can cause irreversible damage to the cellular structure and subsequently to degrade the texture and the colour of the product. Herein, the developed microwave blanching methodology and the results regarding quality aspects and enzyme inactivation will be presented. Moreover, heat transfer phenomena, mass balance, temperature distribution, and enzyme inactivation (such as Pectin Methyl Esterase and Ascorbic Acid Oxidase) of our microwave blanching approach will be evaluated based on measurements and computer modelling. The present work is part of the COLDμWAVE project which aims to the development of an innovative environmentally sustainable process for blanching and freezing of fruits and vegetables with improved textural and nutritional quality. In this context, COLDµWAVE will develop tailored equipment for MW blanching of vegetables that has very high energy efficiency and no water consumption. Furthermore, the next steps of this project regarding the development of innovative pathways in MW assisted freezing to improve the quality of frozen vegetables, by exploring in depth previous results acquired by the authors, will be presented. The application of MW assisted freezing process on fruits and vegetables it is expected to lead to improved quality characteristics compared to the conventional freezing. Acknowledgments: COLDμWAVE has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grand agreement No 660067.Keywords: blanching, freezing, fruits, microwave blanching, microwave
Procedia PDF Downloads 2651015 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties
Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.
Abstract:
Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant
Procedia PDF Downloads 2491014 Breast Cancer Cellular Immunotherapies
Authors: Zahra Shokrolahi, Mohammad Reza Atashzar
Abstract:
The goals of treating patients with breast cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. The term of cellular immunotherapy refers to the administration of living cells to a patient; this type of immunotherapy can be active, such as a dendritic cell (DC) vaccine, in that the cells can stimulate an anti-tumour response in the patient, or the therapy can be passive, whereby the cells have intrinsic anti-tumour activity; this is known as adoptive cell transfer (ACT) and includes the use of autologous or allogeneic lymphocytes that may, or may not, be modified. The most important breast cancer cellular immunotherapies involving the use of T cells and natural killer (NK) cells in adoptive cell transfer, as well as dendritic cells vaccines. T cell-based therapies including tumour-infiltrating lymphocytes (TILs), engineered TCR-T cells, chimeric antigen receptor (CAR T cell), Gamma-delta (γδ) T cells, natural killer T (NKT) cells. NK cell-based therapies including lymphokine-activated killers (LAK), cytokine-induced killer (CIK) cells, CAR-NK cells. Adoptive cell therapy has some advantages and disadvantages some. TILs cell strictly directed against tumor-specific antigens but are inactive against tumor changes due to immunoediting. CIK cell have MHC-independent cytotoxic effect and also need concurrent high dose IL-2 administration. CAR T cell are MHC-independent; overcome tumor MHC molecule downregulation; potent in recognizing any cell surface antigen (protein, carbohydrate or glycolipid); applicable to a broad range of patients and T cell populations; production of large numbers of tumor-specific cells in a moderately short period of time. Meanwhile CAR T cells capable of targeting only cell surface antigens; lethal toxicity due to cytokine storm reported. Here we present the most popular cancer cellular immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials .To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure.Keywords: breast cancer , cell therapy , CAR T cell , CIK cells
Procedia PDF Downloads 1291013 MTT Assay-Guided Isolation of a Cytotoxic Lead from Hedyotis umbellata and Its Mechanism of Action against Non-Small Cell Lung Cancer A549 Cells
Authors: Kirti Hira, A. Sajeli Begum, S. Mahibalan, Poorna Chandra Rao
Abstract:
Introduction: Cancer is one of the leading causes of death worldwide. Although existing therapy effectively kills cancer cells, they do affect normal growing cells leading to many undesirable side effects. Hence there is need to develop effective as well as safe drug molecules to combat cancer, which is possible through phyto-research. The currently available plant-derived blockbuster drugs are the example for this. In view of this, an investigation was done to identify cytotoxic lead molecules from Hedyotis umbellata (Family Rubiaceae), a widely distributed weed in India. Materials and Methods: The methanolic extract of the whole plant of H. umbellata (MHU), prepared through Soxhlet extraction method was further fractionated with diethyl ether and n-butanol, successively. MHU, ether fraction (EMHU) and butanol fraction (BMHU) were lyophilized and were tested for the cytotoxic effect using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay against non-small cell lung cancer (NSCLC) A549 cell lines. The potentially active EMHU was subjected to chromatographic purification using normal-phase silica columns, in order to isolate the responsible bioactive compounds. The isolated pure compounds were tested for their cytotoxic effect by MTT assay against A549 cells. Compound-3, which was found to be most active, was characterized using IR, 1H- and 13C-NMR and MS analysis. The study was further extended to decipher the mechanism of action of cytotoxicity of compound-3 against A549 cells through various in vitro cellular models. Cell cycle analysis was done using flow cytometry following PI (Propidium Iodide) staining. Protein analysis was done using Western blot technique. Results: Among MHU, EMHU, and BMHU, the non-polar fraction EMHU demonstrated a significant dose-dependent cytotoxic effect with IC50 of 67.7μg/ml. Chromatography of EMHU yielded seven compounds. MTT assay of isolated compounds explored compound-3 as potentially active one, which inhibited the growth of A549 cells with IC50value of 14.2μM. Further, compound-3 was identified as cedrelopsin, a coumarin derivative having molecular weight of 260. Results of in vitro mechanistic studies explained that cedrelopsin induced cell cycle arrest at G2/M phase and down-regulated the expression of G2/M regulatory proteins such as cyclin B1, cdc2, and cdc25C, dose dependently. This is the first report that explores the cytotoxic mechanism of cedrelopsin. Conclusion: Thus a potential small lead molecule, cedrelopsin isolated from H. umbellata, showing antiproliferative effect mediated by G2/M arrest in A549 cells was discovered. The effect of cedrelopsin against other cancer cell lines followed by in vivo studies can be performed in future to develop a new drug candidate.Keywords: A549, cedrelopsin, G2/M phase, Hedyotis umbellata
Procedia PDF Downloads 1741012 Investigation of the Bioactivity and Efficacy of Personal Care Products Formulated Using Extracts of Azadirachta indica A. Juss
Authors: Ade O. Oyewole, Sunday O. Okoh, Ruth O. Ishola, Adenike D. Odusote, Chima C. Igwe, Gloria N. Elemo, Anthony I. Okoh
Abstract:
Azadirachta indica (Neem tree) also referred to as an all-purpose tree is used in a wide range of medical preparations in tropical and subtropical countries for prevention and management of various livestock, crops products and human diseases. In Nigeria however, the potentials of this plant have not been fully exploited thus it causes an environmental nuisance during the fruiting season. With a rise in the demand for herbal personal care products globally extracts from different parts of the neem plant were used as the bio-active ingredients in the formulation of personal care products. In this study, formulated neem soap, body cream, lotion, toothpaste and shampoo are analyzed to determine their antibacterial, antifungal, and toxicity properties. The efficacies of these products for management of infectious diseases, both oral and dermal, were also investigated in vitro. Oil from the neem seeds obtained using a mechanical press and acetone extracts of both the neem bark and leaves obtained by the maceration method were used in the formulation and production of the neem personal care products. The antimicrobial and toxicity properties of these products were investigated by agar diffusion, and haemolytic methods respectively. The five neem products (NPs) exhibited strong antibacterial activities against four multi–drug resistant pathogenic and three none pathogenic bacterial strains (Escherichia coli (180), Listeria ivanovii, Staphylococcus aureus, Enterobacter cloacae, Vibro spp., Streptococcus uberis, Mycobacterium smegmatis), except the neem lotion with insignificant activity against E. coli and S. aureus. The minimum inhibitory concentration (MIC) range was between 0.20-0.40 mg/ mL. The 5 NPs demonstrated moderate activity against three clinical dermatophytes isolates (Tinea corporis, Tinea capitis, and Tinea cruiz) as well as one fungal strain (Candida albican) with the MIC ranging between 0.30 - 0.50 mg/ mL and 0.550 mg/mL respectively. The soap and shampoo were the most active against test bacteria and fungi. The haemolytic analysis results on the 5 NPs indicated none toxicity at 0.50 mg/ mL in sheep red blood cells (SRBC).Keywords: antimicrobial, Azadirachta indica, multi–drug resistant pathogenic bacteria, personal care products
Procedia PDF Downloads 2691011 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods
Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz
Abstract:
Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure
Procedia PDF Downloads 781010 Increasing the Competitiveness of Batik Products as a Ready-To-Wear Cash Material Through Patterned Batik Innovation with Quilting Technique, at Klampar Batik Tourism Village
Authors: Urip Wahyuningsih, Indarti, Yuhri Inang Prihatina
Abstract:
The current development of batik art has given rise to various batik industries. The emergence of the batik industry is in order to meet the needs of the increasing share of the batik fashion market. This gives rise to competitiveness between the batik industry to compete for a share of the existing batik clothing market. Conditions like this also occur in Klampar Pamekasan Maduira Village, as one of the Batik Tourism Villages in Indonesia, it must continue to improve by trying to maintain the characteristics of Klampar Pamekasan Madura batik fashion and must also always innovate so that it remains highly competitive so that it remains one of the places popular batik tourist destination. Ready-to-wear or ready-to-wear clothing is clothing that is mass produced and produced in various sizes and colors, which can be purchased directly and worn easily. Patterned batik cloth is basically batik cloth that has the pattern lines of the clothing parts arranged efficiently, so there is no need to bother designing the pattern layout of the clothing parts on the batik cloth to be cut. Quilting can be defined as the art of combining fabric materials of certain sizes and cuts to form unique motifs. Based on several things above, breakthrough production innovation is needed without abandoning the characteristic of Klampar Pamekasan Madura Batik as one of the Batik Tourism Villages in Indonesia. One innovation that can be done is creating ready-to-wear patterned batik clothing products using a quilting technique. The method used in this research is the Double Diamond Design Process method. This method is divided into 4 phases namely, discover (namely the stage of designing the theme of the ready-to-wear patterned batik fashion innovation concept using quilting techniques in the Batik Village, Klampar Village, Pamekasasan, Madura), define (determine the design summary and present challenges to the design), develop ( presents prototypes developed, tested, reviewed and refined) and deliver (selected designs are produced, pass final tests and are ready to be commercialized). The research produces patterned batik products that are ready to wear with quilting techniques that are validated by experts and accepted by the public.Keywords: competitiveness, ready to wear, innovation, quilting, klampar batik vllage
Procedia PDF Downloads 491009 Effect of Feeding Broilers on Diets Enriching With Omega-3 Fatty Acids Sources
Authors: Khalid Mahmoud Gaafar
Abstract:
In human diets , ω-6 and ω-3 are important essential fatty acids for immunity and health. However, considerable alteration in dietary patterns and contents has resulted in change of the consumption of such fatty acids ,with subsequent increase in the consumption of ω-6 fatty acids and a marked decrease in the consumption of ω-3 fatty acids. This dietary alteration has led to an imbalance in the ratio for ω-6/ω-3, which at 20:1 now differs considerably from the original ratio (1:1). Therefore, dietary supplements such as eggs and meat enriched with omega 3 are necessary to increase the consumption of ω-3 to meet the recommended need for ω-3. Foods that supply ω-6 fatty acids include soybean, palm , sunflower, and rapeseed oils, whereas foods that supply ω-3 fatty acids such as linseed and fish oils. Lin seed oils contain Alpha – linolenic acid (ALA), which can be converted to DHA and EPA in the birds body, with linseed oil containing more than 50% ALA. On the other hand, high doses of omega 6 sources in the diet may have deleterious effects on humans. Maintaining an optimum ratio of ω-3 and ω-6fatty acids not only improves performance but also prevents these health risks. The ratio of n-6:ω-3 fatty acids also plays an important role in the immune response, production performance of broilers and designing meat enriched with ω-3 polyunsaturated fatty acids (PUFAs). Birds of three experimental groups fed on basal starter (0-2nd weeks), grower (3rd -4th weeks) and finisher (5th week) rations. The first is control group fed during the grower-finisher periods on basic diet with two replicate (one fed on basic diet contain vegetable oil and the other don’t) without any additives. The three experimental groups (T1 – T2 –T3) fed during the grower- finisher periods on diets free from vegetable oils and contain of 5% of extruded mixture of soybean and linseed (60%:40%). The second (T2) and third (T3) experimental groups supplemented with vitamin B12 and enzyme mixture. The first experimental groups don’t receive vitamins or enzymes. The obtained results showed a significant increased growth performance, immune response, highest antioxidant activity and serum HDL with lowest serum LDL and triglycerides levels in all experimental groups compared with control group, which was highly significant in group fed on vitamin B6.Keywords: omega fatty acids, broiler, feeding, human health, growth performance, immunity
Procedia PDF Downloads 1111008 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests
Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda
Abstract:
One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling
Procedia PDF Downloads 2731007 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor
Authors: Mitali Saha, Soma Das
Abstract:
The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.Keywords: coconut oil, CCNT, cholesterol, biosensor
Procedia PDF Downloads 2811006 Surface Display of Lipase on Yarrowia lipolytica Cells
Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova
Abstract:
Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst
Procedia PDF Downloads 4821005 Experimenting with Clay 3D Printing Technology to Create an Undulating Facade
Authors: Naeimehsadat Hosseininam, Rui Wang, Dishita Shah
Abstract:
In recent years, new experimental approaches with the help of the new technology have bridged the gaps between the application of natural materials and creating unconventional forms. Clay has been one of the oldest building materials in all ancient civilizations. The availability and workability of clay have contributed to the widespread application of this material around the world. The aim of this experimental research is to apply the Clay 3D printing technology to create a load bearing and visually dynamic and undulating façade. Creation of different unique pieces is the most significant goal of this research which justifies the application of 3D printing technology instead of the conventional mass industrial production. This study provides an abbreviated overview of the similar cases which have used the Clay 3D printing to generate the corresponding prototypes. The study of these cases also helps in understanding the potential and flexibility of the material and 3D printing machine in developing different forms. In the next step, experimental research carried out by 3D printing of six various options which designed considering the properties of clay as well as the methodology of them being 3D printed. Here, the ratio of water to clay (W/C) has a significant role in the consistency of the material and the workability of the clay. Also, the size of the selected nozzle impacts the shape and the smoothness of the final surface. Moreover, the results of these experiments show the limitations of clay toward forming various slopes. The most notable consequence of having steep slopes in the prototype is an unpredicted collapse which is the result of internal tension in the material. From the six initial design ideas, the final prototype selected with the aim of creating a self-supported component with unique blocks that provides a possibility of installing the insulation system within the component. Apart from being an undulated façade, the presented prototype has the potential to be used as a fence and an interior partition (double-sided). The central shaft also provides a space to run services or insulation in different parts of the wall. In parallel to present the capability and potential of the clay 3D printing technology, this study illustrates the limitations of this system in some certain areas. There are inevitable parameters such as printing speed, temperature, drying speed that need to be considered while printing each piece. Clay 3D printing technology provides the opportunity to create variations and design parametric building components with the application of the most practiced material in the world.Keywords: clay 3D printing, material capability, undulating facade, load bearing facade
Procedia PDF Downloads 1401004 Accreditation and Quality Assurance of Nigerian Universities: The Management Imperative
Authors: F. O Anugom
Abstract:
The general functions of the university amongst other things include teaching, research and community service. Universities are recognized as the apex of learning, accumulating and imparting knowledge and skills of all kinds to students to enable them to be productive, earn their living and to make optimum contributions to national development. This is equivalent to the production of human capital in the form of high level manpower needed to administer the educational society, be useful to the society and manage the economy. Quality has become a matter of major importance for university education in Nigeria. Accreditation is the systematic review of educational programs to ensure that acceptable standards of education, scholarship and infrastructure are being maintained. Accreditation ensures that institution maintain quality. The process is designed to determine whether or not an institution has met or exceeded the published standards for accreditation, and whether it is achieving its mission and stated purposes. Ensuring quality assurance in accreditation process falls in the hands of university management which justified the need for this study. This study examined accreditation and quality assurance: the management imperative. Three research questions and three hypotheses guided the study. The design was a correlation survey with a population of 2,893 university administrators out of which 578 Heads of department and Dean of faculties were sampled. The instrument for data collection was titled Programme Accreditation Exercise scale with high levels of reliability. The research questions were answered with Pearson ‘r’ statistics. T-test statistics was used to test the hypotheses. It was found among others that the quality of accredited programme depends on the level of funding of universities in Nigeria. It was also indicated that quality of programme accreditation and physical facilities of universities in Nigeria have high relationship. But it was also revealed that programme accreditation is positively related to staffing in Nigerian universities. Based on the findings of the study, the researcher recommend that academic administrators should be included in the team of those who ensure quality programs in the universities. Private sector partnership should be encouraged to fund programs to ensure quality of programme in the universities. Independent agencies should be engaged to monitor the activities of accreditation teams to avoid bias.Keywords: accreditation, quality assurance, national universities commission , physical facilities, staffing
Procedia PDF Downloads 1931003 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism
Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng
Abstract:
Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell
Procedia PDF Downloads 1521002 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops
Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann
Abstract:
The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule
Procedia PDF Downloads 1501001 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 3231000 Methodology for Risk Assessment of Nitrosamine Drug Substance Related Impurities in Glipizide Antidiabetic Formulations
Authors: Ravisinh Solanki, Ravi Patel, Chhaganbhai Patel
Abstract:
Purpose: The purpose of this study is to develop a methodology for the risk assessment and evaluation of nitrosamine impurities in Glipizide antidiabetic formulations. Nitroso compounds, including nitrosamines, have emerged as significant concerns in drug products, as highlighted by the ICH M7 guidelines. This study aims to identify known and potential sources of nitrosamine impurities that may contaminate Glipizide formulations and assess their presence. By determining observed or predicted levels of these impurities and comparing them with regulatory guidance, this research will contribute to ensuring the safety and quality of combination antidiabetic drug products on the market. Factors contributing to the presence of genotoxic nitrosamine contaminants in glipizide medications, such as secondary and tertiary amines, and nitroso group-complex forming molecules, will be investigated. Additionally, conditions necessary for nitrosamine formation, including the presence of nitrosating agents, and acidic environments, will be examined to enhance understanding and mitigation strategies. Method: The methodology for the study involves the implementation of the N-Nitroso Acid Precursor (NAP) test, as recommended by the WHO in 1978 and detailed in the 1980 International Agency for Research on Cancer monograph. Individual glass vials containing equivalent to 10mM quantities of Glipizide is prepared. These compounds are dissolved in an acidic environment and supplemented with 40 mM NaNO2. The resulting solutions are maintained at a temperature of 37°C for a duration of 4 hours. For the analysis of the samples, an HPLC method is employed for fit-for-purpose separation. LC resolution is achieved using a step gradient on an Agilent Eclipse Plus C18 column (4.6 X 100 mm, 3.5µ). Mobile phases A and B consist of 0.1% v/v formic acid in water and acetonitrile, respectively, following a gradient mode program. The flow rate is set at 0.6 mL/min, and the column compartment temperature is maintained at 35°C. Detection is performed using a PDA detector within the wavelength range of 190-400 nm. To determine the exact mass of formed nitrosamine drug substance related impurities (NDSRIs), the HPLC method is transferred to LC-TQ-MS/MS with the same mobile phase composition and gradient program. The injection volume is set at 5 µL, and MS analysis is conducted in Electrospray Ionization (ESI) mode within the mass range of 100−1000 Daltons. Results: The samples of NAP test were prepared according to the protocol. The samples were analyzed using HPLC and LC-TQ-MS/MS identify possible NDSRIs generated in different formulations of glipizide. It was found that the NAP test generated a various NDSRIs. The new finding, which has not been reported yet, discovered contamination of Glipizide. These NDSRIs are categorised based on the predicted carcinogenic potency and recommended its acceptable intact in medicines. The analytical method was found specific and reproducible.Keywords: NDSRI, nitrosamine impurities, antidiabetic, glipizide, LC-MS/MS
Procedia PDF Downloads 30999 The Investment Decision-Making Principles in Regional Tourism
Authors: Evgeni Baratashvili, Giorgi Sulashvili, Malkhaz Sulashvili, Bela Khotenashvili, Irma Makharashvili
Abstract:
The most investment decision-making principle of regional travel firm's management and its partner is the formulation of the aims of investment programs. The investments can be targeted in order to reduce the firm's production costs and to purchase good transport equipment. In attractive region, in order to develop firm’s activities, the investment program can be targeted for increasing of provided services. That is the case where the sales already have been used in the market. The investment can be directed to establish the affiliate firms, branches, to construct new hotels, to create food and trade enterprises, to develop entertainment enterprises, etc. Economic development is of great importance to regional development. International experience shows that inclusive economic growth largely depends on not only the national, but also regional development planning and implementation of a strong and competitive regions. Regional development is considered as the key factor in achieving national success. Establishing a modern institute separate entities if the pilot centers will constitute a promotion, international best practice-based public-private partnership to encourage the use of models. Regional policy directions and strategies adopted in accordance with the successful implementation of major importance in the near future specific action plans for inclusive development and implementation, which will be provided in accordance with the effective monitoring and evaluation tools and measurable indicators combined. All of these above-mentioned investments are characterized by different levels, which are related to the following fact: How successful tourism marketing service is, whether it is able to determine the proper market's reaction according to the particular firm's actions. In the sphere of regional tourism industry and in the investment decision possible variants it can be developed the some specter of models. Each of the models can be modified and specified according to the situation, and characteristic skills of the existing problem that must be solved. Besides, while choosing the proper model, the process is affected by the regulation system of economic processes. Also, it is influenced by liberalization quality and by the level of state participation.Keywords: net income of travel firm, economic growth, Investment profitability, regional development, tourist product, tourism development
Procedia PDF Downloads 259998 Translation as a Foreign Language Teaching Tool: Results of an Experiment with University Level Students in Spain
Authors: Nune Ayvazyan
Abstract:
Since the proclamation of monolingual foreign-language learning methods (the Berlitz Method in the early 20ᵗʰ century and the like), the dilemma has been to allow or not to allow learners’ mother tongue in the foreign-language learning process. The reason for not allowing learners’ mother tongue is reported to create a situation of immersion where students will only use the target language. It could be argued that this artificial monolingual situation is defective, mainly because there are very few real monolingual situations in the society. This is mainly due to the fact that societies are nowadays increasingly multilingual as plurilingual speakers are the norm rather than an exception. More recently, the use of learners’ mother tongue and translation has been put under the spotlight as valid foreign-language teaching tools. The logic dictates that if learners were permitted to use their mother tongue in the foreign-language learning process, that would not only be natural, but also would give them additional means of participation in class, which could eventually lead to learning. For example, when learners’ metalinguistic skills are poor in the target language, a question they might have could be asked in their mother tongue. Otherwise, that question might be left unasked. Attempts at empirically testing the role of translation as a didactic tool in foreign-language teaching are still very scant. In order to fill this void, this study looks into the interaction patterns between students in two kinds of English-learning classes: one with translation and the other in English only (immersion). The experiment was carried out with 61 students enrolled in a second-year university subject in English grammar in Spain. All the students underwent the two treatments, classes with translation and in English only, in order to see how they interacted under the different conditions. The analysis centered on four categories of interaction: teacher talk, teacher-initiated student interaction, student-initiated student-to-teacher interaction, and student-to-student interaction. Also, pre-experiment and post-experiment questionnaires and individual interviews gathered information about the students’ attitudes to translation. The findings show that translation elicited more student-initiated interaction than did the English-only classes, while the difference in teacher-initiated interactional turns was not statistically significant. Also, student-initiated participation was higher in comprehension-based activities (into L1) as opposed to production-based activities (into L2). As evidenced by the questionnaires, the students’ attitudes to translation were initially positive and mainly did not vary as a result of the experiment.Keywords: foreign language, learning, mother tongue, translation
Procedia PDF Downloads 161