Search results for: material issues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11266

Search results for: material issues

196 Digital Transformation in Fashion System Design: Tools and Opportunities

Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci

Abstract:

The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.

Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation

Procedia PDF Downloads 55
195 Empowering and Educating Young People Against Cybercrime by Playing: The Rayuela Method

Authors: Jose L. Diego, Antonio Berlanga, Gregorio López, Diana López

Abstract:

The Rayuela method is a success story, as it is part of a project selected by the European Commission to face the challenge launched by itself for achieving a better understanding of human factors, as well as social and organisational aspects that are able to solve issues in fighting against crime. Rayuela's method specifically focuses on the drivers of cyber criminality, including approaches to prevent, investigate, and mitigate cybercriminal behavior. As the internet has become an integral part of young people’s lives, they are the key target of the Rayuela method because they (as a victim or as a perpetrator) are the most vulnerable link of the chain. Considering the increased time spent online and the control of their internet usage and the low level of awareness of cyber threats and their potential impact, it is understandable the proliferation of incidents due to human mistakes. 51% of Europeans feel not well informed about cyber threats, and 86% believe that the risk of becoming a victim of cybercrime is rapidly increasing. On the other hand, Law enforcement has noted that more and more young people are increasingly committing cybercrimes. This is an international problem that has considerable cost implications; it is estimated that crimes in cyberspace will cost the global economy $445B annually. Understanding all these phenomena drives to the necessity of a shift in focus from sanctions to deterrence and prevention. As a research project, Rayuela aims to bring together law enforcement agencies (LEAs), sociologists, psychologists, anthropologists, legal experts, computer scientists, and engineers, to develop novel methodologies that allow better understanding the factors affecting online behavior related to new ways of cyber criminality, as well as promoting the potential of these young talents for cybersecurity and technologies. Rayuela’s main goal is to better understand the drivers and human factors affecting certain relevant ways of cyber criminality, as well as empower and educate young people in the benefits, risks, and threats intrinsically linked to the use of the Internet by playing, thus preventing and mitigating cybercriminal behavior. In order to reach that goal it´s necessary an interdisciplinary consortium (formed by 17 international partners) carries out researches and actions like Profiling and case studies of cybercriminals and victims, risk assessments, studies on Internet of Things and its vulnerabilities, development of a serious gaming environment, training activities, data analysis and interpretation using Artificial intelligence, testing and piloting, etc. For facilitating the real implementation of the Rayuela method, as a community policing strategy, is crucial to count on a Police Force with a solid background in trust-building and community policing in order to do the piloting, specifically with young people. In this sense, Valencia Local Police is a pioneer Police Force working with young people in conflict solving, through providing police mediation and peer mediation services and advice. As an example, it is an official mediation institution, so agreements signed by their police mediators have once signed by the parties, the value of a judicial decision.

Keywords: fight against crime and insecurity, avert and prepare young people against aggression, ICT, serious gaming and artificial intelligence against cybercrime, conflict solving and mediation with young people

Procedia PDF Downloads 113
194 Law of the River and Indigenous Water Rights: Reassessing the International Legal Frameworks for Indigenous Rights and Water Justice

Authors: Sultana Afrin Nipa

Abstract:

Life on Earth cannot thrive or survive without water. Water is intimately tied with community, culture, spirituality, identity, socio-economic progress, security, self-determination, and livelihood. Thus, access to water is a United Nations recognized human right due to its significance in these realms. However, there is often conflict between those who consider water as the spiritual and cultural value and those who consider it an economic value thus being threatened by economic development, corporate exploitation, government regulation, and increased privatization, highlighting the complex relationship between water and culture. The Colorado River basin is home to over 29 federally recognized tribal nations. To these tribes, it holds cultural, economic, and spiritual significance and often extends to deep human-to-non-human connections frequently precluded by the Westphalian regulations and settler laws. Despite the recognition of access to rivers as a fundamental human right by the United Nations, tribal communities and their water rights have been historically disregarded through inter alia, colonization, and dispossession of their resources. Law of the River such as ‘Winter’s Doctrine’, ‘Bureau of Reclamation (BOR)’ and ‘Colorado River Compact’ have shaped the water governance among the shareholders. However, tribal communities have been systematically excluded from these key agreements. While the Winter’s Doctrine acknowledged that tribes have the right to withdraw water from the rivers that pass through their reservations for self-sufficiency, the establishment of the BOR led to the construction of dams without tribal consultation, denying the ‘Winters’ regulation and violating these rights. The Colorado River Compact, which granted only 20% of the water to the tribes, diminishes the significance of international legal frameworks that prioritize indigenous self-determination and free pursuit of socio-economic and cultural development. Denial of this basic water right is the denial of the ‘recognition’ of their sovereignty and self-determination that questions the effectiveness of the international law. This review assesses the international legal frameworks concerning indigenous rights and water justice and aims to pinpoint gaps hindering the effective recognition and protection of Indigenous water rights in Colorado River Basin. This study draws on a combination of historical and qualitative data sets. The historical data encompasses the case settlements provided by the Bureau of Reclamation (BOR) respectively the notable cases of Native American water rights settlements on lower Colorado basin related to Arizona from 1979-2008. This material serves to substantiate the context of promises made to the Indigenous people and establishes connections between existing entities. The qualitative data consists of the observation of recorded meetings of the Central Arizona Project (CAP) to evaluate how the previously made promises are reflected now. The study finds a significant inconsistency in participation in the decision-making process and the lack of representation of Native American tribes in water resource management discussions. It highlights the ongoing challenges faced by the indigenous people to achieve their self-determination goal despite the legal arrangements.

Keywords: colorado river, indigenous rights, law of the river, water governance, water justice

Procedia PDF Downloads 22
193 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 185
192 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing

Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen

Abstract:

Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.

Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management

Procedia PDF Downloads 131
191 Transport Hubs as Loci of Multi-Layer Ecosystems of Innovation: Case Study of Airports

Authors: Carolyn Hatch, Laurent Simon

Abstract:

Urban mobility and the transportation industry are undergoing a transformation, shifting from an auto production-consumption model that has dominated since the early 20th century towards new forms of personal and shared multi-modality [1]. This is shaped by key forces such as climate change, which has induced a shift in production and consumption patterns and efforts to decarbonize and improve transport services through, for instance, the integration of vehicle automation, electrification and mobility sharing [2]. Advanced innovation practices and platforms for experimentation and validation of new mobility products and services that are increasingly complex and multi-stakeholder-oriented are shaping this new world of mobility. Transportation hubs – such as airports - are emblematic of these disruptive forces playing out in the mobility industry. Airports are emerging as the core of innovation ecosystems on and around contemporary mobility issues, and increasingly recognized as complex public/private nodes operating in many societal dimensions [3,4]. These include urban development, sustainability transitions, digital experimentation, customer experience, infrastructure development and data exploitation (for instance, airports generate massive and often untapped data flows, with significant potential for use, commercialization and social benefit). Yet airport innovation practices have not been well documented in the innovation literature. This paper addresses this gap by proposing a model of airport innovation that aims to equip airport stakeholders to respond to these new and complex innovation needs in practice. The methodology involves: 1 – a literature review bringing together key research and theory on airport innovation management, open innovation and innovation ecosystems in order to evaluate airport practices through an innovation lens; 2 – an international benchmarking of leading airports and their innovation practices, including such examples as Aéroports de Paris, Schipol in Amsterdam, Changi in Singapore, and others; and 3 – semi-structured interviews with airport managers on key aspects of organizational practice, facilitated through a close partnership with the Airport Council International (ACI), a major stakeholder in this research project. Preliminary results find that the most successful airports are those that have shifted to a multi-stakeholder, platform ecosystem model of innovation. The recent entrance of new actors in airports (Google, Amazon, Accor, Vinci, Airbnb and others) have forced the opening of organizational boundaries to share and exchange knowledge with a broader set of ecosystem players. This has also led to new forms of governance and intermediation by airport actors to connect complex, highly distributed knowledge, along with new kinds of inter-organizational collaboration, co-creation and collective ideation processes. Leading airports in the case study have demonstrated a unique capacity to force traditionally siloed activities to “think together”, “explore together” and “act together”, to share data, contribute expertise and pioneer new governance approaches and collaborative practices. In so doing, they have successfully integrated these many disruptive change pathways and forced their implementation and coordination towards innovative mobility outcomes, with positive societal, environmental and economic impacts. This research has implications for: 1 - innovation theory, 2 - urban and transport policy, and 3 - organizational practice - within the mobility industry and across the economy.

Keywords: airport management, ecosystem, innovation, mobility, platform, transport hubs

Procedia PDF Downloads 169
190 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 275
189 Magnetic Carriers of Organic Selenium (IV) Compounds: Physicochemical Properties and Possible Applications in Anticancer Therapy

Authors: E. Mosiniewicz-Szablewska, P. Suchocki, P. C. Morais

Abstract:

Despite the significant progress in cancer treatment, there is a need to search for new therapeutic methods in order to minimize side effects. Chemotherapy, the main current method of treating cancer, is non-selective and has a number of limitations. Toxicity to healthy cells is undoubtedly the biggest problem limiting the use of many anticancer drugs. The problem of how to kill cancer without harming a patient can be solved by using organic selenium (IV) compounds. Organic selenium (IV) compounds are a new class of materials showing a strong anticancer activity. They are first organic compounds containing selenium at the +4 oxidation level and therefore they eliminate the multidrug-resistance for all tumor cell lines tested so far. These materials are capable of selectively killing cancer cells without damaging the healthy ones. They are obtained by the incorporation of selenous acid (H2SeO3) into molecules of fatty acids of sunflower oil and therefore, they are inexpensive to manufacture. Attaching these compounds to magnetic carriers enables their precise delivery directly to the tumor area and the simultaneous application of the magnetic hyperthermia, thus creating a huge opportunity to effectively get rid of the tumor without any side effects. Polylactic-co-glicolic acid (PLGA) nanocapsules loaded with maghemite (-Fe2O3) nanoparticles and organic selenium (IV) compounds are successfully prepared by nanoprecipitation method. In vitro antitumor activity of the nanocapsules were evidenced using murine melanoma (B16-F10), oral squamos carcinoma (OSCC) and murine (4T1) and human (MCF-7) breast lines. Further exposure of these cells to an alternating magnetic field increased the antitumor effect of nanocapsules. Moreover, the nanocapsules presented antitumor effect while not affecting normal cells. Magnetic properties of the nanocapsules were investigated by means of dc magnetization, ac susceptibility and electron spin resonance (ESR) measurements. The nanocapsules presented a typical superparamagnetic behavior around room temperature manifested itself by the split between zero field-cooled/field-cooled (ZFC/FC) magnetization curves and the absence of hysteresis on the field-dependent magnetization curve above the blocking temperature. Moreover, the blocking temperature decreased with increasing applied magnetic field. The superparamagnetic character of the nanocapsules was also confirmed by the occurrence of a maximum in temperature dependences of both real ′(T) and imaginary ′′ (T) components of the ac magnetic susceptibility, which shifted towards higher temperatures with increasing frequency. Additionally, upon decreasing the temperature the ESR signal shifted to lower fields and gradually broadened following closely the predictions for the ESR of superparamagnetoc nanoparticles. The observed superparamagnetic properties of nanocapsules enable their simple manipulation by means of magnetic field gradient, after introduction into the blood stream, which is a necessary condition for their use as magnetic drug carriers. The observed anticancer and superparamgnetic properties show that the magnetic nanocapsules loaded with organic selenium (IV) compounds should be considered as an effective material system for magnetic drug delivery and magnetohyperthermia inductor in antitumor therapy.

Keywords: cancer treatment, magnetic drug delivery system, nanomaterials, nanotechnology

Procedia PDF Downloads 189
188 The Influence of Screen Translation on Creative Audiovisual Writing: A Corpus-Based Approach

Authors: John D. Sanderson

Abstract:

The popularity of American cinema worldwide has contributed to the development of sociolects related to specific film genres in other cultural contexts by means of screen translation, in many cases eluding norms of usage in the target language, a process whose result has come to be known as 'dubbese'. A consequence for the reception in countries where local audiovisual fiction consumption is far lower than American imported productions is that this linguistic construct is preferred, even though it differs from common everyday speech. The iconography of film genres such as science-fiction, western or sword-and-sandal films, for instance, generates linguistic expectations in international audiences who will accept more easily the sociolects assimilated by the continuous reception of American productions, even if the themes, locations, characters, etc., portrayed on screen may belong in origin to other cultures. And the non-normative language (e.g., calques, semantic loans) used in the preferred mode of linguistic transfer, whether it is translation for dubbing or subtitling, has diachronically evolved in many cases into a status of canonized sociolect, not only accepted but also required, by foreign audiences of American films. However, a remarkable step forward is taken when this typology of artificial linguistic constructs starts being used creatively by nationals of these target cultural contexts. In the case of Spain, the success of American sitcoms such as Friends in the 1990s led Spanish television scriptwriters to include in national productions lexical and syntactical indirect borrowings (Anglicisms not formally identifiable as such because they include elements from their own language) in order to target audiences of the former. However, this commercial strategy had already taken place decades earlier when Spain became a favored location for the shooting of foreign films in the early 1960s. The international popularity of the then newly developed sub-genre known as Spaghetti-Western encouraged Spanish investors to produce their own movies, and local scriptwriters made use of the dubbese developed nationally since the advent of sound in film instead of using normative language. As a result, direct Anglicisms, as well as lexical and syntactical borrowings made up the creative writing of these Spanish productions, which also became commercially successful. Interestingly enough, some of these films were even marketed in English-speaking countries as original westerns (some of the names of actors and directors were anglified to that purpose) dubbed into English. The analysis of these 'back translations' will also foreground some semantic distortions that arose in the process. In order to perform the research on these issues, a wide corpus of American films has been used, which chronologically range from Stagecoach (John Ford, 1939) to Django Unchained (Quentin Tarantino, 2012), together with a shorter corpus of Spanish films produced during the golden age of Spaghetti Westerns, from una tumba para el sheriff (Mario Caiano; in English lone and angry man, William Hawkins) to tu fosa será la exacta, amigo (Juan Bosch, 1972; in English my horse, my gun, your widow, John Wood). The methodology of analysis and the conclusions reached could be applied to other genres and other cultural contexts.

Keywords: dubbing, film genre, screen translation, sociolect

Procedia PDF Downloads 155
187 The Late Bronze Age Archeometallurgy of Copper in Mountainous Colchis (Lechkhumi), Georgia

Authors: Nino Sulava, Brian Gilmour, Nana Rezesidze, Tamar Beridze, Rusudan Chagelishvili

Abstract:

Studies of ancient metallurgy are a subject of worldwide current interest. Georgia with its famous early metalworking traditions is one of the central parts of in the Caucasus region. The aim of the present study is to introduce the results of archaeometallurgical investigations being undertaken in the mountain region of Colchis, Lechkhumi (the Tsageri Municipality of western Georgia) and establish their place in the existing archaeological context. Lechkhumi (one of the historic provinces of Georgia known from Georgian, Greek, Byzantine and Armenian written sources as Lechkhumi/Skvimnia/Takveri) is the part of the Colchian mountain area. It is one of the important but little known centres of prehistoric metallurgy in the Caucasian region and of Colchian Bronze Age culture. Reconnaissance archaeological expeditions (2011-2015) revealed significant prehistoric metallurgical sites in Lechkhumi. Sites located in the vicinity of Dogurashi Village (Tsageri Municipality) have become the target area for archaeological excavations. During archaeological excavations conducted in 2016-2018 two archaeometallurgical sites – Dogurashi I and Dogurashi II were investigated. As a result of an interdisciplinary (archaeological, geological and geophysical) survey, it has been established that at both prehistoric Dogurashi mountain sites, it was copper that was being smelted and the ore sources are likely to be of local origin. Radiocarbon dating results confirm they were operating between about the 13th and 9th century BC. More recently another similar site has been identified in this area (Dogurashi III), and this is about to undergo detailed investigation. Other prehistoric metallurgical sites are being located and investigated in the Lechkhumi region as well as chance archaeological finds (often in hoards) – copper ingots, metallurgical production debris, slag, fragments of crucibles, tuyeres (air delivery pipes), furnace wall fragments and other related waste debris. Other chance finds being investigated are the many copper, bronze and (some) iron artefacts that have been found over many years. These include copper ingots, copper, bronze and iron artefacts such as tools, jewelry, and decorative items. These show the important but little known or understood the role of Lechkhumi in the late Bronze Age culture of Colchis. It would seem that mining and metallurgical manufacture form part of the local agricultural yearly lifecycle. Colchian ceramics have been found and also evidence for artefact production, small stone mould fragments and encrusted material from the casting of a fylfot (swastika) form of Colchian bronze buckle found in the vicinities of the early settlements of Tskheta and Dekhviri. Excavation and investigation of previously unknown archaeometallurgical sites in Lechkhumi will contribute significantly to the knowledge and understanding of prehistoric Colchian metallurgy in western Georgia (Adjara, Guria, Samegrelo, and Svaneti) and will reveal the importance of this region in the study of ancient metallurgy in Georgia and the Caucasus. Acknowledgment: This work has been supported by the Shota Rustaveli National Science Foundation (grant FR # 217128).

Keywords: archaeometallurgy, Colchis, copper, Lechkhumi

Procedia PDF Downloads 126
186 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber

Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay

Abstract:

Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.

Keywords: asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanizate

Procedia PDF Downloads 210
185 Regulatory and Economic Challenges of AI Integration in Cyber Insurance

Authors: Shreyas Kumar, Mili Shangari

Abstract:

Integrating artificial intelligence (AI) in the cyber insurance sector represents a significant advancement, offering the potential to revolutionize risk assessment, fraud detection, and claims processing. However, this integration introduces a range of regulatory and economic challenges that must be addressed to ensure responsible and effective deployment of AI technologies. This paper examines the multifaceted regulatory landscape governing AI in cyber insurance and explores the economic implications of compliance, innovation, and market dynamics. AI's capabilities in processing vast amounts of data and identifying patterns make it an invaluable tool for insurers in managing cyber risks. Yet, the application of AI in this domain is subject to stringent regulatory scrutiny aimed at safeguarding data privacy, ensuring algorithmic transparency, and preventing biases. Regulatory bodies, such as the European Union with its General Data Protection Regulation (GDPR), mandate strict compliance requirements that can significantly impact the deployment of AI systems. These regulations necessitate robust data protection measures, ethical AI practices, and clear accountability frameworks, all of which entail substantial compliance costs for insurers. The economic implications of these regulatory requirements are profound. Insurers must invest heavily in upgrading their IT infrastructure, implementing robust data governance frameworks, and training personnel to handle AI systems ethically and effectively. These investments, while essential for regulatory compliance, can strain financial resources, particularly for smaller insurers, potentially leading to market consolidation. Furthermore, the cost of regulatory compliance can translate into higher premiums for policyholders, affecting the overall affordability and accessibility of cyber insurance. Despite these challenges, the potential economic benefits of AI integration in cyber insurance are significant. AI-enhanced risk assessment models can provide more accurate pricing, reduce the incidence of fraudulent claims, and expedite claims processing, leading to overall cost savings and increased efficiency. These efficiencies can improve the competitiveness of insurers and drive innovation in product offerings. However, balancing these benefits with regulatory compliance is crucial to avoid legal penalties and reputational damage. The paper also explores the potential risks associated with AI integration, such as algorithmic biases that could lead to unfair discrimination in policy underwriting and claims adjudication. Regulatory frameworks need to evolve to address these issues, promoting fairness and transparency in AI applications. Policymakers play a critical role in creating a balanced regulatory environment that fosters innovation while protecting consumer rights and ensuring market stability. In conclusion, the integration of AI in cyber insurance presents both regulatory and economic challenges that require a coordinated approach involving regulators, insurers, and other stakeholders. By navigating these challenges effectively, the industry can harness the transformative potential of AI, driving advancements in risk management and enhancing the resilience of the cyber insurance market. This paper provides insights and recommendations for policymakers and industry leaders to achieve a balanced and sustainable integration of AI technologies in cyber insurance.

Keywords: artificial intelligence (AI), cyber insurance, regulatory compliance, economic impact, risk assessment, fraud detection, cyber liability insurance, risk management, ransomware

Procedia PDF Downloads 15
184 Information Pollution: Exploratory Analysis of Subs-Saharan African Media’s Capabilities to Combat Misinformation and Disinformation

Authors: Muhammed Jamiu Mustapha, Jamiu Folarin, Stephen Obiri Agyei, Rasheed Ademola Adebiyi, Mutiu Iyanda Lasisi

Abstract:

The role of information in societal development and growth cannot be over-emphasized. It has remained an age-long strategy to adopt the information flow to make an egalitarian society. The same has become a tool for throwing society into chaos and anarchy. It has been adopted as a weapon of war and a veritable instrument of psychological warfare with a variety of uses. That is why some scholars posit that information could be deployed as a weapon to wreak “Mass Destruction" or promote “Mass Development". When used as a tool for destruction, the effect on society is like an atomic bomb which when it is released, pollutes the air and suffocates the people. Technological advancement has further exposed the latent power of information and many societies seem to be overwhelmed by its negative effect. While information remains one of the bedrock of democracy, the information ecosystem across the world is currently facing a more difficult battle than ever before due to information pluralism and technological advancement. The more the agents involved try to combat its menace, the difficult and complex it is proving to be curbed. In a region like Africa with dangling democracy enfolds with complexities of multi-religion, multi-cultures, inter-tribes, ongoing issues that are yet to be resolved, it is important to pay critical attention to the case of information disorder and find appropriate ways to curb or mitigate its effects. The media, being the middleman in the distribution of information, needs to build capacities and capabilities to separate the whiff of misinformation and disinformation from the grains of truthful data. From quasi-statistical senses, it has been observed that the efforts aimed at fighting information pollution have not considered the built resilience of media organisations against this disorder. Apparently, the efforts, resources and technologies adopted for the conception, production and spread of information pollution are much more sophisticated than approaches to suppress and even reduce its effects on society. Thus, this study seeks to interrogate the phenomenon of information pollution and the capabilities of select media organisations in Sub-Saharan Africa. In doing this, the following questions are probed; what are the media actions to curb the menace of information pollution? Which of these actions are working and how effective are they? And which of the actions are not working and why they are not working? Adopting quantitative and qualitative approaches and anchored on the Dynamic Capability Theory, the study aims at digging up insights to further understand the complexities of information pollution, media capabilities and strategic resources for managing misinformation and disinformation in the region. The quantitative approach involves surveys and the use of questionnaires to get data from journalists on their understanding of misinformation/disinformation and their capabilities to gate-keep. Case Analysis of select media and content analysis of their strategic resources to manage misinformation and disinformation is adopted in the study while the qualitative approach will involve an In-depth Interview to have a more robust analysis is also considered. The study is critical in the fight against information pollution for a number of reasons. One, it is a novel attempt to document the level of media capabilities to fight the phenomenon of information disorder. Two, the study will enable the region to have a clear understanding of the capabilities of existing media organizations to combat misinformation and disinformation in the countries that make up the region. Recommendations emanating from the study could be used to initiate, intensify or review existing approaches to combat the menace of information pollution in the region.

Keywords: disinformation, information pollution, misinformation, media capabilities, sub-Saharan Africa

Procedia PDF Downloads 152
183 Effects of School Culture and Curriculum on Gifted Adolescent Moral, Social, and Emotional Development: A Longitudinal Study of Urban Charter Gifted and Talented Programs

Authors: Rebekah Granger Ellis, Pat J. Austin, Marc P. Bonis, Richard B. Speaker, Jr.

Abstract:

Using two psychometric instruments, this study examined social and emotional intelligence and moral judgment levels of more than 300 gifted and talented high school students enrolled in arts-integrated, academic acceleration, and creative arts charter schools in an ethnically diverse large city in the southeastern United States. Gifted and talented individuals possess distinguishable characteristics; these frequently appear as strengths, but often serious problems accompany them. Although many gifted adolescents thrive in their environments, some struggle in their school and community due to emotional intensity, motivation and achievement issues, lack of peers and isolation, identification problems, sensitivity to expectations and feelings, perfectionism, and other difficulties. These gifted students endure and survive in school rather than flourish. Gifted adolescents face special intrapersonal, interpersonal, and environmental problems. Furthermore, they experience greater levels of stress, disaffection, and isolation than non-gifted individuals due to their advanced cognitive abilities. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of these adolescents. Numerous studies have researched moral, social, and emotional development in the areas of cognitive-developmental, psychoanalytic, and behavioral learning; however, in almost all cases, these three facets have been studied separately leading to many divergent theories. Additionally, various frameworks and models purporting to encourage the different socio-affective branches of development have been debated in curriculum theory, yet research is inconclusive on the effectiveness of these programs. Most often studied is the socio-affective domain, which includes development and regulation of emotions; empathy development; interpersonal relations and social behaviors; personal and gender identity construction; and moral development, thinking, and judgment. Examining development in these domains can provide insight into why some gifted and talented adolescents are not always successful in adulthood despite advanced IQ scores. Particularly whether emotional, social and moral capabilities of gifted and talented individuals are as advanced as their intellectual abilities and how these are related to each other. This mixed methods longitudinal study examined students in urban gifted and talented charter schools for (1) socio-affective development levels and (2) whether a particular environment encourages developmental growth. Research questions guiding the study: (1) How do academically and artistically gifted 10th and 11th grade students perform on psychological scales of social and emotional intelligence and moral judgment? Do they differ from the normative sample? Do gender differences exist among gifted students? (2) Do adolescents who attend distinctive gifted charter schools differ in developmental profiles? Students’ performances on psychometric instruments were compared over time and by program type. Assessing moral judgment (DIT-2) and socio-emotional intelligence (BarOn EQ-I: YV), participants took pre-, mid-, and post-tests during one academic school year. Quantitative differences in growth on these psychological scales (individuals and school-wide) were examined. If a school showed change, qualitative artifacts (culture, curricula, instructional methodology, stakeholder interviews) provided insight for environmental correlation.

Keywords: gifted and talented programs, moral judgment, social and emotional intelligence, socio-affective education

Procedia PDF Downloads 177
182 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems

Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana

Abstract:

Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.

Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP

Procedia PDF Downloads 182
181 The Shrinking of the Pink Wave and the Rise of the Right-Wing in Latin America

Authors: B. M. Moda, L. F. Secco

Abstract:

Through free and fair elections and others less democratic processes, Latin America has been gradually turning into a right-wing political region. In order to understand these recent changes, this paper aims to discuss the origin and the traits of the pink wave in the subcontinent, the reasons for its current rollback and future projections for left-wing in the region. The methodology used in this paper will be descriptive and analytical combined with secondary sources mainly from the social and political sciences fields. The canons of the Washington Consensus was implemented by the majority of the Latin American governments in the 80s and 90s under the social democratic and right-wing parties. The neoliberal agenda caused political, social and economic dissatisfaction bursting into a new political configuration for the region. It started in 1998 when Hugo Chávez took the office in Venezuela through the Fifth Republic Movement under the socialist flag. From there on, Latin America was swiped by the so-called ‘pink wave’, term adopted to define the rising of self-designated left-wing or center-left parties with a progressive agenda. After Venezuela, countries like Chile, Brazil, Argentina, Uruguay, Bolivia, Equator, Nicaragua, Paraguay, El Salvador and Peru got into the pink wave. The success of these governments was due a post-neoliberal agenda focused on cash transfers programs, increasing of public spending, and the straightening of national market. The discontinuation of the preference for the left-wing started in 2012 with the coup against Fernando Lugo in Paraguay. In 2015, the chavismo in Venezuela lost the majority of the legislative seats. In 2016, an impeachment removed the Brazilian president Dilma Rousself from office who was replaced by the center-right vice-president Michel Temer. In the same year, Mauricio Macri representing the right-wing party Proposta Republicana was elected in Argentina. In 2016 center-right and liberal, Pedro Pablo Kuczynski was elected in Peru. In 2017, Sebastián Piñera was elected in Chile through the center-right party Renovación Nacional. The pink wave current rollback points towards some findings that can be arranged in two fields. Economically, the 2008 financial crisis affected the majority of the Latin American countries and the left-wing economic policies along with the end of the raw materials boom and the subsequent shrinking of economic performance opened a flank for popular dissatisfaction. In Venezuela, the 2014 oil crisis reduced the revenues for the State in more than 50% dropping social spending, creating an inflationary spiral, and consequently loss of popular support. Politically, the death of Hugo Chavez in 2013 weakened the ‘socialism of the twenty first century’ ideal, which was followed by the death of Fidel Castro, the last bastion of communism in the subcontinent. In addition, several cases of corruption revealed during the pink wave governments made the traditional politics unpopular. These issues challenge the left-wing to develop a future agenda based on innovation of its economic program, improve its legal and political compliance practices, and to regroup its electoral forces amid the social movements that supported its ascension back in the early 2000s.

Keywords: Latin America, political parties, left-wing, right-wing, pink wave

Procedia PDF Downloads 228
180 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 166
179 Heat Transfer Modeling of 'Carabao' Mango (Mangifera indica L.) during Postharvest Hot Water Treatments

Authors: Hazel James P. Agngarayngay, Arnold R. Elepaño

Abstract:

Mango is the third most important export fruit in the Philippines. Despite the expanding mango trade in world market, problems on postharvest losses caused by pests and diseases are still prevalent. Many disease control and pest disinfestation methods have been studied and adopted. Heat treatment is necessary to eliminate pests and diseases to be able to pass the quarantine requirements of importing countries. During heat treatments, temperature and time are critical because fruits can easily be damaged by over-exposure to heat. Modeling the process enables researchers and engineers to study the behaviour of temperature distribution within the fruit over time. Understanding physical processes through modeling and simulation also saves time and resources because of reduced experimentation. This research aimed to simulate the heat transfer mechanism and predict the temperature distribution in ‘Carabao' mangoes during hot water treatment (HWT) and extended hot water treatment (EHWT). The simulation was performed in ANSYS CFD Software, using ANSYS CFX Solver. The simulation process involved model creation, mesh generation, defining the physics of the model, solving the problem, and visualizing the results. Boundary conditions consisted of the convective heat transfer coefficient and a constant free stream temperature. The three-dimensional energy equation for transient conditions was numerically solved to obtain heat flux and transient temperature values. The solver utilized finite volume method of discretization. To validate the simulation, actual data were obtained through experiment. The goodness of fit was evaluated using mean temperature difference (MTD). Also, t-test was used to detect significant differences between the data sets. Results showed that the simulations were able to estimate temperatures accurately with MTD of 0.50 and 0.69 °C for the HWT and EHWT, respectively. This indicates good agreement between the simulated and actual temperature values. The data included in the analysis were taken at different locations of probe punctures within the fruit. Moreover, t-tests showed no significant differences between the two data sets. Maximum heat fluxes obtained at the beginning of the treatments were 394.15 and 262.77 J.s-1 for HWT and EHWT, respectively. These values decreased abruptly at the first 10 seconds and gradual decrease was observed thereafter. Data on heat flux is necessary in the design of heaters. If underestimated, the heating component of a certain machine will not be able to provide enough heat required by certain operations. Otherwise, over-estimation will result in wasting of energy and resources. This study demonstrated that the simulation was able to estimate temperatures accurately. Thus, it can be used to evaluate the influence of various treatment conditions on the temperature-time history in mangoes. When combined with information on insect mortality and quality degradation kinetics, it could predict the efficacy of a particular treatment and guide appropriate selection of treatment conditions. The effect of various parameters on heat transfer rates, such as the boundary and initial conditions as well as the thermal properties of the material, can be systematically studied without performing experiments. Furthermore, the use of ANSYS software in modeling and simulation can be explored in modeling various systems and processes.

Keywords: heat transfer, heat treatment, mango, modeling and simulation

Procedia PDF Downloads 239
178 The Practices Perspective in Communication, Consumer and Cultural Studies: A Post-Heideggerian Narrative

Authors: Tony Wilson

Abstract:

This paper sets out a practices perspective or practices theory, which has become pervasive from business to sociological studies. In doing so, it locates the perspective historically (in the work of the philosopher Heidegger) and provides a contemporary illustration of its application to communication, consumer and cultural studies as central to this conference theme. The structured account of practices (as articulated in eight ‘axioms’) presented towards the conclusion of this paper is an initial statement - planned to encourage further detailed qualitative and systematic research in areas of interest to the conference. Practice theories of equipped and situated construction of participatory meaning (as in media and marketing consuming) are frequently characterized as lacking common ground, or core principles. This paper explores whether by retracing a journey to earlier philosophical underwriting, a shared territory promoting new research can be located as current philosophical hermeneutics. Moreover, through returning to hermeneutic first principles, the paper shows that a series of spatio-temporal metaphors become available - appropriate to analyzing communication as a process across disciplines in which it is considered. Thus one can argue, for instance, that media users engage (enter) digital text from their diverse ‘horizons of expectation’, in a productive enlarging ‘fusion’ of horizons of understanding, thereby ‘projecting’ a new narrative, integrated in a ‘hermeneutic circle’ of meaning. A politics of communication studies may contest a horizon of understanding - so engaging in critical ‘distancing’. Marketing’s consumers can occupy particular places on a horizon of understanding. Media users pass over borders of changing, revised perspectives. Practices research can now not only be discerned in multiple disciplines but equally crosses disciplines. The ubiquitous practice of media use by managers and visitors in a shopping mall - the mediatization of malls - responds to investigating not just with media study expertise, but from an interpretive marketing perspective. How have mediated identities of person or place been changed? Emphasizing understanding of entities in a material environment as ‘equipment’, practices theory enables the quantitative correlation of use and demographic variable as ‘Zeug Score’. Human behavior is fundamentally habitual - shaped by its tacit assumptions - occasionally interrupted by reflection. Practices theory acknowledges such action to be minimally monitored yet nonetheless considers it as constructing narrative. Thus presented in research, ‘storied’ behavior can then be seen to be (in)formed and shaped from a shifting hierarchy of ‘horizons’ or of perspectives - from habituated to reflective - rather than a single seamless narrative. Taking a communication practices perspective here avoids conflating tacit, transformative and theoretical understanding in research. In short, a historically grounded and unifying statement of contemporary practices theory will enhance its potential as a tool in communication, consumer and cultural research, landscaping interpretative horizons of human behaviour through exploring widely the culturally (in)formed narratives equipping and incorporated (reflectively, unreflectively) in people’s everyday lives.

Keywords: communication, consumer, cultural practices, hermeneutics

Procedia PDF Downloads 257
177 Neurodiversity in Post Graduate Medical Education: A Rapid Solution to Faculty Development

Authors: Sana Fatima, Paul Sadler, Jon Cooper, David Mendel, Ayesha Jameel

Abstract:

Background: Neurodiversity refers to intrinsic differences between human minds and encompasses dyspraxia, dyslexia, attention deficit hyperactivity disorder, dyscalculia, autism spectrum disorder, and Tourette syndrome. There is increasing recognition of neurodiversity in relation to disability/diversity in medical education and the associated impact on training, career progression, and personal and professional wellbeing. In addition, documented and anecdotal evidence suggests that medical educators and training providers in all four nations (UK) are increasingly concerned about understanding neurodiversity and identifying and providing support for neurodivergent trainees. Summary of Work: A national Neurodiversity Task and Finish group were established to survey Health Education England local office Professional Support teams about insights into infrastructure, training for educators, triggers for assessment, resources, and intervention protocols. This group drew from educational leadership, professional and personal neurodiverse expertise, occupational medicine, employer human resource, and trainees. An online, exploratory survey was conducted to gather insights from supervisors and trainers across England using the Professional Support Units' platform. Summary of Results: This survey highlighted marked heterogeneity in the identification, assessment, and approaches to support and management of neurodivergent trainees and highlighted a 'deficit' approach to neurodiversity. It also demonstrated a paucity of educational and protocol resources for educators and supervisors in supporting neurodivergent trainees. Discussions and Conclusions: In phase one, we focused on faculty development. An educational repository for all supervising trainees using a thematic approach was formalised. This was guided by our survey findings specific for neurodiversity and took a triple 'A' approach: awareness, assessment, and action. This is further supported by video material incorporating stories in training as well as mobile workshops for trainers for more immersive learning. The subtle theme from both the survey and Task and finish group suggested a move away from deficit-focused methods toward a positive holistic, interdisciplinary approach within a biopsychosocial framework. Contributions: 1. Faculty Knowledge and basic understanding of neurodiversity are key to supporting trainees with known or underlying Neurodiverse conditions. This is further complicated by challenges around non-disclosure, varied presentations, stigma, and intersectionality. 2. There is national (and international) inconsistency in the approach to how trainees are managed once a neurodiverse condition is suspected or diagnosed. 3. A carefully constituted and focussed Task and Finish group can rapidly identify national inconsistencies in neurodiversity and implement rapid educational interventions. 4. Nuanced findings from surveys and discussion can reframe the approach to neurodiversity; from a medical model to a more comprehensive, asset-based, biopsychosocial model of support, fostering a cultural shift, accepting 'diversity' in all its manifestations, visible and hidden.

Keywords: neurodiversity, professional support, human considerations, workplace wellbeing

Procedia PDF Downloads 83
176 21st-Century Middlebrow Film: A Critical Examination of the Spectator Experience in Malayalam Film

Authors: Anupama A. P.

Abstract:

The Malayalam film industry, known as Mollywood, has a rich tradition of storytelling and cultural significance within Indian cinema. Middlebrow films have emerged as a distinct influential category, particularly in the 1980s, with directors like K.G. George, who engaged with female subjectivity and drew inspiration from the ‘women’s cinema’ of the 1950s and 1960s. In recent decades, particularly post-2010, the industry has transformed significantly with a new generation of filmmakers diverging from melodrama and new wave of the past, incorporating advanced technology and modern content. This study examines the evolution and impact of Malayalam middlebrow cinema in the 21st century, focusing on post-2000 films and their influence on contemporary spectator experiences. These films appeal to a wide range of audiences without compromising on their artistic integrity, tackling social issues and personal dramas with thematic and narrative complexity. Historically, middlebrow films in Malayalam cinema have portrayed realism and addressed the socio-political climate of Kerala, blending realism with reflexivity and moving away from traditional sentimentality. This shift is evident in the new generation of Malayalam films, which present a global representation of characters and a modern treatment of individuals. To provide a comprehensive understanding of this evolution, the study analyzes a diverse selection of films such as Kerala Varma Pazhassi Raja (2009), Drishyam (2013), Maheshinte Prathikaaram (2016), Take Off (2017), and Thondimuthalum Driksakshiyum (2017) and Virus (2019) illustrating the broad thematic range and innovative narrative techniques characteristic of this genre. These films exemplify how middlebrow cinema continues to evolve, adapting to changing societal contexts and audience expectations. This research employs a theoretical methodology, drawing on cultural studies and audience reception theory, utilizing frameworks such as Bordwell’s narrative theory, Deleuze’s concept of deterritorialization, and Hall’s encoding/decoding model to analyze the changes in Malayalam middlebrow cinema and interpret the storytelling methods, spectator experience, and audience reception of these films. The findings indicate that Malayalam middlebrow cinema post-2010 offers a spectator experience that is both intellectually stimulating and broadly appealing. This study highlights the critical role of middlebrow cinema in reflecting and shaping societal values, making it a significant cultural artefact within the broader context of Indian and global cinema. By bridging entertainment with thought-provoking narratives, these films engage audiences and contribute to wider cultural discourse, making them pivotal in contemporary cinematic landscapes. To conclude, this study highlights the importance of Malayalam middle-brow cinema in influencing contemporary cinematic tastes. The nuanced and approachable narratives of post-2010 films are posited to assume an increasingly pivotal role in the future of Malayalam cinema. By providing a deeper understanding of Malayalam middlebrow cinema and its societal implications, this study enriches theoretical discourse, promotes regional cinema, and offers valuable insights into contemporary spectator experiences and the future trajectory of Malayalam cinema.

Keywords: Malayalam cinema, middlebrow cinema, spectator experience, audience reception, deterritorialization

Procedia PDF Downloads 19
175 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling

Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes

Abstract:

Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.

Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling

Procedia PDF Downloads 73
174 Smart Laboratory for Clean Rivers in India - An Indo-Danish Collaboration

Authors: Nikhilesh Singh, Shishir Gaur, Anitha K. Sharma

Abstract:

Climate change and anthropogenic stress have severely affected ecosystems all over the globe. Indian rivers are under immense pressure, facing challenges like pollution, encroachment, extreme fluctuation in the flow regime, local ignorance and lack of coordination between stakeholders. To counter all these issues a holistic river rejuvenation plan is needed that tests, innovates and implements sustainable solutions in the river space for sustainable river management. Smart Laboratory for Clean Rivers (SLCR) an Indo-Danish collaboration project, provides a living lab setup that brings all the stakeholders (government agencies, academic and industrial partners and locals) together to engage, learn, co-creating and experiment for a clean and sustainable river that last for ages. Just like every mega project requires piloting, SLCR has opted for a small catchment of the Varuna River, located in the Middle Ganga Basin in India. Considering the integrated approach of river rejuvenation, SLCR embraces various techniques and upgrades for rejuvenation. Likely, maintaining flow in the channel in the lean period, Managed Aquifer Recharge (MAR) is a proven technology. In SLCR, Floa-TEM high-resolution lithological data is used in MAR models to have better decision-making for MAR structures nearby of the river to enhance the river aquifer exchanges. Furthermore, the concerns of quality in the river are a big issue. A city like Varanasi which is located in the last stretch of the river, generates almost 260 MLD of domestic waste in the catchment. The existing STP system is working at full efficiency. Instead of installing a new STP for the future, SLCR is upgrading those STPs with an IoT-based system that optimizes according to the nutrient load and energy consumption. SLCR also advocate nature-based solutions like a reed bed for the drains having less flow. In search of micropollutants, SLCR uses fingerprint analysis involves employing advanced techniques like chromatography and mass spectrometry to create unique chemical profiles. However, rejuvenation attempts cannot be possible without involving the entire catchment. A holistic water management plan that includes storm management, water harvesting structure to efficiently manage the flow of water in the catchment and installation of several buffer zones to restrict pollutants entering into the river. Similarly, carbon (emission and sequestration) is also an important parameter for the catchment. By adopting eco-friendly practices, a ripple effect positively influences the catchment's water dynamics and aids in the revival of river systems. SLCR has adopted 4 villages to make them carbon-neutral and water-positive. Moreover, for the 24×7 monitoring of the river and the catchment, robust IoT devices are going to be installed to observe, river and groundwater quality, groundwater level, river discharge and carbon emission in the catchment and ultimately provide fuel for the data analytics. In its completion, SLCR will provide a river restoration manual, which will strategise the detailed plan and way of implementation for stakeholders. Lastly, the entire process is planned in such a way that will be managed by local administrations and stakeholders equipped with capacity-building activity. This holistic approach makes SLCR unique in the field of river rejuvenation.

Keywords: sustainable management, holistic approach, living lab, integrated river management

Procedia PDF Downloads 44
173 Peculiarities of Absorption near the Edge of the Fundamental Band of Irradiated InAs-InP Solid Solutions

Authors: Nodar Kekelidze, David Kekelidze, Elza Khutsishvili, Bela Kvirkvelia

Abstract:

The semiconductor devices are irreplaceable elements for investigations in Space (artificial Earth satellite, interplanetary space craft, probes, rockets) and for investigation of elementary particles on accelerators, for atomic power stations, nuclear reactors, robots operating on heavily radiation contaminated territories (Chernobyl, Fukushima). Unfortunately, the most important parameters of semiconductors dramatically worsen under irradiation. So creation of radiation-resistant semiconductor materials for opto and microelectronic devices is actual problem, as well as investigation of complicated processes developed in irradiated solid states. Homogeneous single crystals of InP-InAs solid solutions were grown with zone melting method. There has been studied the dependence of the optical absorption coefficient vs photon energy near fundamental absorption edge. This dependence changes dramatically with irradiation. The experiments were performed on InP, InAs and InP-InAs solid solutions before and after irradiation with electrons and fast neutrons. The investigations of optical properties were carried out on infrared spectrophotometer in temperature range of 10K-300K and 1mkm-50mkm spectral area. Radiation fluencies of fast neutrons was equal to 2·1018neutron/cm2 and electrons with 3MeV, 50MeV up to fluxes of 6·1017electron/cm2. Under irradiation, there has been revealed the exponential type of the dependence of the optical absorption coefficient vs photon energy with energy deficiency. The indicated phenomenon takes place at high and low temperatures as well at impurity different concentration and practically in all cases of irradiation by various energy electrons and fast neutrons. We have developed the common mechanism of this phenomenon for unirradiated materials and implemented the quantitative calculations of distinctive parameter; this is in a satisfactory agreement with experimental data. For the irradiated crystals picture get complicated. In the work, the corresponding analysis is carried out. It has been shown, that in the case of InP, irradiated with electrons (Ф=1·1017el/cm2), the curve of optical absorption is shifted to lower energies. This is caused by appearance of the tails of density of states in forbidden band due to local fluctuations of ionized impurity (defect) concentration. Situation is more complicated in the case of InAs and for solid solutions with composition near to InAs when besides noticeable phenomenon there takes place Burstein effect caused by increase of electrons concentration as a result of irradiation. We have shown, that in certain conditions it is possible the prevalence of Burstein effect. This causes the opposite effect: the shift of the optical absorption edge to higher energies. So in given solid solutions there take place two different opposite directed processes. By selection of solid solutions composition and doping impurity we obtained such InP-InAs, solid solution in which under radiation mutual compensation of optical absorption curves displacement occurs. Obtained result let create on the base of InP-InAs, solid solution radiation-resistant optical materials. Conclusion: It was established the nature of optical absorption near fundamental edge in semiconductor materials and it was created radiation-resistant optical material.

Keywords: InAs-InP, electrons concentration, irradiation, solid solutions

Procedia PDF Downloads 186
172 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 115
171 Familiarity with Intercultural Conflicts and Global Work Performance: Testing a Theory of Recognition Primed Decision-Making

Authors: Thomas Rockstuhl, Kok Yee Ng, Guido Gianasso, Soon Ang

Abstract:

Two meta-analyses show that intercultural experience is not related to intercultural adaptation or performance in international assignments. These findings have prompted calls for a deeper grounding of research on international experience in the phenomenon of global work. Two issues, in particular, may limit current understanding of the relationship between international experience and global work performance. First, intercultural experience is too broad a construct that may not sufficiently capture the essence of global work, which to a large part involves sensemaking and managing intercultural conflicts. Second, the psychological mechanisms through which intercultural experience affects performance remains under-explored, resulting in a poor understanding of how experience is translated into learning and performance outcomes. Drawing on recognition primed decision-making (RPD) research, the current study advances a cognitive processing model to highlight the importance of intercultural conflict familiarity. Compared to intercultural experience, intercultural conflict familiarity is a more targeted construct that captures individuals’ previous exposure to dealing with intercultural conflicts. Drawing on RPD theory, we argue that individuals’ intercultural conflict familiarity enhances their ability to make accurate judgments and generate effective responses when intercultural conflicts arise. In turn, the ability to make accurate situation judgements and effective situation responses is an important predictor of global work performance. A relocation program within a multinational enterprise provided the context to test these hypotheses using a time-lagged, multi-source field study. Participants were 165 employees (46% female; with an average of 5 years of global work experience) from 42 countries who relocated from country to regional offices as part a global restructuring program. Within the first two weeks of transfer to the regional office, employees completed measures of their familiarity with intercultural conflicts, cultural intelligence, cognitive ability, and demographic information. They also completed an intercultural situational judgment test (iSJT) to assess their situation judgment and situation response. The iSJT comprised four validated multimedia vignettes of challenging intercultural work conflicts and prompted employees to provide protocols of their situation judgment and situation response. Two research assistants, trained in intercultural management but blind to the study hypotheses, coded the quality of employee’s situation judgment and situation response. Three months later, supervisors rated employees’ global work performance. Results using multilevel modeling (vignettes nested within employees) support the hypotheses that greater familiarity with intercultural conflicts is positively associated with better situation judgment, and that situation judgment mediates the effect of intercultural familiarity on situation response quality. Also, aggregated situation judgment and situation response quality both predicted supervisor-rated global work performance. Theoretically, our findings highlight the important but under-explored role of familiarity with intercultural conflicts; a shift in attention from the general nature of international experience assessed in terms of number and length of overseas assignments. Also, our cognitive approach premised on RPD theory offers a new theoretical lens to understand the psychological mechanisms through which intercultural conflict familiarity affects global work performance. Third, and importantly, our study contributes to the global talent identification literature by demonstrating that the cognitive processes engaged in resolving intercultural conflicts predict actual performance in the global workplace.

Keywords: intercultural conflict familiarity, job performance, judgment and decision making, situational judgment test

Procedia PDF Downloads 166
170 Hydraulic Headloss in Plastic Drainage Pipes at Full and Partially Full Flow

Authors: Velitchko G. Tzatchkov, Petronilo E. Cortes-Mejia, J. Manuel Rodriguez-Varela, Jesus Figueroa-Vazquez

Abstract:

Hydraulic headloss, expressed by the values of friction factor f and Manning’s coefficient n, is an important parameter in designing drainage pipes. Their values normally are taken from manufacturer recommendations, many times without sufficient experimental support. To our knowledge, currently there is no standard procedure for hydraulically testing such pipes. As a result of research carried out at the Mexican Institute of Water Technology, a laboratory testing procedure was proposed and applied on 6 and 12 inches diameter polyvinyl chloride (PVC) and high-density dual wall polyethylene pipe (HDPE) drainage pipes. While the PVC pipe is characterized by naturally smooth interior and exterior walls, the dual wall HDPE pipe has corrugated exterior wall and, although considered smooth, a slightly wavy interior wall. The pipes were tested at full and partially full pipe flow conditions. The tests for full pipe flow were carried out on a 31.47 m long pipe at flow velocities between 0.11 and 4.61 m/s. Water was supplied by gravity from a 10 m-high tank in some of the tests, and from a 3.20 m-high tank in the rest of the tests. Pressure was measured independently with piezometer readings and pressure transducers. The flow rate was measured by an ultrasonic meter. For the partially full pipe flow the pipe was placed inside an existing 49.63 m long zero slope (horizontal) channel. The flow depth was measured by piezometers located along the pipe, for flow rates between 2.84 and 35.65 L/s, measured by a rectangular weir. The observed flow profiles were then compared to computer generated theoretical gradually varied flow profiles for different Manning’s n values. It was found that Manning’s n, that normally is assumed constant for a given pipe material, is in fact dependent on flow velocity and pipe diameter for full pipe flow, and on flow depth for partially full pipe flow. Contrary to the expected higher values of n and f for the HDPE pipe, virtually the same values were obtained for the smooth interior wall PVC pipe and the slightly wavy interior wall HDPE pipe. The explanation of this fact was found in Henry Morris’ theory for smooth turbulent conduit flow over isolated roughness elements. Following Morris, three categories of the flow regimes are possible in a rough conduit: isolated roughness (or semi smooth turbulent) flow, wake interference (or hyper turbulent) flow, and skimming (or quasi-smooth) flow. Isolated roughness flow is characterized by friction drag turbulence over the wall between the roughness elements, independent vortex generation, and dissipation around each roughness element. In this regime, the wake and vortex generation zones at each element develop and dissipate before attaining the next element. The longitudinal spacing of the roughness elements and their height are important influencing agents. Given the slightly wavy form of the HDPE pipe interior wall, the flow for this type of pipe belongs to this category. Based on that theory, an equation for the hydraulic friction factor was obtained. The obtained coefficient values are going to be used in the Mexican design standards.

Keywords: drainage plastic pipes, hydraulic headloss, hydraulic friction factor, Manning’s n

Procedia PDF Downloads 265
169 Innovative Technologies of Distant Spectral Temperature Control

Authors: Leonid Zhukov, Dmytro Petrenko

Abstract:

Optical thermometry has no alternative in many cases of industrial most effective continuous temperature control. Classical optical thermometry technologies can be used on available for pyrometers controlled objects with stable radiation characteristics and transmissivity of the intermediate medium. Without using temperature corrections, it is possible in the case of a “black” body for energy pyrometry and the cases of “black” and “grey” bodies for spectral ratio pyrometry or with using corrections – for any colored bodies. Consequently, with increasing the number of operating waves, optical thermometry possibilities to reduce methodical errors significantly expand. That is why, in recent 25-30 years, research works have been reoriented on more perfect spectral (multicolor) thermometry technologies. There are two physical material substances, i.e., substance (controlled object) and electromagnetic field (thermal radiation), to be operated in optical thermometry. Heat is transferred by radiation; therefore, radiation has the energy, entropy, and temperature. Optical thermometry was originating simultaneously with the developing of thermal radiation theory when the concept and the term "radiation temperature" was not used, and therefore concepts and terms "conditional temperatures" or "pseudo temperature" of controlled objects were introduced. They do not correspond to the physical sense and definitions of temperature in thermodynamics, molecular-kinetic theory, and statistical physics. Launched by the scientific thermometric society, discussion about the possibilities of temperature measurements of objects, including colored bodies, using the temperatures of their radiation is not finished. Are the information about controlled objects transferred by their radiation enough for temperature measurements? The positive and negative answers on this fundamental question divided experts into two opposite camps. Recent achievements of spectral thermometry develop events in her favour and don’t leave any hope for skeptics. This article presents the results of investigations and developments in the field of spectral thermometry carried out by the authors in the Department of Thermometry and Physics-Chemical Investigations. The authors have many-year’s of experience in the field of modern optical thermometry technologies. Innovative technologies of optical continuous temperature control have been developed: symmetric-wave, two-color compensative, and based on obtained nonlinearity equation of spectral emissivity distribution linear, two-range, and parabolic. Тhe technologies are based on direct measurements of physically substantiated and proposed by Prof. L. Zhukov, radiation temperatures with the next calculation of the controlled object temperature using this radiation temperatures and corresponding mathematical models. Тhe technologies significantly increase metrological characteristics of continuous contactless and light-guide temperature control in energy, metallurgical, ceramic, glassy, and other productions. For example, under the same conditions, the methodical errors of proposed technologies are less than the errors of known spectral and classical technologies in 2 and 3-13 times, respectively. Innovative technologies provide quality products obtaining at the lowest possible resource-including energy costs. More than 600 publications have been published on the completed developments, including more than 100 domestic patents, as well as 34 patents in Australia, Bulgaria, Germany, France, Canada, the USA, Sweden, and Japan. The developments have been implemented in the enterprises of USA, as well as Western Europe and Asia, including Germany and Japan.

Keywords: emissivity, radiation temperature, object temperature, spectral thermometry

Procedia PDF Downloads 87
168 InAs/GaSb Superlattice Photodiode Array ns-Response

Authors: Utpal Das, Sona Das

Abstract:

InAs/GaSb type-II superlattice (T2SL) Mid-wave infrared (MWIR) focal plane arrays (FPAs) have recently seen rapid development. However, in small pixel size large format FPAs, the occurrence of high mesa sidewall surface leakage current is a major constraint necessitating proper surface passivation. A simple pixel isolation technique in InAs/GaSb T2SL detector arrays without the conventional mesa etching has been proposed to isolate the pixels by forming a more resistive higher band gap material from the SL, in the inter-pixel region. Here, a single step femtosecond (fs) laser anneal of the T2SL structure of the inter-pixel T2SL regions, have been used to increase the band gap between the pixels by QW-intermixing and hence increase isolation between the pixels. The p-i-n photodiode structure used here consists of a 506nm, (10 monolayer {ML}) InAs:Si (1x10¹⁸cm⁻³)/(10ML) GaSb SL as the bottom n-contact layer grown on an n-type GaSb substrate. The undoped absorber layer consists of 1.3µm, (10ML)InAs/(10ML)GaSb SL. The top p-contact layer is a 63nm, (10ML)InAs:Be(1x10¹⁸cm⁻³)/(10ML)GaSb T2SL. In order to improve the carrier transport, a 126nm of graded doped (10ML)InAs/(10ML)GaSb SL layer was added between the absorber and each contact layers. A 775nm 150fs-laser at a fluence of ~6mJ/cm² is used to expose the array where the pixel regions are masked by a Ti(200nm)-Au(300nm) cap. Here, in the inter-pixel regions, the p+ layer have been reactive ion etched (RIE) using CH₄+H₂ chemistry and removed before fs-laser exposure. The fs-laser anneal isolation improvement in 200-400μm pixels due to spatially selective quantum well intermixing for a blue shift of ~70meV in the inter-pixel regions is confirmed by FTIR measurements. Dark currents are measured between two adjacent pixels with the Ti(200nm)-Au(300nm) caps used as contacts. The T2SL quality in the active photodiode regions masked by the Ti-Au cap is hardly affected and retains the original quality of the detector. Although, fs-laser anneal of p+ only etched p-i-n T2SL diodes show a reduction in the reverse dark current, no significant improvement in the full RIE-etched mesa structures is noticeable. Hence for a 128x128 array fabrication of 8μm square pixels and 10µm pitch, SU8 polymer isolation after RIE pixel delineation has been used. X-n+ row contacts and Y-p+ column contacts have been used to measure the optical response of the individual pixels. The photo-response of these 8μm and other 200μm pixels under a 2ns optical pulse excitation from an Optical-Parametric-Oscillator (OPO), shows a peak responsivity of ~0.03A/W and 0.2mA/W, respectively, at λ~3.7μm. Temporal response of this detector array is seen to have a fast response ~10ns followed typical slow decay with ringing, attributed to impedance mismatch of the connecting co-axial cables. In conclusion, response times of a few ns have been measured in 8µm pixels of a 128x128 array. Although fs-laser anneal has been found to be useful in increasing the inter-pixel isolation in InAs/GaSb T2SL arrays by QW inter-mixing, it has not been found to be suitable for passivation of full RIE etched mesa structures with vertical walls on InAs/GaSb T2SL.

Keywords: band-gap blue-shift, fs-laser-anneal, InAs/GaSb T2SL, Inter-pixel isolation, ns-Response, photodiode array

Procedia PDF Downloads 141
167 Magneto-Luminescent Biocompatible Complexes Based on Alloyed Quantum Dots and Superparamagnetic Iron Oxide Nanoparticles

Authors: A. Matiushkina, A. Bazhenova, I. Litvinov, E. Kornilova, A. Dubavik, A. Orlova

Abstract:

Magnetic-luminescent complexes based on superparamagnetic iron oxide nanoparticles (SPIONs) and semiconductor quantum dots (QDs) have been recognized as a new class of materials that have high potential in modern medicine. These materials can serve for theranostics of oncological diseases, and also as a target agent for drug delivery. They combine the qualities characteristic of magnetic nanoparticles, that is, magneto-controllability and the ability to local heating under the influence of an external magnetic field, as well as phosphors, due to luminescence of which, for example, early tumor imaging is possible. The complexity of creating complexes is the energy transfer between particles, which quenches the luminescence of QDs in complexes with SPIONs. In this regard, a relatively new type of alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs is used in our work. The presence of a sufficiently thick gradient semiconductor shell in alloyed QDs makes it possible to reduce the probability of energy transfer from QDs to SPIONs in complexes. At the same time, Forster Resonance Energy Transfer (FRET) is a perfect instrument to confirm the formation of complexes based on QDs and different-type energy acceptors. The formation of complexes in the aprotic bipolar solvent dimethyl sulfoxide is ensured by the coordination of the carboxyl group of the stabilizing QD molecule (L-cysteine) on the surface iron atoms of the SPIONs. An analysis of the photoluminescence (PL) spectra has shown that a sequential increase in the SPIONs concentration in the samples is accompanied by effective quenching of the luminescence of QDs. However, it has not confirmed the formation of complexes yet, because of a decrease in the PL intensity of QDs due to reabsorption of light by SPIONs. Therefore, a study of the PL kinetics of QDs at different SPIONs concentrations was made, which demonstrates that an increase in the SPIONs concentration is accompanied by a symbatic reduction in all characteristic PL decay times. It confirms the FRET from QDs to SPIONs, which indicates the QDs/SPIONs complex formation, rather than a spontaneous aggregation of QDs, which is usually accompanied by a sharp increase in the percentage of the QD fraction with the shortest characteristic PL decay time. The complexes have been studied by the magnetic circular dichroism (MCD) spectroscopy that allows one to estimate the response of magnetic material to the applied magnetic field and also can be useful to check SPIONs aggregation. An analysis of the MCD spectra has shown that the complexes have zero residual magnetization, which is an important factor for using in biomedical applications, and don't contain SPIONs aggregates. Cell penetration, biocompatibility, and stability of QDs/SPIONs complexes in cancer cells have been studied using HeLa cell line. We have found that the complexes penetrate in HeLa cell and don't demonstrate cytotoxic effect up to 25 nM concentration. Our results clearly demonstrate that alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs can be successfully used in complexes with SPIONs reached new hybrid nanostructures, which combine bright luminescence for tumor imaging and magnetic properties for targeted drug delivery and magnetic hyperthermia of tumors. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and was financially supported by Government of Russian Federation, Grant 08-08.

Keywords: alloyed quantum dots, magnetic circular dichroism, magneto-luminescent complexes, superparamagnetic iron oxide nanoparticles

Procedia PDF Downloads 102