Search results for: partial least squares regression
3512 Healthy Lifestyle and Risky Behaviors amongst Students of Physical Education High Schools
Authors: Amin Amani, Masomeh Reihany Shirvan, Mahla Nabizadeh Mashizi, Mohadese Khoshtinat, Mohammad Elyas Ansarinia
Abstract:
The purpose of this study is the relationship between a healthy lifestyle and risky behavior in physical education students of Bojnourd schools. The study sample consisted of teenagers studying in second and third grade of Bojnourd's high schools. According to level sampling, 604 students studying in the second grade, and 600 students studying in third grade were tested from physical education schools in Bojnourd. For sample selection, populations were divided into 4 area including north, East, West and South. Then according to the number of students of each area, sample size of each level was determined. Two questionnaires were used to collect data in this study which were consisted of three parts: The demographic data, Iranian teenagers' risk taking (IARS) and prevention methods with emphasize on the importance of family role were examined. The Central and dispersion indices, such as standard deviation, multiple variance analysis, and multivariate regression analysis were used. Results showed that the observed F is significant (P ≤ 0.01) and 21% of variance related to risky behavior is explained by the lack of awareness. Given the significance of the regression, the coefficients of risky behavior in teenagers in prediction equation showed that each of teenagers' risky behavior can have an impact on healthy lifestyle.Keywords: healthy lifestyle, high-risk behavior, students, physical education
Procedia PDF Downloads 1903511 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)
Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar
Abstract:
Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus
Procedia PDF Downloads 643510 Investigation of Pollution and the Physical and Chemical Condition of Polour River, East of Tehran, Iran
Authors: Azita Behbahaninia
Abstract:
This research has been carried out to determine the water quality and physico-chemical properties Polour River, one of the most branch of Haraz River. Polour River was studied for a period of one year Samples were taken from different stations along the main branch of River polour. In water samples determined pH, DO, SO4, Cl, PO4, NO3, EC, BOD, COD, Temprature, color and number of Caliform per liter. ArcGIS was used for the zoning of phosphate concentration in the polour River basin. The results indicated that the river is polluted in polour village station, because of discharge domestic wastewater and also river is polluted in Ziar village station, because of agricultural wastewater and water is contaminated in aquaculture station, because of fish ponds wastewater. Statistical analysis shows that between independent traits and coliform regression relationship is significant at the 1% level. Coefficient explanation index indicated independent traits control 80% coliform and 20 % is for unknown parameters. The causality analysis showed Temperature (0.6) has the most positive and direct effect on coliform and sulfate has direct and negative effect on coliform. The results of causality analysis and the results of the regression analysis are matched and other forms direct and indirect effects were negligible and ignorable. Kruskal-Wallis test showed, there is different between sampling stations and studied characters. Between stations for temperature, DO, COD, EC, sulfate and coliform is at 1 % and for phosphate 5 % level of significance.Keywords: coliform, GIS, pollution, phosphate, river
Procedia PDF Downloads 4683509 Accelerated Evaluation of Structural Reliability under Tsunami Loading
Authors: Sai Hung Cheung, Zhe Shao
Abstract:
It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.Keywords: response surface, stochastic simulation, structural reliability tsunami, risk
Procedia PDF Downloads 6763508 Corporate Governance, Performance, and Financial Reporting Quality of Listed Manufacturing Firms in Nigeria
Authors: Jamila Garba Audu, Shehu Usman Hassan
Abstract:
The widespread failure in the financial information quality has created the need to improve the financial information quality and to strengthen the control of managers by setting up good firms structures. Published accounting information in financial statements is required to provide various users - shareholders, employees, suppliers, creditors, financial analysts, stockbrokers and government agencies – with timely and reliable information useful for making prudent, effective and efficient decisions. The relationship between corporate governance and performance to financial reporting quality is imperative; this is because despite rapid researches in this area the findings obtained from these studies are constantly inconclusive. Data for the study were extracted from the firms’ annual reports and accounts. After running the OLS regression, a robustness test was conducted for the validity of statistical inferences; the data was empirically tested. A multiple regression was employed to test the model as a technique for data analysis. The results from the analysis revealed a negative association between all the regressors and financial reporting quality except the performance of listed manufacturing firms in Nigeria. This indicates that corporate governance plays a significant role in mitigating earnings management and improving financial reporting quality while performance does not. The study recommended among others that the composition of audit committee should be made in accordance with the provision for code of corporate governance which is not more than six (6) members with at least one (1) financial expert.Keywords: corporate governance, financial reporting quality, manufacturing firms, Nigeria, performance
Procedia PDF Downloads 2463507 Identifying Diabetic Retinopathy Complication by Predictive Techniques in Indian Type 2 Diabetes Mellitus Patients
Authors: Faiz N. K. Yusufi, Aquil Ahmed, Jamal Ahmad
Abstract:
Predicting the risk of diabetic retinopathy (DR) in Indian type 2 diabetes patients is immensely necessary. India, being the second largest country after China in terms of a number of diabetic patients, to the best of our knowledge not a single risk score for complications has ever been investigated. Diabetic retinopathy is a serious complication and is the topmost reason for visual impairment across countries. Any type or form of DR has been taken as the event of interest, be it mild, back, grade I, II, III, and IV DR. A sample was determined and randomly collected from the Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N.M.C., A.M.U., Aligarh, India. Collected variables include patients data such as sex, age, height, weight, body mass index (BMI), blood sugar fasting (BSF), post prandial sugar (PP), glycosylated haemoglobin (HbA1c), diastolic blood pressure (DBP), systolic blood pressure (SBP), smoking, alcohol habits, total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), physical activity, duration of diabetes, diet control, history of antihypertensive drug treatment, family history of diabetes, waist circumference, hip circumference, medications, central obesity and history of DR. Cox proportional hazard regression is used to design risk scores for the prediction of retinopathy. Model calibration and discrimination are assessed from Hosmer Lemeshow and area under receiver operating characteristic curve (ROC). Overfitting and underfitting of the model are checked by applying regularization techniques and best method is selected between ridge, lasso and elastic net regression. Optimal cut off point is chosen by Youden’s index. Five-year probability of DR is predicted by both survival function, and Markov chain two state model and the better technique is concluded. The risk scores developed can be applied by doctors and patients themselves for self evaluation. Furthermore, the five-year probabilities can be applied as well to forecast and maintain the condition of patients. This provides immense benefit in real application of DR prediction in T2DM.Keywords: Cox proportional hazard regression, diabetic retinopathy, ROC curve, type 2 diabetes mellitus
Procedia PDF Downloads 1863506 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 613505 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 763504 Effect of Serum Electrolytes on a QTc Interval and Mortality in Patients admitted to Coronary Care Unit
Authors: Thoetchai Peeraphatdit, Peter A. Brady, Suraj Kapa, Samuel J. Asirvatham, Niyada Naksuk
Abstract:
Background: Serum electrolyte abnormalities are a common cause of an acquired prolonged QT syndrome, especially, in the coronary care unit (CCU) setting. Optimal electrolyte ranges among the CCU patients have not been sufficiently investigated. Methods: We identified 8,498 consecutive CCU patients who were admitted to the CCU at Mayo Clinic, Rochester, the USA, from 2004 through 2013. Association between first serum electrolytes and baseline corrected QT intervals (QTc), as well as in-hospital mortality, was tested using multivariate linear regression and logistic regression, respectively. Serum potassium 4.0- < 4.5 mEq/L, ionized calcium (iCa) 4.6-4.8 mg/dL, and magnesium 2.0- < 2.2 mg/dL were used as the reference levels. Results: There was a modest level-dependent relationship between hypokalemia ( < 4.0 mEq/L), hypocalcemia ( < 4.4 mg/dL), and a prolonged QTc interval; serum magnesium did not affect the QTc interval. Association between the serum electrolytes and in-hospital mortality included a U-shaped relationship for serum potassium (adjusted odds ratio (OR) 1.53 and OR 1.91for serum potassium 4.5- < 5.0 and ≥ 5.0 mEq/L, respectively) and an inverted J-shaped relationship for iCa (adjusted OR 2.79 and OR 2.03 for calcium < 4.4 and 4.4- < 4.6 mg/dL, respectively). For serum magnesium, the mortality was greater only among patients with levels ≥ 2.4 mg/dL (adjusted OR 1.40), compared to the reference level. Findings were similar in sensitivity analyses examining the association between mean serum electrolytes and mean QTc intervals, as well as in-hospital mortality. Conclusions: Serum potassium 4.0- < 4.5 mEq/L, iCa ≥ 4.6 mg/dL, and magnesium < 2.4 mg/dL had a neutral effect on QTc intervals and were associated with the lowest in-hospital mortality among the CCU patients.Keywords: calcium, electrocardiography, long-QT syndrome, magnesium, mortality, potassium
Procedia PDF Downloads 3943503 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves
Authors: E. Arcos, E. Bautista, F. Méndez
Abstract:
In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.Keywords: approximation U-P, porous seabed, scaling analysis, water waves
Procedia PDF Downloads 3493502 The Link between Childhood Maltreatment and Psychological Distress: The Mediation and Moderation Roles of Cognitive Distortion, Alexithymia, and Eudemonic Well-Being
Authors: Siqi Fang, Man Cheung Chung
Abstract:
This study examined the inter-relationship between childhood maltreatment, cognitive distortion, alexithymia, eudemonic well-being, and psychological distress. One hundred and eighty-two university students participated in the study and completed an online survey comprising the Childhood Trauma Questionnaire, Cognitive Distortion Scale, Toronto Alexithymia Scale, Psychological Well-Being Scale, and General Health Questionnaire-28. Hierarchical multiple regression analysis showed that child maltreatment, perceptions of hopelessness and helplessness, preoccupation with danger, personal growth, and purpose in life predicted psychological distress. However, alexithymia was not a significant predictor. Further analysis using the regression models with bootstrapping procedure showed that feeling hopeless, helpless and preoccupation with danger mediated the path between child maltreatment and psychological distress. Meanwhile, coping with beliefs in personal growth and life purpose moderated the mediation effects of distorted cognition on psychological distress. To conclude, childhood maltreatment is associated with psychological distress. This relationship is influenced by people’s perceptions of life being hopeless, helpless or dangerous. At the same time, the effect of hopelessness, helplessness, and feelings of danger also depends on the degree of using coping strategies of positive psychological functioning.Keywords: alexithymia, childhood maltreatment, cognitive distortion, eudemonic well-being, psychological distress
Procedia PDF Downloads 3443501 Non-Invasive Imaging of Tissue Using Near Infrared Radiations
Authors: Ashwani Kumar Aggarwal
Abstract:
NIR Light is non-ionizing and can pass easily through living tissues such as breast without any harmful effects. Therefore, use of NIR light for imaging the biological tissue and to quantify its optical properties is a good choice over other invasive methods. Optical tomography involves two steps. One is the forward problem and the other is the reconstruction problem. The forward problem consists of finding the measurements of transmitted light through the tissue from source to detector, given the spatial distribution of absorption and scattering properties. The second step is the reconstruction problem. In X-ray tomography, there is standard method for reconstruction called filtered back projection method or the algebraic reconstruction methods. But this method cannot be applied as such, in optical tomography due to highly scattering nature of biological tissue. A hybrid algorithm for reconstruction has been implemented in this work which takes into account the highly scattered path taken by photons while back projecting the forward data obtained during Monte Carlo simulation. The reconstructed image suffers from blurring due to point spread function. This blurred reconstructed image has been enhanced using a digital filter which is optimal in mean square sense.Keywords: least-squares optimization, filtering, tomography, laser interaction, light scattering
Procedia PDF Downloads 3163500 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS
Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert
Abstract:
The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF
Procedia PDF Downloads 1613499 The Association of Empirical Dietary Inflammatory Index with Musculoskeletal Pains in Elderlies
Authors: Mahshid Rezaei, Zahra Tajari, Zahra Esmaeily, Atefeh Eyvazkhani, Shahrzad Daei, Marjan Mansouri Dara, Mohaddesh Rezaei, Abolghassem Djazayeri, Ahmadreza Dorosti Motlagh
Abstract:
Background: Musculoskeletal pain is one of the most prevalent symptoms in elderly age. Nutrition and diet are considered important underlying factors that could affect chronic musculoskeletal pain. The purpose of this study was to identify the relationship between empirical dietary inflammatory patterns (EDII) and musculoskeletal pain. Method: In this cross-sectional study, 213 elderly individuals were selected from several health centers. The usual dietary intake was evaluated by a valid and reliable 147-items food frequency questionnaire (FFQ). To measure the intensity of pain, Visual Analogue Scale (VAS) was used. Multiple Linear Regression was applied to assess the association between EDII and musculoskeletal pain. Results: The results of multiple linear regression analysis indicate that a higher EDII score was associated with higher musculoskeletal pain (β= 0.21: 95% CI: 0.24-1.87: P= 0.003). These results stayed significant even after adjusting for covariates such as sex, marital status, height, family number, sleep, BMI, physical activity duration, waist circumference, protector, and medication use (β= 0.16: 95% CI: 0.11-1.04: P= 0.02). Conclusion: Study findings indicated that higher inflammation of diet might have a direct association with musculoskeletal pains in elderlies. However, further investigations are required to confirm these findings.Keywords: musculoskeletal pain, empirical dietary inflammatory pattern, elderlies, dietary pattern
Procedia PDF Downloads 2113498 The Relationship between Employee Commitment, Job Satisfaction and External Market Orientation in Vietnamese Joint-Stock Commercial Banks
Authors: Nguyen Ngoc Que Tran
Abstract:
Purpose: The purpose of this paper is to investigate the relationship between internal market orientation, external market orientation, employee commitment and job satisfaction. Design/methodology/approach: This study collected data through a survey and utilized simple linear regression and multiple regression analysis to determine if there was any support for the research hypotheses as presented in the previous chapter. Findings: Using data from 256 employees of four leading joint stock banks in Vietnam, the empirical results indicates that employee commitment is positively related with external market orientation, job satisfaction is positively related to employee commitment, and employee commitment and job satisfaction are positively related to external market orientation. However, job satisfaction has no significant positive effect on external market orientation. Theoretical contribution: The primary contribution to marketing theory arising from this study is the integration of job satisfaction, employee commitment, and external market orientation in a single research model. Practical implications: The major contribution to practice is an external market oriented bank has to respond rapidly to the future needs and preferences of its customers. This could result in high levels of commitment to the service process and in doing so provide Vietnamese joint-stock commercial banks with a competitive advantage. The finding is important for the banking service sector in general and the Vietnamese banking industry in particular.Keywords: employee commitment, job satisfaction and external market orientation, vietnam, bank
Procedia PDF Downloads 4153497 Recognition of a Thinly Bedded Distal Turbidite: A Case Study from a Proterozoic Delta System, Chaossa Formation, Simla Group, Western Lesser Himalaya, India
Authors: Priyanka Mazumdar, Ananya Mukhopadhyay
Abstract:
A lot of progress has been achieved in the research of turbidites during the last decades. However, their relationship to delta systems still deserves further attention. This paper addresses example of fine grained turbidite from a pro-deltaic deposit of a Proterozoic mixed energy delta system exposed along Chaossa-Baliana river section of the Chaossa Formation of the Simla Basin. Lithostratigraphic analysis of the Chaossa Formation reveals three major facies associations (prodelta deposit-FA1, delta slope deposit-FA2 and delta front deposit-FA3) based on lithofacies types, petrography and sedimentary structures. Detailed process-based facies and paleoenvironmental analysis of the study area have led to identification of more than150 m thick coarsening-upwards deltaic successions composed of fine grained turbidites overlain by delta slope deposits. Erosional features are locally common at the base of turbidite beds and still more widespread at the top. The complete sequence has eight sub-divisions that are here termed T1 to T8. The basal subdivision (T1) comprises a massive graded unit with a sharp, scoured base, internal parallel-lamination and cross-lamination. The overlying sequence shows textural and compositional grading through alternating silt and mud laminae (T2). T2 is overlying by T3 which is characterized by climbing ripple and cross lamination. Parallel laminae are the predominant facies attributes of T4 which caps the T3 unit. T5 has a loaded scour base and is mainly characterized laminated silt. The topmost three divisions, graded mud (T6), ungraded mud (T7) and laminated mud (T8). The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites. Repetition of partial sequences represents deposition from different stages of evolution of a large, muddy, turbidity flow. Detailed facies analysis of the study area reveals that the sediments of the turbidites developed during normal regression at the stage of stable or marginally rising sea level. Thin-bedded turbidites were deposited predominantly by turbidity currents in the relatively shallower part of the Simla basin. The fine-grained turbidites are developed by resedimentation of delta-front sands and slumping of upper pro-delta muds.Keywords: turbidites, prodelta, proterozoic, Simla Basin, Bouma sequence
Procedia PDF Downloads 2693496 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default
Procedia PDF Downloads 4563495 Risk Factors for High Resistance of Ciprofloxacin Against Escherichia coli in Complicated Urinary Tract Infection
Authors: Liaqat Ali, Khalid Farooq, Shafieullah Khan, Nasir Orakzai, Qudratullah
Abstract:
Objectives: To determine the risk factors for high resistance of ciprofloxacin in complicated urinary tract infections. Materials and Methods: It is an analytical study that was conducted in the department of Urology (Team ‘C’) at Institute of Kidney Diseases Hayatabad Peshawar from 1st June 2012 till 31st December 2012. Total numbers of 100 patients with complicated UTI was selected in the study. Multivariate analysis and linear regression were performed for the detection of risk factors. All the data was recorded on structured Proforma and was analyzed on SPSS version 17. Results: The mean age of the patient was 55.6 years (Range 3-82 years). 62 patients were male while 38 patients were female. 66 isolates of E-Coli were found sensitive to ciprofloxacin while 34 isolates were found Resistant for ciprofloxacin. Using multivariate analysis and linear regression, an increasing age above 50 (p=0.002) History of urinary catheterization especially for bladder outflow obstruction (p=0.001) and previous multiple use of ciprofloxacin (p=0.001) and poor brand of ciprofloxacin were found to be independent risk factors for high resistance of ciprofloxacin. Conclusion: UTI is common illness across the globe with increasing trend of antimicrobial resistance for ciprofloxacin against E Coli in complicated UTI. The risk factors for emerging resistance are increasing age, urinary catheterization and multiple use and poor brand of ciprofloxacin.Keywords: urinary tract infection, ciprofloxacin, urethral catheterization, antimicrobial resistance
Procedia PDF Downloads 3543494 Manufacturing of Vacuum Glazing with Metal Edge Seal
Authors: Won Kyeong Kang, Tae-Ho Song
Abstract:
Vacuum glazing (VG) is a super insulator, which is able to greatly improve the energy efficiency of building. However, a significant amount of heat loss occurs through the welded edge of conventional VG. The joining method should be improved for further application and commercialization. For this purpose VG with metal edge seal is conceived. In this paper, the feasibility of joining stainless steel and soda lime glass using glass solder is assessed numerically and experimentally. In the case of very thin stainless steel, partial joining with glass is identified, which need further improvement for practical application.Keywords: VG, metal edge seal, vacuum glazing, manufacturing,
Procedia PDF Downloads 6053493 Determining Variables in Mathematics Performance According to Gender in Mexican Elementary School
Authors: Nora Gavira Duron, Cinthya Moreda Gonzalez-Ortega, Reyna Susana Garcia Ruiz
Abstract:
This paper objective is to analyze the mathematics performance in the Learning Evaluation National Plan (PLANEA for its Spanish initials: Plan Nacional para la Evaluación de los Aprendizajes), applied to Mexican students who are enrolled in the last elementary-school year over the 2017-2018 academic year. Such test was conducted nationwide in 3,573 schools, using a sample of 108,083 students, whose average in mathematics, on a scale of 0 to 100, was 45.6 points. 75% of the sample analyzed did not reach the sufficiency level (60 points). It should be noted that only 2% got a 90 or higher score result. The performance is analyzed while considering whether there are differences in gender, marginalization level, public or private school enrollment, parents’ academic background, and living-with-parents situation. Likewise, this variable impact (among other variables) on school performance by gender is evaluated, considering multivariate logistic (Logit) regression analysis. The results show there are no significant differences in mathematics performance regarding gender in elementary school; nevertheless, the impact exerted by mothers who studied at least high school is of great relevance for students, particularly for girls. Other determining variables are students’ resilience, their parents’ economic status, and the fact they attend private schools, strengthened by the mother's education.Keywords: multivariate regression analysis, academic performance, learning evaluation, mathematics result per gender
Procedia PDF Downloads 1473492 In silico Statistical Prediction Models for Identifying the Microbial Diversity and Interactions Due to Fixed Periodontal Appliances
Authors: Suganya Chandrababu, Dhundy Bastola
Abstract:
Like in the gut, the subgingival microbiota plays a crucial role in oral hygiene, health, and cariogenic diseases. Human activities like diet, antibiotics, and periodontal treatments alter the bacterial communities, metabolism, and functions in the oral cavity, leading to a dysbiotic state and changes in the plaques of orthodontic patients. Fixed periodontal appliances hinder oral hygiene and cause changes in the dental plaques influencing the subgingival microbiota. However, the microbial species’ diversity and complexity pose a great challenge in understanding the taxa’s community distribution patterns and their role in oral health. In this research, we analyze the subgingival microbial samples from individuals with fixed dental appliances (metal/clear) using an in silico approach. We employ exploratory hypothesis-driven multivariate and regression analysis to shed light on the microbial community and its functional fluctuations due to dental appliances used and identify risks associated with complex disease phenotypes. Our findings confirm the changes in oral microbiota composition due to the presence and type of fixed orthodontal devices. We identified seven main periodontic pathogens, including Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Firmicutes, whose abundances were significantly altered due to the presence and type of fixed appliances used. In the case of metal braces, the abundances of Bacteroidetes, Proteobacteria, Fusobacteria, Candidatus saccharibacteria, and Spirochaetes significantly increased, while the abundance of Firmicutes and Actinobacteria decreased. However, in individuals With clear braces, the abundance of Bacteroidetes and Candidatus saccharibacteria increased. The highest abundance value (P-value=0.004 < 0.05) was observed with Bacteroidetes in individuals with the metal appliance, which is associated with gingivitis, periodontitis, endodontic infections, and odontogenic abscesses. Overall, the bacterial abundances decrease with clear type and increase with metal type of braces. Regression analysis further validated the multivariate analysis of variance (MANOVA) results, supporting the hypothesis that the presence and type of the fixed oral appliances significantly alter the bacterial abundance and composition.Keywords: oral microbiota, statistical analysis, fixed or-thodontal appliances, bacterial abundance, multivariate analysis, regression analysis
Procedia PDF Downloads 1943491 Investigation of the Speckle Pattern Effect for Displacement Assessments by Digital Image Correlation
Authors: Salim Çalışkan, Hakan Akyüz
Abstract:
Digital image correlation has been accustomed as a versatile and efficient method for measuring displacements on the article surfaces by comparing reference subsets in undeformed images with the define target subset in the distorted image. The theoretical model points out that the accuracy of the digital image correlation displacement data can be exactly anticipated based on the divergence of the image noise and the sum of the squares of the subset intensity gradients. The digital image correlation procedure locates each subset of the original image in the distorted image. The software then determines the displacement values of the centers of the subassemblies, providing the complete displacement measures. In this paper, the effect of the speckle distribution and its effect on displacements measured out plane displacement data as a function of the size of the subset was investigated. Nine groups of speckle patterns were used in this study: samples are sprayed randomly by pre-manufactured patterns of three different hole diameters, each with three coverage ratios, on a computer numerical control punch press. The resulting displacement values, referenced at the center of the subset, are evaluated based on the average of the displacements of the pixel’s interior the subset.Keywords: digital image correlation, speckle pattern, experimental mechanics, tensile test, aluminum alloy
Procedia PDF Downloads 743490 Evidence Based Approach on Beliefs and Perceptions on Mental Health Disorder and Substance Abuse: The Role of a Social Worker
Authors: Helena Baffoe
Abstract:
The US has developed numerous programs over the past 50 years to enhance the lives of those who suffer from mental health illnesses and substance abuse, as well as the effectiveness of their treatments. Despite these advances over the past 50 years, there hasn't been a corresponding improvement in American public attitudes and beliefs about mental health disorders and substance abuse. Highly publicized acts of violence frequently elicit comments that blame the perpetrator's perceived mental health disorder since such people are thought to be substance abusers. Despite these strong public beliefs and perception about mental disorder and substance abuse, concreate empirical evidence that entail this perception is lacking, and evidence of their effectiveness has not been integrated. A rich data was collected from Substance Abuse and Mental Health Services Administration (SAMHSA) with a hypothesis that people who are diagnosed with a mental health disorder are likely to be diagnosed with substance abuse using logit regression analysis and Instrumental Variable. It was found that depressive, anxiety, and trauma/stressor mental disorders constitute the most common mental disorder in the United States, and the study could not find statistically significant evidence that being diagnosed with these leading mental health disorders in the United States does necessarily imply that such a patient is diagnosed with substances abuse. Thus, the public has a misconception of mental health and substance abuse issues, and social workers' responsibilities are outlined in order to assist ameliorate this attitude and perception.Keywords: mental health disorder, substance use, empirical evidence, logistic regression
Procedia PDF Downloads 783489 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm
Authors: Anuradha Chug, Sunali Gandhi
Abstract:
Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm
Procedia PDF Downloads 3813488 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction
Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian
Abstract:
Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.Keywords: marijuana, youth, integrative model of behavioral prediction, Iran
Procedia PDF Downloads 5543487 Modelling Farmer’s Perception and Intention to Join Cashew Marketing Cooperatives: An Expanded Version of the Theory of Planned Behaviour
Authors: Gospel Iyioku, Jana Mazancova, Jiri Hejkrlik
Abstract:
The “Agricultural Promotion Policy (2016–2020)” represents a strategic initiative by the Nigerian government to address domestic food shortages and the challenges in exporting products at the required quality standards. Hindered by an inefficient system for setting and enforcing food quality standards, coupled with a lack of market knowledge, the Federal Ministry of Agriculture and Rural Development (FMARD) aims to enhance support for the production and activities of key crops like cashew. By collaborating with farmers, processors, investors, and stakeholders in the cashew sector, the policy seeks to define and uphold high-quality standards across the cashew value chain. Given the challenges and opportunities faced by Nigerian cashew farmers, active participation in cashew marketing groups becomes imperative. These groups serve as essential platforms for farmers to collectively navigate market intricacies, access resources, share knowledge, improve output quality, and bolster their overall bargaining power. Through engagement in these cooperative initiatives, farmers not only boost their economic prospects but can also contribute significantly to the sustainable growth of the cashew industry, fostering resilience and community development. This study explores the perceptions and intentions of farmers regarding their involvement in cashew marketing cooperatives, utilizing an expanded version of the Theory of Planned Behaviour. Drawing insights from a diverse sample of 321 cashew farmers in Southwest Nigeria, the research sheds light on the factors influencing decision-making in cooperative participation. The demographic analysis reveals a diverse landscape, with a substantial presence of middle-aged individuals contributing significantly to the agricultural sector and cashew-related activities emerging as a primary income source for a substantial proportion (23.99%). Employing Structural Equation Modelling (SEM) with Maximum Likelihood Robust (MLR) estimation in R, the research elucidates the associations among latent variables. Despite the model’s complexity, the goodness-of-fit indices attest to the validity of the structural model, explaining approximately 40% of the variance in the intention to join cooperatives. Moral norms emerge as a pivotal construct, highlighting the profound influence of ethical considerations in decision-making processes, while perceived behavioural control presents potential challenges in active participation. Attitudes toward joining cooperatives reveal nuanced perspectives, with strong beliefs in enhanced connections with other farmers but varying perceptions on improved access to essential information. The SEM analysis establishes positive and significant effects of moral norms, perceived behavioural control, subjective norms, and attitudes on farmers’ intention to join cooperatives. The knowledge construct positively affects key factors influencing intention, emphasizing the importance of informed decision-making. A supplementary analysis using partial least squares (PLS) SEM corroborates the robustness of our findings, aligning with covariance-based SEM results. This research unveils the determinants of cooperative participation and provides valuable insights for policymakers and practitioners aiming to empower and support this vital demographic in the cashew industry.Keywords: marketing cooperatives, theory of planned behaviour, structural equation modelling, cashew farmers
Procedia PDF Downloads 853486 Adaptive Anchor Weighting for Improved Localization with Levenberg-Marquardt Optimization
Authors: Basak Can
Abstract:
This paper introduces an iterative and weighted localization method that utilizes a unique cost function formulation to significantly enhance the performance of positioning systems. The system employs locators, such as Gateways (GWs), to estimate and track the position of an End Node (EN). Performance is evaluated relative to the number of locators, with known locations determined through calibration. Performance evaluation is presented utilizing low cost single-antenna Bluetooth Low Energy (BLE) devices. The proposed approach can be applied to alternative Internet of Things (IoT) modulation schemes, as well as Ultra WideBand (UWB) or millimeter-wave (mmWave) based devices. In non-line-of-sight (NLOS) scenarios, using four or eight locators yields a 95th percentile localization performance of 2.2 meters and 1.5 meters, respectively, in a 4,305 square feet indoor area with BLE 5.1 devices. This method outperforms conventional RSSI-based techniques, achieving a 51% improvement with four locators and a 52 % improvement with eight locators. Future work involves modeling interference impact and implementing data curation across multiple channels to mitigate such effects.Keywords: lateration, least squares, Levenberg-Marquardt algorithm, localization, path-loss, RMS error, RSSI, sensors, shadow fading, weighted localization
Procedia PDF Downloads 253485 The Impact of International Financial Reporting Standards (IFRS) Adoption on Performance’s Measure: A Study of UK Companies
Authors: Javad Izadi, Sahar Majioud
Abstract:
This study presents an approach of assessing the choice of performance measures of companies in the United Kingdom after the application of IFRS in 2005. The aim of this study is to investigate the effects of IFRS on the choice of performance evaluation methods for UK companies. We analyse through an econometric model the relationship of the dependent variable, the firm’s performance, which is a nominal variable with the independent ones. Independent variables are split into two main groups: the first one is the group of accounting-based measures: Earning per share, return on assets and return on equities. The second one is the group of market-based measures: market value of property plant and equipment, research and development, sales growth, market to book value, leverage, segment and size of companies. Concerning the regression used, it is a multinomial logistic regression performed on a sample of 130 UK listed companies. Our finding shows after IFRS adoption, and companies give more importance to some variables such as return on equities and sales growth to assess their performance, whereas the return on assets and market to book value ratio does not have as much importance as before IFRS in evaluating the performance of companies. Also, there are some variables that have no impact on the performance measures anymore, such as earning per share. This article finding is empirically important for business in subjects related to IFRS and companies’ performance measurement.Keywords: performance’s Measure, nominal variable, econometric model, evaluation methods
Procedia PDF Downloads 1383484 Mindfulness as a Predictor of School Results and Well-Being in Adolescence: The Mediating Role of Emotional Intelligence
Authors: Ines Vieira, Luisa Faria
Abstract:
Globally, half of all mental disorders begin by age 14 and the current gap of poorly addressed adolescent mental health has future consequences in adulthood. Schoolwork pressure to achieve good performance in secondary education might lead to lower levels of life satisfaction in youth and individual emotional competencies are crucial in this life stage. The present study aimed to determine how mindfulness relates to school achievements and well-being in adolescence and whether such a relationship might be mediated by emotional intelligence. We also studied the moderation interaction effects of gender and the involvement in non-curricular activities. A sample of 597 Portuguese adolescents aged 15 to 17 years old (N=597; 292 girls; 298 boys), enrolled in secondary education completed self-report measures of mindfulness (CAMM), emotional intelligence (TEIQue-ASF) and well-being (SWLS) in their Portuguese versions. Using SPSS and AMOS, the results were obtained through path analyses and multiple linear regression. A Confirmatory Factor Analysis was also conducted. The correlation coefficients reported a positive and statistically significant relationship between mindfulness, emotional intelligence and well-being. Regression analysis indicated that mindfulness reduced its influence on well-being and on school results when emotional intelligence was added to the model. Overall, our results provided further evidence supporting the development of robust hypotheses by perceiving the relevance of mindfulness and individual emotional competencies to school achievements and well-being in a way of improving adolescents’ health, wellness, and school success.Keywords: mindfulness, emotional intelligence, well-being, adolescence, school
Procedia PDF Downloads 783483 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum
Authors: Rubab Zafar Kahlon, Ibtisam Butt
Abstract:
Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.Keywords: forest resource, biodiversity, expliotation, human activities
Procedia PDF Downloads 92