Search results for: learning technology
12534 Learning Disability or Learning Differences: Understanding Differences Between Cultural and Linguistic Diversity, Learning Differences, and Learning Disabilities
Authors: Jolanta Jonak, Sylvia Tolczyk
Abstract:
Students demonstrate various learning preferences and learning styles that range from visual, auditory to kinesthetic preferences. These learning preferences are further impacted by individual cognitive make up that characterizes itself in linguistic strengths, logical- special, inter-or intra- personal, just to name a few. Students from culturally and linguistically diverse backgrounds (CLD) have an increased risk of being misunderstood by many school systems and even medical personnel. CLD students are influenced by many factors (like acculturation and experience) that may impact their achievements and functioning levels. CLD students who develop initial or basic interpersonal communication proficiency skills in the target language are even at a higher risk for being suspected of learning disability when they are underachieving academically. Research indicates that large numbers of students arenot provided the type of education and types of supports they need in order to be successful in an academicenvironment. Multiple research findings indicate that significant numbers of school staff self-reports that they do not feel adequately prepared to work with CLD students. It is extremely important for the school staff, especially school psychologists, who often are the first experts that are consulted, to be educated about overlapping symptoms and settle differences between learning difference and disability. It is equally important for medical personnel, mainly pediatricians, psychologists, and psychiatrists, to understand the subtle differences to avoid inaccurate opinions. Having the knowledge, school staff can avoid unnecessary referrals for special education evaluations and avoid inaccurate decisions about the presence of a disability. This presentation will illustrate distinctions based on research between learning differences and disabilities, how to recognize them, and how to assess for them.Keywords: special education, learning disability, differentiation, differences
Procedia PDF Downloads 15612533 Analysing the Variables That Affect Digital Game-Based L2 Vocabulary Learning
Authors: Jose Ramon Calvo-Ferrer
Abstract:
Video games have been extensively employed in educational contexts to teach contents and skills, upon the premise that they engage students and provide instant feedback, which makes them adequate tools in the field of education and training. Term frequency, along with metacognition and implicit corrective feedback, has often been identified as powerful variables in the learning of vocabulary in a foreign language. This study analyses the learning of L2 mobile operating system terminology by a group of students and uses the data collected by the video game The Conference Interpreter to identify the predictive strength of term frequency (times a term is shown), positive metacognition (times a right answer is provided), and negative metacognition (times a term is shown as wrong) regarding L2 vocabulary learning and perceived learning outcomes. The regression analysis shows that the factor ‘positive metacognition’ is a positive predictor of both dependent variables, whereas the other factors seem to have no statistical effect on any of them.Keywords: digital game-based learning, feedback, metacognition, frequency, video games
Procedia PDF Downloads 15612532 Barriers to the Uptake of Technology in the Quantity Surveying Industry
Authors: Mnisi Blessing, Christopher Amoah
Abstract:
Purpose: The usage of modern technology is widespread in industrialised nations. The issue still pertains to developing countries since they struggle to use technology in the building sector. The study aims to identify the barriers to technology usage in quantity surveying firms. Methodology: Quantity Surveyors were interviewed via Microsoft teams due to the dispersed nature of the participants. However, where the interview was not possible, the interview guide was emailed to the participants to fill in. In all, 12 participants were interviewed out of the 25 participants contacted. The data received were analysed using the content analysis process. Findings: The study's findings demonstrate that quantity surveyors have access to a wide range of technology that significantly enhances their project activities. However, quantity surveying companies are hesitant to use technology for several reasons, including the cost and maintenance associated with it. Other obstacles include a lack of knowledge, poor market acceptance, legal obstacles, and budgetary constraints. Implication: Despite the advantages associated with modern technology applications, quantity surveying firms are not using them, which may ultimately affect their work output. Therefore, firms need to re-examine these obstacles, inhibiting their adoption of technology in the work process to enhance their production. Value of the Paper: The study reveals the main hindrances to technology usage, which may help firms institute measures to address them.Keywords: barriers, implementation, technology, quantity surveying
Procedia PDF Downloads 8412531 The Wider Benefits of Negotiations: Austrian Perspective on Educational Leadership as a ‘Power Game’ for Trade Unions
Authors: Rudolf Egger
Abstract:
This paper explores the relationships between the basic learning processes of leading trade union workers and their methods for coping with the changes in the life-courses of societies today. It will discuss the fragile discourse on lifelong learning in trade unions and the “production of self-techniques” to get in touch with the new economic forms. On the basis of an empirical project, different processes of the socialization of leading trade union workers will be analysed to discover the consequences of the lifelong learning discourse. The results show what competences they need to develop for the “wider benefits of negotiations”. The main challenge remains to make visible how deeply intertwined trade union learning and education are with development in an ongoing dynamic economic process, rather than a quick-fix injection of skills and information. There is a complex relationship existing between the three ‘partners’, work, learning and society forming. The author suggests that contemporary trade unions could be trendsetters who make their own learning agendas by drawing less on formal education and more on informal and non-formal learning contexts. This is in parallel with growing political and scientific consciousness of the need to arrive at new educational/vocational policies and practices.Keywords: trade union workers, educational leadership, learning societies, social acting
Procedia PDF Downloads 22212530 Strategies to Improve Learning and Teaching of Software Packages Among Undergraduate Students
Authors: Sara Moridpour
Abstract:
Engineering students need to learn different software packages to meet the emerging industry needs. Face-to-face lectures provide an interactive environment for learning software packages. However, COVID changed expectations of face-to-face learning and teaching. It is essential to enhance the interaction among students and teachers in online and virtual learning and teaching of software packages. The proposed study introduces strategies for teaching engineering software packages in online and hybrid environments and evaluates students’ skills by an authentic assignment.Keywords: teaching software packages, authentic assessment., engineering, undergraduate students
Procedia PDF Downloads 13912529 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: Assessing Constructivist Learning Features in Higher Education Settings
Authors: Dorit Alt, Nirit Raichel
Abstract:
Educational practice is continually subjected to renewal needs, due mainly to the growing proportion of information communication technology, globalization of education, and the pursuit of quality. These types of renewal needs require developing updated instructional and assessment practices that put a premium on adaptability to the emerging requirements of present society. However, university instruction is criticized for not coping with these new challenges while continuing to exemplify the traditional instruction. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is collaborating to create a curricular reform for lifelong learning (LLL) in teachers' education, health care and other applied fields. This project aims to achieve its objectives by developing, and piloting models for training students in LLL and promoting meaningful learning activities that could integrate knowledge with the personal transferable skills. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools based on the constructivist approach for learning. This presentation will be limited to teachers' education only and to the contribution of a pre-pilot research aimed at providing a scale designed to measure constructivist activities in higher education learning environments. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.Keywords: constructivist learning, higher education, mix-methodology, lifelong learning
Procedia PDF Downloads 33412528 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation
Procedia PDF Downloads 13112527 Blockchain Technology Security Evaluation: Voting System Based on Blockchain
Authors: Omid Amini
Abstract:
Nowadays, technology plays the most important role in the life of human beings because people use technology to share data and to communicate with each other, but the challenge is the security of this data. For instance, as more people turn to technology in the world, more data is generated, and more hackers try to steal or infiltrate data. In addition, the data is under the control of the central authority, which can trigger the challenge of losing information and changing information; this can create widespread anxiety for different people in different communities. In this paper, we sought to investigate Blockchain technology that can guarantee information security and eliminate the challenge of central authority access to information. Now a day, people are suffering from the current voting system. This means that the lack of transparency in the voting system is a big problem for society and the government in most countries, but blockchain technology can be the best alternative to the previous voting system methods because it removes the most important challenge for voting. According to the results, this research can be a good start to getting acquainted with this new technology, especially on the security part and familiarity with how to use a voting system based on blockchain in the world. At the end of this research, it is concluded that the use of blockchain technology can solve the major security problem and lead to a secure and transparent election.Keywords: blockchain, technology, security, information, voting system, transparency
Procedia PDF Downloads 13212526 Auditory and Visual Perceptual Category Learning in Adults with ADHD: Implications for Learning Systems and Domain-General Factors
Authors: Yafit Gabay
Abstract:
Attention deficit hyperactivity disorder (ADHD) has been associated with both suboptimal functioning in the striatum and prefrontal cortex. Such abnormalities may impede the acquisition of perceptual categories, which are important for fundamental abilities such as object recognition and speech perception. Indeed, prior research has supported this possibility, demonstrating that children with ADHD have similar visual category learning performance as their neurotypical peers but use suboptimal learning strategies. However, much less is known about category learning processes in the auditory domain or among adults with ADHD in which prefrontal functions are more mature compared to children. Here, we investigated auditory and visual perceptual category learning in adults with ADHD and neurotypical individuals. Specifically, we examined learning of rule-based categories – presumed to be optimally learned by a frontal cortex-mediated hypothesis testing – and information-integration categories – hypothesized to be optimally learned by a striatally-mediated reinforcement learning system. Consistent with striatal and prefrontal cortical impairments observed in ADHD, our results show that across sensory modalities, both rule-based and information-integration category learning is impaired in adults with ADHD. Computational modeling analyses revealed that individuals with ADHD were slower to shift to optimal strategies than neurotypicals, regardless of category type or modality. Taken together, these results suggest that both explicit, frontally mediated and implicit, striatally mediated category learning are impaired in ADHD. These results suggest impairments across multiple learning systems in young adults with ADHD that extend across sensory modalities and likely arise from domain-general mechanisms.Keywords: ADHD, category learning, modality, computational modeling
Procedia PDF Downloads 4712525 Evaluating the Role of Multisensory Elements in Foreign Language Acquisition
Authors: Sari Myréen
Abstract:
The aim of this study was to evaluate the role of multisensory elements in enhancing and facilitating foreign language acquisition among adult students in a language classroom. The use of multisensory elements enables the creation of a student-centered classroom, where the focus is on individual learner’s language learning process, perceptions and motivation. Multisensory language learning is a pedagogical approach where the language learner uses all the senses more effectively than in a traditional in-class environment. Language learning is facilitated due to multisensory stimuli which increase the number of cognitive connections in the learner and take into consideration different types of learners. A living lab called Multisensory Space creates a relaxed and receptive state in the learners through various multisensory stimuli, and thus promotes their natural foreign language acquisition. Qualitative and quantitative data were collected in two questionnaire inquiries among the Finnish students of a higher education institute at the end of their basic French courses in December 2014 and 2016. The inquiries discussed the effects of multisensory elements on the students’ motivation to study French as well as their learning outcomes. The results show that the French classes in the Multisensory Space provide the students with an encouraging and pleasant learning environment, which has a positive impact on their motivation to study the foreign language as well as their language learning outcomes.Keywords: foreign language acquisition, pedagogical approach, multisensory learning, transcultural learning
Procedia PDF Downloads 38512524 The Need for the Utilization of Instructional Materials on the Teaching and Learning of Agricultural Science Education in Developing Countries
Authors: Ogoh Andrew Enokela
Abstract:
This paper dwelt on the need for the utilization of instructional materials with highlights on the type of instructional materials, selection, uses and their importance on the learning and teaching of Agricultural Science Education in developing countries. It further discussed the concept of improvisation with some recommendation in terms of availability, utilization on the teaching and learning of Agricultural Science Education.Keywords: instructional materials, agricultural science education, improvisation, teaching and learning
Procedia PDF Downloads 32212523 Optimization of Machine Learning Regression Results: An Application on Health Expenditures
Authors: Songul Cinaroglu
Abstract:
Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure
Procedia PDF Downloads 22612522 Mobile Mediated Learning and Teachers Education in Less Resourced Region
Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana
Abstract:
Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education
Procedia PDF Downloads 29112521 Impact of Team-Based Learning Approach in English Language Learning Process: A Case Study of Universidad Federico Santa Maria
Authors: Yessica A. Aguilera
Abstract:
English is currently the only foreign language included in the national educational curriculum in Chile. The English curriculum establishes that once completed secondary education, students are expected to reach B1 level according to the Common European Reference Framework (CEFR) scale. However, the objective has not been achieved, and to the author’s best knowledge, there is still a severe lack of English language skills among students who have completed their secondary education studies. In order to deal with the fact that students do not manage English as expected, team-based learning (TBL) was introduced in English language lessons at the Universidad Federico Santa María (USM). TBL is a collaborative teaching-learning method which enhances active learning by combining individual and team work. This approach seeks to help students achieve course objectives while learning how to function in teams. The purpose of the research was to assess the implementation and effectiveness of TBL in English language classes at USM technical training education. Quantitative and qualitative data were collected from teachers and students about their experience through TBL. Research findings show that both teachers and students are satisfied with the method and that students’ engagement and participation in class is higher. Additionally, students score higher on examinations improving academic outcomes. The findings of the research have the potential to guide how TBL could be included in future English language courses.Keywords: collaborative learning, college education, English language learning, team-based learning
Procedia PDF Downloads 18912520 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning
Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim
Abstract:
The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.Keywords: apartment unit plan, data-driven design, design methodology, machine learning
Procedia PDF Downloads 26812519 How Students Use WhatsApp to Access News
Authors: Emmanuel Habiyakare
Abstract:
The COVID-19 pandemic has highlighted the significance of educational technologies in teaching and learning. The global pandemic led to the closure of educational institutions worldwide, prompting the widespread implementation of online learning as a substitute method for delivering curricula. The communication platform is known as WhatsApp has gained widespread adoption and extensive utilisation within the realm of education. The primary aims of this literature review are to examine the utilisation patterns and obstacles linked to the implementation of WhatsApp in the realm of education, assess the advantages and possibilities that students and facilitators can derive from utilising this platform for educational purposes, and comprehend the hindrances and restrictions that arise when employing WhatsApp in an academic environment. The literature was acquired through the utilisation of keywords that are linked to both WhatsApp and education from diverse databases. Having a thorough comprehension of current trends, potential advantages, obstacles, and gains linked to the use of WhatsApp is imperative for lecturers and administrators. Scholarly investigations have revealed a noticeable trend of lecturers and students increasingly utilising WhatsApp as a means of communication and collaboration. The objective of this literature review is to make a noteworthy contribution to the domain of education and technology through an investigation of the potential of WhatsApp as a learning tool. Additionally, this review seeks to offer valuable insights on how to effectively incorporate WhatsApp into pedagogical practices. The article underscores the significance of taking into account privacy and security concerns while utilising WhatsApp for educational objectives and puts forth recommendations for additional investigation.Keywords: tool, COVID-19, opportunities, challenges, learning, WhatsApp
Procedia PDF Downloads 2512518 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia
Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy
Abstract:
Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.Keywords: e-learning system, gamification, motivation, social comparison, visualization
Procedia PDF Downloads 15212517 Concept for Determining the Focus of Technology Monitoring Activities
Authors: Guenther Schuh, Christina Koenig, Nico Schoen, Markus Wellensiek
Abstract:
Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper, we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies especially those that have not yet defined an explicit technology strategy. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to direct monitoring activities. Current as well as planned product, production and material technologies as well as existing skills, capabilities and resources form the basis of the described derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.Keywords: monitoring radar, search field, technology intelligence, technology monitoring
Procedia PDF Downloads 47412516 Beyond the Flipped Classroom: A Tool to Promote Autonomy, Cooperation, Differentiation and the Pleasure of Learning
Authors: Gabriel Michel
Abstract:
The aim of our research is to find solutions for adapting university teaching to today's students and companies. To achieve this, we have tried to change the posture and behavior of those involved in the learning situation by promoting other skills. There is a gap between the expectations and functioning of students and university teaching. At the same time, the business world needs employees who are obviously competent and proficient in technology, but who are also imaginative, flexible, able to communicate, learn on their own and work in groups. These skills are rarely developed as a goal at university. The flipped classroom has been one solution. Thanks to digital tools such as Moodle, for example, but the model behind them is still centered on teachers and classic learning scenarios: it makes course materials available without really involving them and encouraging them to cooperate. It's against this backdrop that we've conducted action research to explore the possibility of changing the way we learn (rather than teach) by changing the posture of both the classic student and the teacher. We hypothesized that a tool we developed would encourage autonomy, the possibility of progressing at one's own pace, collaboration and learning using all available resources(other students, course materials, those on the web and the teacher/facilitator). Experimentation with this tool was carried out with around thirty German and French first-year students at the Université de Lorraine in Metz (France). The projected changesin the groups' learning situations were as follows: - use the flipped classroom approach but with a few traditional presentations by the teacher (materials having been put on a server) and lots of collective case solving, - engage students in their learning by inviting them to set themselves a primary objective from the outset, e.g. “Assimilating 90% of the course”, and secondary objectives (like a to-do list) such as “create a new case study for Tuesday”, - encourage students to take control of their learning (knowing at all times where they stand and how far they still have to go), - develop cooperation: the tool should encourage group work, the search for common solutions and the exchange of the best solutions with other groups. Those who have advanced much faster than the others, or who already have expertise in a subject, can become tutors for the others. A student can also present a case study he or she has developed, for example, or share materials found on the web or produced by the group, as well as evaluating the productions of others, - etc… A questionnaire and analysis of assessment results showed that the test group made considerable progress compared with a similar control group. These results confirmed our hypotheses. Obviously, this tool is only effective if the organization of teaching is adapted and if teachers are willing to change the way they work.Keywords: pedagogy, cooperation, university, learning environment
Procedia PDF Downloads 2212515 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods
Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja
Abstract:
In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.Keywords: alzheimer, machine learning, deep learning, EEG
Procedia PDF Downloads 12612514 The Role of Technology in Entrepreneurship: Key Findings from Women Start-Ups in Kaduna
Authors: Ogola Lois Kange
Abstract:
The study looked at the role technology had previously played and now plays in small and medium scale women-owned businesses starting up in Kaduna, which is an emerging entrepreneurship hub state in Nigeria. The study selected a random population of 20 businesses drawn from the north and south of Kaduna. The selection was based on a survey administered to 100 Women-owned businesses that had started up within the last 3-5years. Questionnaires were administered and analyzed based on the participants’ backgrounds, upbringing, exposure and access to technology. One of the key findings is that women-owned businesses can no longer thrive without the application of basic technology.Keywords: business, entrepreneurship, start-up, technology, women
Procedia PDF Downloads 19012513 English as a Foreign Language Teachers' Perspectives on the Workable Approaches and Challenges that Encountered them when Teaching Reading Using E-Learning
Authors: Sarah Alshehri, Messedah Alqahtani
Abstract:
Reading instruction in EFL classes is still challenging for teachers, and many students are still behind their expected level. Due to the Covid-19 pandemic, there was a shift in teaching English from face-to face to online classes. This paper will discover how the digital shift during and post pandemic has influenced English literacy instruction and what methods seem to be effective or challenging. Specifically, this paper will examine English language teachers' perspectives on the workable approaches and challenges that encountered them when teaching reading using E-Learning platform in Saudi Arabian Secondary and intermediate schools. The study explores public secondary school EFL teachers’ instructional practices and the challenges encountered when teaching reading online. Quantitative data will be collected through a 28 -item Likert type survey that will be administered to Saudi English teachers who work in public secondary and intermediate schools. The quantitative data will be analyzed using SPSS by conducting frequency distributions, descriptive statistics, reliability tests, and one-way ANOVA tests. The potential outcomes of this study will contribute to better understanding of digital literacy and technology integration in language teaching. Findings of this study can provide directions for professionals and policy makers to improve the quality of English teaching and learning. Limitations and results will be discussed, and suggestions for future directions will be offered.Keywords: EFL reading, E-learning- EFL literacy, EFL workable approaches, EFL reading instruction
Procedia PDF Downloads 9912512 Market Index Trend Prediction using Deep Learning and Risk Analysis
Authors: Shervin Alaei, Reza Moradi
Abstract:
Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks
Procedia PDF Downloads 15612511 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home
Procedia PDF Downloads 35712510 Insights into the Perception of Sustainable Technology Adoption among Malaysian Small and Medium-Sized Enterprises
Authors: Majharul Talukder, Ali Quazi
Abstract:
The use of sustainable technology is being increasingly driven by the demand for saving resources, long-term cost savings, and protecting the environment. A transitional economy such as Malaysia is an example where traditional technologies are being replaced by sustainable ones. The antecedents that are driving Malaysian SMEs to integrate sustainable technology into their business operations have not been well researched. This paper addresses this gap in our knowledge through an examination of attitudes and ethics as antecedents of acceptance of sustainable technology among Malaysian SMEs. The database comprised 322 responses that were analysed using the PLS-SEM path algorithm. Results indicated that effective and altruism attitudes have high predictive ability for the usage of sustainable technology in Malaysian SMEs. This paper identifies the implications of the findings, along with the major limitations of the research and explores future areas of research in this field.Keywords: sustainable technology, innovation management, Malaysian SMEs, organizational attitudes and ethical belief
Procedia PDF Downloads 33112509 Employing QR Code as an Effective Educational Tool for Quick Access to Sources of Kindergarten Concepts
Authors: Ahmed Amin Mousa, M. Abd El-Salam
Abstract:
This study discusses a simple solution for the problem of shortage in learning resources for kindergarten teachers. Occasionally, kindergarten teachers cannot access proper resources by usual search methods as libraries or search engines. Furthermore, these methods require a long time and efforts for preparing. The study is expected to facilitate accessing learning resources. Moreover, it suggests a potential direction for using QR code inside the classroom. The present work proposes that QR code can be used for digitizing kindergarten curriculums and accessing various learning resources. It investigates using QR code for saving information related to the concepts which kindergarten teachers use in the current educational situation. The researchers have established a guide for kindergarten teachers based on the Egyptian official curriculum. The guide provides different learning resources for each scientific and mathematical concept in the curriculum, and each learning resource is represented as a QR code image that contains its URL. Therefore, kindergarten teachers can use smartphone applications for reading QR codes and displaying the related learning resources for students immediately. The guide has been provided to a group of 108 teachers for using inside their classrooms. The results showed that the teachers approved the guide, and gave a good response.Keywords: kindergarten, child, learning resources, QR code, smart phone, mobile
Procedia PDF Downloads 28912508 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education
Authors: Felix Golla
Abstract:
In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies
Procedia PDF Downloads 6912507 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16812506 3D Printing Technology in Housing Projects Construction
Authors: Mohammed F. Haddad, Mohammad A. Albenayyan
Abstract:
Realistically, 3-D printing as a technology has not yet reached the required maturity level to handle construction housing projects for citizens on a country scale. However, potentially, it has all of the required elements for addressing this issue. There are two main high-level elements of this technology that need to be capitalized on in order for the technology to reach its full potential, technical and logistical. This paper aims to cover how 3-D printing can be a viable technical solution for housing projects and describe the impact of 3-D printing technical features on the logistical aspects of completing a housing project. Additionally, a perspective about 3-D printing in Saudi Arabia will be presented in order to give the reader an idea of where the kingdom stands in the deployment of this technology. Finally, a glimpse will be given regarding the potential utilization of this technology for space applications.Keywords: large-scale 3-D printing, additive manufacturing, D- shape, contour crafting
Procedia PDF Downloads 12812505 Evaluating the Implementation of Machine Learning Techniques in the South African Built Environment
Authors: Peter Adekunle, Clinton Aigbavboa, Matthew Ikuabe, Opeoluwa Akinradewo
Abstract:
The future of machine learning (ML) in building may seem like a distant idea that will take decades to materialize, but it is actually far closer than previously believed. In reality, the built environment has been progressively increasing interest in machine learning. Although it could appear to be a very technical, impersonal approach, it can really make things more personable. Instead of eliminating humans out of the equation, machine learning allows people do their real work more efficiently. It is therefore vital to evaluate the factors influencing the implementation and challenges of implementing machine learning techniques in the South African built environment. The study's design was one of a survey. In South Africa, construction workers and professionals were given a total of one hundred fifty (150) questionnaires, of which one hundred and twenty-four (124) were returned and deemed eligible for study. Utilizing percentage, mean item scores, standard deviation, and Kruskal-Wallis, the collected data was analyzed. The results demonstrate that the top factors influencing the adoption of machine learning are knowledge level and a lack of understanding of its potential benefits. While lack of collaboration among stakeholders and lack of tools and services are the key hurdles to the deployment of machine learning within the South African built environment. The study came to the conclusion that ML adoption should be promoted in order to increase safety, productivity, and service quality within the built environment.Keywords: machine learning, implementation, built environment, construction stakeholders
Procedia PDF Downloads 132