Search results for: aluminum grain refined
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1663

Search results for: aluminum grain refined

583 Insecticidial Effects of Essential Oil of Carum copticum on Sitophilus oryzae L. (Coleoptera: Curculionidae)

Authors: Giti Sabri, Sohrab Imani, Ali Ahadiyat, Aref Maroof, Yahya Ostadi

Abstract:

Recently, there has been a growing interest in research concerning the possible use of plant extracts as alternatives to synthetic insecticides. In this research, the insecticidal effects of Carum copticum essential oils against rice weevil adults were investigated in laboratory condition. Essential oils was extracted through distillation with water using Clevenger apparatus. Tests of randomized complete block included six concentrations and three replications for essential oils (fumigant toxicity) along with control treatment in condition of 27±1ºC degrees Celsius temperature, relative humidity of 65 ± 5 percent and darkness. LC50 values were calculated by SPSS.21.0 software which presented the value of LC50 of Carum copticum essential oils after 48 hurs, 187.35± 0.40 µl/l air on rice weevil adults. Results showed that increasing the concentration of essential oils increased the mortality rate cases. The results also showed that essential oils of Carum copticum are effective biological sources which can effectively protect stored grain from infestation by the rice weevil; although for application of these combinations further research may be needed.

Keywords: insecticidial effects, essential oil, Carum copticum, Sitophilus oryzae

Procedia PDF Downloads 398
582 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir

Authors: David Lall, Vikram Vishal, P. G. Ranjith

Abstract:

Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.

Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media

Procedia PDF Downloads 204
581 Burn/Traumatic Scar Maturation Using Autologous Fat Grafts + SVF

Authors: Ashok K. Gupta

Abstract:

Over the past few decades, since the bio-engineering revolution, autologous cell therapy (ACT) has become a rapidly evolving field. Currently, this form of therapy has broad applications in modern medicine and plastic surgery, ranging from the treatment/improvement of wound healing to life-saving operations. A study was conducted on 50 patients having to disfigure, and deform post burn scars and was treated by injection of extracted, refined adipose tissue grafts with their unique stem cell properties. To compare the outcome, a control of 20 such patients was treated with conventional skin or soft-tissue flaps or skin grafting, and a control of 10 was treated with more advanced microsurgical techniques such as Pre-fabricated flaps/pre laminated flaps / free flaps. Assessment of fat volume and survival post- follow up period was done by radiological aid, using MRI and clinically (Survival of the autograft and objective parameters for scar elasticity were evaluated skin elasticity parameters 3 to 9 months postoperatively). Recently, an enzyme that is involved in collagen crosslinking in fibrotic tissue, lysyl hydroxylase (LH2), was identified. This enzyme is normally active in bone and cartilage but hardly in the skin. It has been found that this enzyme is highly expressed in scar tissue and subcutaneous fat; this is in contrast to the dermis, where the enzyme is hardly expressed. Adipose tissue-derived stem cell injections are an effective method in the treatment of various extensive post-burn scar deformities that makes it possible to re-create the lost sub-dermal tissue for improvement in the function of involved joint movements.

Keywords: adipose tissue-derived stem cell injections, treatment of various extensive post-burn scar deformities, re-create the lost sub-dermal tissue, improvement in function of involved joint movements

Procedia PDF Downloads 47
580 Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan

Authors: Muhammad Haris, Syed Kamran Ali, Mubeen Islam, Tariq Mehmood, Faisal Shah

Abstract:

Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation.

Keywords: Jacobabad Khairpur High, Habib Rahi Formation, lithofacies, microfacies, sequence stratigraphy, diagenetic history

Procedia PDF Downloads 442
579 Thickness Dependence of AC Conductivity in Plasma Poly(Ethylene Oxide) Thin Films

Authors: S. Yakut, D. Deger, K. Ulutas, D. Bozoglu

Abstract:

Plasma poly(ethylene oxide) (pPEO) thin films were deposited between Aluminum (Al) electrodes on glass substrates by plasma assisted physical vapor deposition (PAPVD). The deposition was operated inside Argon plasma under 10⁻³ Torr and the thicknesses of samples were determined as 20, 100, 250, 500 nm. The plasma was produced at 5 W by magnetron connected to RF power supply. The capacitance C and dielectric loss factor tan δ were measured by Novovontrol Alpha-A high frequency empedance analyzer at freqquency and temperature intervals of 0,1 Hz and 1MHz, 193-353K, respectively. AC conductivity was derived from these values. AC conductivity results exhibited three different conductivity regions except for 20 nm. These regions can be classified as low, mid and high frequency regions. Low frequency region is observed at around 10 Hz and 300 K while mid frequency region is observed at around 1 kHz and 300 K. The last one, high frequency region, is observed at around 1 kHz and 200 K. There are some coinciding definitions for conduction regions, because these regions shift depending on temperature. Low frequency region behaves as DC-like conductivity while mid and high frequency regions show conductivities corresponding to mechanisms such as classical hopping, tunneling, etc. which are observed for amorphous materials. Unlike other thicknesses, for 20 nm sample low frequency region can not be detected in the investigated freuency range. It is thought that this is arised because of the presence of dead layer behavior.

Keywords: plasma polymers, dead layer, dielectric spectroscopy, AC conductivity

Procedia PDF Downloads 190
578 The Influence of Mineraliser Granulometry on Dense Silica Brick Microstructure

Authors: L. Nevrivova, K. Lang, M. Kotoucek, D. Vsiansky

Abstract:

This entry concerned with dense silica microstructure was produced as a part of a project within the Technology Agency of the Czech Republic which is being implemented in cooperation of the biggest producer of refractories the P-D Refractories CZ company with the research organisation Brno University of Technology. The paper is focused on the influence of mixture homogenisation and the influence of grain size of the mineraliser on the resulting utility properties of the material as well as its microstructure. It has a decisive influence on the durability of the material in a building structure. This paper is a continuation of a previously published study dealing with the suitability of various types of mineralising agents in terms of density, strength and mineral composition of silica. The entry describes the influence of the method of mixture homogenisation and the influence of granulometry of the applied Fe-mineralising agent on the resulting silica microstructure. Porosity, density, phase composition and microstructure of the experimentally prepared silica samples were examined and the results were discussed in context with the technology of homogenisation and firing temperature used. The properties of silica brick samples were compared to the sample without any Fe-mineraliser.

Keywords: silica bricks, Fe-mineraliser, mineralogical composition, new developed silica material

Procedia PDF Downloads 322
577 Effect of Pre-Aging and Aging Parameters on Mechanical Behavior of Be-Treated 7075 Aluminum Alloys: Experimental Correlation using Minitab Software

Authors: M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Duplex aging treatments were carried out for the as solution treated (SHT) specimens (pre-aged at different time and temperature followed by high temperature aging). A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of pre-aging and aging treatment parameters and any interactions between them on the mechanical properties of 7075 alloys. A mathematical models are developed to relate the alloy ultimate tensile strength, yield strength and % elongation with the different pre-aging and aging parameters i.e. Pre-aging Temperature (PA T0C), Pre-aging time (PA t h), Aging temperature (AT0C), Aging time (At h), to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of be-treated 7075 alloys.

Keywords: aging heat Treatment, tensile properties, be-treated cast Al-Mg-Zn (7075) alloys, experimental correlation

Procedia PDF Downloads 258
576 The Trigger-DAQ System in the Mu2e Experiment

Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella

Abstract:

The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).

Keywords: trigger, daq, mu2e, Fermilab

Procedia PDF Downloads 142
575 Evaluation Of In Vitro Antioxidant Potential of Camellia Sinensis Leaves Extract

Authors: Jirathan Pongchababnapa

Abstract:

Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Antioxidants are substances found in medicinal plants which may have a protective role to play in certain conditions such as heart disease, stroke and some cancers. By relying on these benefits, we have traced out the presence of antioxidant in Camellia sinensis leaves extract. This study aims to evaluate flavonoids content in C. sinensisextract and investigate antioxidant activities by using DPPH and ABTS radical scavenging capacity assay. The total flavonoid content of C. Sinensis extract was determined and expressed as quercetin equivalents (QE)/g measured by the aluminum chloride colorimetric method. The results showed that the IC₅₀ of C. Sinensis leaves extract were 40.90 μg/mL ± 0.755 and32.96 μg/mL ± 0.679 for DPPH and ABTS, respectively. C. Sinensis extract at increasing concentration showed antioxidant activities as a concentration dependent manner. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In conclusion, C. Sinensis extract consisted of a high amount of flavonoids content which possesses potent antioxidant activity. However, further investigation on the identification of pure compound of this plant and molecular antioxidant assays are still required.

Keywords: ABTS assay, antioxidant, camellia sinensis, DPPH assay, total flavonoid content

Procedia PDF Downloads 189
574 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger

Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani

Abstract:

Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.

Keywords: heat transfer coefficient, aluminium, entry length, design

Procedia PDF Downloads 315
573 Production of Energetic Nanomaterials by Spray Flash Evaporation

Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer

Abstract:

Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.

Keywords: continuous synthesis, energetic material, nanoscale, nanoexplosive, nanothermite

Procedia PDF Downloads 247
572 Permanent Deformation Resistance of Asphalt Mixtures with Red Mud as a Filler

Authors: Liseane Padilha Thives, Mayara S. S. Lima, João Victor Staub De Melo, Glicério Trichês

Abstract:

Red mud is a waste resulting from the processing of bauxite to alumina, the raw material of the production of aluminum. The large quantity of red mud generated and inadequately disposed in the environment has motivated researchers to develop methods for reinsertion of this waste into the productive cycle. This work aims to evaluate the resistance to permanent deformation of dense asphalt mixtures with red mud filler. The red mud was characterized by tests of X-ray diffraction, fluorescence, specific mass, laser granulometry, pH and scanning electron microscopy. For the analysis of the influence of the quantity of red mud in the mechanical performance of asphalt mixtures, a total filler content of 7% was established. Asphalt mixtures with 3%, 5% and 7% red mud were produced. A conventional mixture with 7% stone powder filler was used as reference. The asphalt mixtures were evaluated for performance to permanent deformation in the French Rutting Tester (FRT) traffic simulator. The mixture with 5% red mud presented greater resistance to permanent deformation with rutting depth at 30,000 cycles of 3.50%. The asphalt mixtures with red mud presented better performance, with reduction of the rutting of 12.63 to 42.62% in relation to the reference mixture. This study confirmed the viability of reinserting the red mud in the production chain and possible usage in the construction industry. The red mud as filler in asphalt mixtures is a reuse option of this waste and mitigation of the disposal problems, as well as being an environmentally friendly alternative.

Keywords: asphalt mixtures, permanent deformation, red mud, pavements

Procedia PDF Downloads 268
571 A Combined Activated Sludge-Sonication Process for Abattoir Wastewater Treatment

Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Devendra Saroj, Judy Lee

Abstract:

Wastewater treatment is becoming a worldwide concern due to new and tighter environmental regulations, and the increasing need for fresh water for the exponentially growing population. The meat industry has one of the highest consumption of water producing up to 10 times more polluted (BOD) wastewaters in comparison to domestic sewage. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-sonication system was used to treat pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process and using ultrasound as tertiary treatment. Different ultrasonic frequencies, powers and sonication times were applied to the samples and results were analysed for chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids, pH, total coliforms and total viable counts. Additionally, both mechanical and chemical effects of ultrasound were quantified for organic matter removal (COD and BOD) and disinfection (microorganism inactivation) using different techniques such as aluminum foil pitting, flow cytometry, and KI dosimetry.

Keywords: abattoir wastewater, ultrasound, wastewater treatment, water disinfection

Procedia PDF Downloads 271
570 Laser Based Microfabrication of a Microheater Chip for Cell Culture

Authors: Daniel Nieto, Ramiro Couceiro

Abstract:

Microfluidic chips have demonstrated their significant application potentials in microbiological processing and chemical reactions, with the goal of developing monolithic and compact chip-sized multifunctional systems. Heat generation and thermal control are critical in some of the biochemical processes. The paper presents a laser direct-write technique for rapid prototyping and manufacturing of microheater chips and its applicability for perfusion cell culture outside a cell incubator. The aim of the microheater is to take the role of conventional incubators for cell culture for facilitating microscopic observation or other online monitoring activities during cell culture and provides portability of cell culture operation. Microheaters (5 mm × 5 mm) have been successfully fabricated on soda-lime glass substrates covered with aluminum layer of thickness 120 nm. Experimental results show that the microheaters exhibit good performance in temperature rise and decay characteristics, with localized heating at targeted spatial domains. These microheaters were suitable for a maximum long-term operation temperature of 120ºC and validated for long-time operation at 37ºC. for 24 hours. Results demonstrated that the physiology of the cultured SW480 adenocarcinoma of the colon cell line on the developed microheater chip was consistent with that of an incubator.

Keywords: laser microfabrication, microheater, bioengineering, cell culture

Procedia PDF Downloads 277
569 The High Strength Biocompatible Wires of Commercially Pure Titanium

Authors: J. Palán, M. Zemko

Abstract:

COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants.

Keywords: CONFORM, ECAP, rotary swaging, titanium

Procedia PDF Downloads 228
568 Differentially Response of Superoxide Dismutase in Wheat Susceptible and Resistant Cultivars against FHB

Authors: M. Sorahi Nobar, V. Niknam, H. Ebrahimzadeh, H. Soltanloo

Abstract:

Fusarium graminearum is one of the most destructive crop diseases in the world. Infection occurs during the flowering period in warm and humid conditions. It causes reduction in yield. Moreover, harvested grain is often contaminated with mycotoxins and its acetylated derivatives. Fusarium mycotoxines are potent inhibitor of protein synthesis, and thereby presents hazards for both human and animal health. A rapid production of reactive oxygen intermediates, primarily superoxide and hydrogen peroxide at the site of attempted infection considered as key feature underlying successful pathogen recognition. Here, we compared the time course activity of superoxide dismutase (SOD) as a first line of defenses against ROS- induced oxidative burst between FHB- resistant Sumai3 and susceptible Falat at 48, 96 and 144 hours after infection. Our results showed that Sumai3 SOD activity increased with time and reached the highest-level 4 days after infection while in susceptible cultivar Falat, SOD activity decreased during the first 96 h. after infection. Decreased was followed by an increased at 6 days after infection. According to our results rapid induction of SOD activity in resistant cultivar may play an important role in resistance against FHB in wheat.

Keywords: Fusarium graminearum, mycotoxins, resistant cultivar, superoxide dismutase

Procedia PDF Downloads 429
567 Developing an Empirical Relationship to Predict Tensile Strength and Micro Hardness of Friction Stir Welded Aluminium Alloy Joints

Authors: Gurmeet Singh Cheema, Gurjinder Singh, Amardeep Singh Kang

Abstract:

Aluminium alloy 6061 is a medium to high strength heat-treatable alloy which has very good corrosion resistance and very good weldability. Friction Stir Welding was developed and this technique has attracted considerable interest from the aerospace and automotive industries since it is able to produce defect free joints particularly for light metals i.e aluminum alloy and magnesium alloy. In the friction stir welding process, welding parameters such as tool rotational speed, welding speed and tool shoulder diameter play a major role in deciding the weld quality. In this research work, an attempt has been made to understand the effect of tool rotational speed, welding speed and tool shoulder diameter on friction stir welded AA6061 aluminium alloy joints. Statistical tool such as central composite design is used to develop the mathematical relationships. The mathematical model was developed to predict mechanical properties of friction stir welded aluminium alloy joints at the 95% confidence level.

Keywords: aluminium alloy, friction stir welding, central composite design, mathematical relationship

Procedia PDF Downloads 478
566 Carbonate Microfacies and Diagenesis of Klapanunggal Formation in Cileungsi District, Bogor Regency, West Java Province, Indonesia

Authors: Reghina Karyadi, Abdurrokhim, Lili Fauzielly

Abstract:

Administratively, the research area is located in Cileungsi District, Bogor Regency, West Java Province, Indonesia. Geographically, it located at 106° 56’ 1,9392” - 107° 1’ 27,8112” East Longitude and 6° 32’ 29,3712” - 6° 27’ 5,6124” South Latitude. This research is being held as a purpose to observe microfacies and limestone diagenesis that happened in the study area. Dominantly, the area fulfills of various hills that formed by carbonate and sediment stones which folded and faulted. The method that using in this research is analysis the outcrop data and petrography by using red alizarin for differentiating of minerals type. Microfacies type and diagenesis processes can be known from petrography analysis results like rock texture, rock structure, porosity, type of grain and fossils. The result of research shows that carbonate rocks in the study area can be divided into 3 types microfasies, which is Reef Microfacies (SMF 7), Shallow Water Microfacies (SMF 9), and Textural Inversion Microfacies (SMF 10). Whereas diagenesis process that happened is microbial micritization, compaction, neomorphism, cementation and dissolution process.

Keywords: carbonate, limestone, microfacies, diagenesis

Procedia PDF Downloads 365
565 Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics

Authors: Ramovatar, Neeraj Panwar

Abstract:

Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices.

Keywords: dielectric properties, energy storage properties, impedance spectroscopy, lead free ceramics

Procedia PDF Downloads 137
564 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite

Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri

Abstract:

The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.

Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric

Procedia PDF Downloads 149
563 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste

Authors: Julieta Daniela Chelaru, Maria Gorea

Abstract:

The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15 %, 25 % and 35 % bricks waste replacing the sand. The brick waste has a majority content in SiO2, Al₂O₃, FeO₃ and CaO. The grain size distribution of brick waste was close to that of the sand (dₘₐₓ = 3 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion properties of concrete, at different waste bricks concentrations, on rebar, were investigated by electrochemical measurements (Tafel curves and EIS) at 1 and 6 months. The results obtained at 6 months revealed that the addition of the bricks waste in mortar are improved the anticorrosion properties, in the case of all samples compared with the sample with 0% bricks waste. The best results were obtained in the case of the sample with 15% bricks waste (the efficiency was ≈ 90 %). The corrosion intermediary layer formed on the rebar surface was determined by SEM-EDX.

Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials

Procedia PDF Downloads 312
562 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation

Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch

Abstract:

In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.

Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity

Procedia PDF Downloads 402
561 Elucidating the Genetic Determinism of Seed Protein Plasticity in Response to the Environment Using Medicago truncatula

Authors: K. Cartelier, D. Aime, V. Vernoud, J. Buitink, J. M. Prosperi, K. Gallardo, C. Le Signor

Abstract:

Legumes can produce protein-rich seeds without nitrogen fertilizer through root symbiosis with nitrogen-fixing rhizobia. Rich in lysine, these proteins are used for human nutrition and animal feed. However, the instability of seed protein yield and quality due to environmental fluctuations limits the wider use of legumes such as pea. Breeding efforts are needed to optimize and stabilize seed nutritional value, which requires to identify the genetic determinism of seed protein plasticity in response to the environment. Towards this goal, we have studied the plasticity of protein content and composition of seeds from a collection of 200 Medicago truncatula ecotypes grown under four controlled conditions (optimal, drought, and winter/spring sowing). A quantitative analysis of one-dimensional protein profiles of these mature seeds was performed and plasticity indices were calculated from each abundant protein band. Genome-Wide Association Studies (GWAS) from these data identified major GWAS hotspots, from which a list of candidate genes was obtained. A Gene Ontology Enrichment Analysis revealed an over-representation of genes involved in several amino acid metabolic pathways. This led us to propose that environmental variations are likely to modulate amino acid balance, thus impacting seed protein composition. The selection of candidate genes for controlling the plasticity of seed protein composition was refined using transcriptomics data from developing Medicago truncatula seeds. The pea orthologs of key genes were identified for functional studies by mean of TILLING (Targeting Induced Local Lesions in Genomes) lines in this crop. We will present how this study highlighted mechanisms that could govern seed protein plasticity, providing new cues towards the stabilization of legume seed quality.

Keywords: GWAS, Medicago truncatula, plasticity, seed, storage proteins

Procedia PDF Downloads 127
560 Content of Trace Elements in Agricultural Soils from Central and Eastern Europe

Authors: S. Krustev, V. Angelova, K. Ivanov, P. Zaprjanova

Abstract:

Approximately a dozen trace elements are vital for the development of all plants and some other elements are significant for some species. Heavy metals do not belong to this group of elements that are essential to plants, but some of them such as copper and zinc, have a dual effect on their growth. Concentration levels of these elements in the different regions of the world vary considerably. Their high concentrations in some parts of Central and Eastern Europe cause concern for human health and degrade the quality of agricultural produce from these areas. This study aims to compare the prevalence and levels of the major trace elements in some rural areas of Central and Eastern Europe. Soil samples from different regions of the Czech Republic, Slovakia, Austria, Hungary, Serbia, Romania, Bulgaria and Greece far from large industrial centers have been studied. The main methods for their determination are the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels in soils of 17 points from the main grain-producing regions of Central and Eastern Europe are presented and systematized. The content of trace elements was in the range of 5.0-84.1 mg.kg⁻¹ for Cu, 0.3-1.4 mg.kg⁻¹ for Cd, 26.1-225.5 mg.kg⁻¹ for Zn, 235.5-788.6 mg.kg⁻¹ for Mn and 4.1-25.8 mg.kg⁻¹ for Pb.

Keywords: trace elements, heavy metals, agricultural soils, Central and Eastern Europe

Procedia PDF Downloads 153
559 Effect of Tool Geometry and Welding Parameters on Macrostructure and Weld Strength in Friction Stir Welded of High Density Polyethylene Sheets

Authors: Mustafa Kemal Bilici, Memduh Kurtulmuş, İlyas Kartal, Ahmet İrfan Yükler

Abstract:

Friction stir welding is a solid-state joining process that has gained acceptable progress in recent years. This method which was first used for welding of aluminum and its alloys is now employed for welding of other materials such as polymers and composites. The aim of the present work is to investigate the mechanical properties of butt joints produced by friction stir welding (FSW) in high density polyethylene sheets of 4 mm thickness. The effects of critical welding parameters and tool design have affected on mechanical properties, weld surface and macrostructure of friction stir welded polyethylene. Experiments were performed at tool rotational speeds of 600, 900, 1200 and 1500 r/min and traverse speeds of 30, 45 and 60 mm/min, tool diameters (d) of 4, 5, 6 mm and tool shoulder diameters (D) 20, 25, 30 mm. A strength value of 80 % of the base material was achieved at the isolated optimum welding condition. According to the tool design, the welding parameters and the mechanical properties changed to a great extent. The highest tensile strength was achieved at low feed rates, high tool rotation speeds and shoulder diameters/pin diameters ratio.

Keywords: friction stir welding, mechanical properties, polyethylene, high density polyethylene, tool design

Procedia PDF Downloads 374
558 Effects of Nitrogen and Arsenic on Antioxidant Enzyme Activities and Photosynthetic Pigments in Safflower (Carthamus tinctorius L.)

Authors: Mostafa Heidari

Abstract:

Nitrogen fertilization has played a significant role in increasing crop yield, and solving problems of hunger and malnutrition worldwide. However, excessive of heavy metals such as arsenic can interfere on growth and reduced grain yield. In order to investigate the effects of different concentrations of arsenic and nitrogen fertilizer on photosynthetic pigments and antioxidant enzyme activities in safflower (cv. Goldasht), a factorial plot experiment as randomized complete block design with three replication was conducted in university of Zabol. Arsenic treatment included: A1= control or 0, A2=30, A3=60 and A4=90 mg. kg-1 soil from the Na2HASO4 source and three nitrogen levels including W1=75, W2=150 and W3=225 kg.ha-1 from urea source. Results showed that, arsenic had a significant effect on the activity of antioxidant enzymes. By increasing arsenic levels from A1 to A4, the activity of ascorbate peroxidase (APX) and gayacol peroxidase (GPX) increased and catalase (CAT) was decreased. In this study, arsenic had no significant on chlorophyll a, b and cartoneid content. Nitrogen and interaction between arsenic and nitrogen treatment, except APX, had significant effect on CAT and GPX. The highest GPX activity was obtained at A4N3 treatment. Nitrogen increased the content of chlorophyll a, b and cartoneid.

Keywords: arsenic, physiological parameters, oxidative enzymes, nitrogen

Procedia PDF Downloads 427
557 Sustainable Wood Stains Derived From Natural Dyes for Green Applications

Authors: Alexis Dorado, Aralyn Quintos

Abstract:

This study explores the utilization of natural dyes for wood stains as a transformative agent for wood, encompassing color alteration, grain enhancement, and protection against harm. Commonly, wood stains are petroleum-based and synthetically derived. Notably, commercially accessible wood stains exhibit around 4% greater volatility than the formulated wood stain (FWS), potentially indicating a heightened environmental impact. The application of FWS does not significantly affect the performance of polyurethane varnish. The impact of incorporating an FWS when was applied to Gmelina arborea wood sample, the initial lightness value (L*) of 68.5, a* 7.7, b* 29.2 decreased to 44.36, a* 23.49, b* 32.60, where a* denotes the red/ green value, b* denotes the yellow/ blue, indicating a shift towards darker shades. This alteration in lightness suggests that the FWS contains compounds or pigments that effectively absorb or scatter light, resulting in a change in the perceived color and visual appearance of the wood surface. Moreover, the successful formulation of an eco-friendly natural wood stain is detailed, presenting a promising alternative. This method finds applicability in the domains of furniture and handicraft creation, offering a sustainable choice for creative artisans.

Keywords: formulated wood stain (FWS), natural dyes, wood stains, eco-friendly natural wood stain,

Procedia PDF Downloads 69
556 Authigenic Mineralogy in Nubian Sandstone Reservoirs

Authors: Mohamed M. A. Rahoma

Abstract:

This paper presents the results of my sedimentological and petrographical study of the Nubian Formation in the north Gialo area in the Sirte basin in Libya that was used for identifying and recognizing the facies type and their changes through the studied interval. It also helped me to interpret the depositional processes and the depositional environments and describe the textural characteristics, detrital mineralogy, Authigenic mineralogy and porosity characteristics of the rocks within the cored interval. Thus, we can identify the principal controls on porosity and permeability within the reservoir sections for the studied interval. To achieve this study, I described the cores studied well and marked all features represented in color, grain size, lithology, and sedimentary structures and used them to identify the facies. Then, I chose a number of samples according to a noticeable change in the facies through the interval for microscopic investigation. The results of the microscopic investigation showed that the authigenic clays and the authigenic types of cement have an important influence on the reservoir quality by converting intergranular macropores to microporosity and reducing permeability. It is recommended to give these authigenic minerals more investigation in future studies since they have an essential influence on the potential of sandstones reservoirs.

Keywords: diagenesis processes, authigenic minerals, Nubian Sandstone, reservoir quality

Procedia PDF Downloads 121
555 Investigating the Impact of Solar Radiation on Electricity Meters’ Accuracy Using A Modified Climatic Chamber

Authors: Hala M. Abdel Mageed, Eman M. Hosny, Adel S. Nada

Abstract:

Solar radiation test is one of the essential tests performed on electricity meters that is carried out using solar simulators. In this work, the (MKF-240) climatic chamber has been modified to act as a solar simulator at the Egyptian national institute of standard, NIS. Quartz Tungsten Halogen (QTH) lamps and an Aluminum plate are added to the climatic chamber to realize the solar test conditions. Many experimental trials have been performed to reach the optimum number of lamps needed to fulfil the test requirements and to adjust the best uniform test area. The proposed solar simulator design is capable to produce irradiance up to 1066 W/m2. Its output radiation is controlled by changing the number of illuminated lamps as well as changing the distance between lamps and tested electricity meter. The uniformity of radiation within the simulator has been recognized to be 91.5 % at maximum irradiance. Three samples of electricity meters have been tested under different irradiances, temperatures, and electric loads. The electricity meters’ accuracies have been recorded and analyzedfor eachsample. Moreover, measurement uncertainty contribution has been considered in all tests to get precision value. There were noticeable changes in the accuracies of the electricity meters while exposed to solar radiation, although there were no noticeable distortions of their insulationsand outer surfaces.

Keywords: solar radiation, solar simulator, climatic chamber, halogen lamp, electricity meter

Procedia PDF Downloads 101
554 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method

Authors: Rabah Bensaha, Badreeddine Toubal

Abstract:

Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.

Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity

Procedia PDF Downloads 432