Search results for: uniform loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2436

Search results for: uniform loading

1386 Simulation and Experimentation of Solar Thermal Collector for Air Heating System Using Dynamic Ribs

Authors: Nishitha Chowdary, Prabhav Dwivedi

Abstract:

Solar radiation (or insolation) is responsible for 174 petawatts (PW) of energy reaching the Earth's atmosphere. About one-third of this is reflected in space. Solar energy is by far the most abundant source of energy on Earth. In this study to use solar energy to the fullest in a solar air heater, An analysis of a solar air heater duct roughened with fixed cylindrical ribs in 3-D has been done using CFD. These fixed cylindrical ribs have a uniform circular cross-section and are placed in transverse in-line and staggered arrangements. The orientation of ribs has been fixed and is perpendicular to the in-flow direction. Cylindrical ribs are arranged periodically with fixed pitch; therefore, one pitch length is only considered in the present study. Validation has been done with smooth as well as with roughened duct and is matched perfectly with the developed correlations. Geometric parameters, namely rib height (e), ranges from 1 to 2 mm and pitch ranges from 10 to 40 mm are used in the present investigation. Thermo-hydraulic performance parameters in terms of average Nusselt number and friction factor have been extracted for Reynolds number ranging 5000—18000 to optimize the performance of roughened duct.

Keywords: cylindrical ribs, solar air heater, thermo-hydraulic performance factor, roughened duct

Procedia PDF Downloads 152
1385 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 406
1384 Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: I. Ramirez D. Edgar, J. Angeles H. José, Ruiz C. Osvaldo, H. Jacobo A. Victor, Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties

Procedia PDF Downloads 487
1383 Eu³⁺ Ions Doped-SnO₂ for Effective Degradation of Malachite Green Dye

Authors: Ritu Malik, Vijay K. Tomer, Satya P. Nehra, Anshu Nehra

Abstract:

Visible light sensitive Eu³⁺ doped-SnO₂ nanoparticles were successfully synthesized via the hydrothermal method and extensively characterized by a combination of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and N₂ adsorption-desorption isotherms (BET). Their photocatalytic activities were evaluated using Malachite Green (MG) as decomposition objective by varying the concentration of Eu³⁺ in SnO₂. The XRD analysis showed that lanthanides phase was not observed on lower loadings of Eu³⁺ ions doped-SnO₂. Eu³⁺ ions can enhance the photocatalytic activity of SnO₂ to some extent as compared with pure SnO₂, and it was found that 3 wt% Eu³⁺ -doped SnO₂ is the most effective photocatalyst due to its lowest band gap, crystallite size and also the highest surface area. The photocatalytic tests indicate that at the optimum conditions, illumination time 40 min, pH 65, 0.3 g/L photocatalyst loading and 50 ppm dye concentration, the dye removal efficiency was 98%.

Keywords: photocatalyst, visible light, lanthanide, SnO₂

Procedia PDF Downloads 281
1382 Multifractal Behavior of the Perturbed Cerbelli-Giona Map: Numerical Computation of ω-Measure

Authors: Ibrahim Alsendid, Rob Sturman, Benjamin Sharp

Abstract:

In this paper, we consider a family of 2-dimensional nonlinear area-preserving transformations on the torus. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results, we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments that define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated and compared with the distribution of periodic points of the system.

Keywords: Discrete-time dynamical systems, Fractal geometry, Multifractal behaviour of the Perturbed map, Multifractal of Dynamical systems

Procedia PDF Downloads 210
1381 Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test

Authors: Jinyoung Choi, Tae-Ho Yoon, Sunmook Lee

Abstract:

Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475).

Keywords: accelerated degradation test, air-diffuser, lifetime assessment, SOTE

Procedia PDF Downloads 562
1380 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I

Authors: Khaled R. Khater

Abstract:

The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.

Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D

Procedia PDF Downloads 105
1379 Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 438
1378 A Study on the Response of Vacuum Consolidation on Soft Clay in Combination with Prefabricated Vertical Drain (PVD), Embankment and Surcharge Preloading

Authors: Sharmeelee Subramaniam, Muhd Harris Ramli, Fauziah Ahmad

Abstract:

The application of vacuum pressure to accelerate ground consolidation has been growing significantly in recent years. This ground improvement technique has its advantages, especially in areas where suitable fill is scarce, as it minimizes the surcharge fill height required for the preloading. A study was carried out to examine the response of soft subsoil subjected to vacuum consolidation in combination with embankment loading, surcharge preloading and PVD with two-way drainage. This paper shall describe a procedure to determine the optimum surcharge height and penetration depth of prefabricated vertical drains (PVD) where vacuum consolidation is combined with the use of PVD in soft clay deposits with two-way drainage.

Keywords: prefabricated vertical drain, soft soil, surcharge preload, vacuum consolidation

Procedia PDF Downloads 81
1377 Anaerobic Digestion of Spent Wash through Biomass Development for Obtaining Biogas

Authors: Sachin B. Patil, Narendra M. Kanhe

Abstract:

A typical cane molasses based distillery generates 15 L of waste water per liter of alcohol production. Distillery waste with COD of over 1,00,000 mg/l and BOD of over 30,000 mg/l ranks high amongst the pollutants produced by industries both in magnitude and strength. Treatment and safe disposal of this waste is a challenging task since long. The high strength of waste water renders aerobic treatment very expensive and physico-chemical processes have met with little success. Thermophilic anaerobic treatment of distillery waste may provide high degree of treatment and better recovery of biogas. It may prove more feasible in most part of tropical country like India, where temperature is suitable for thermophilic micro-organisms. Researchers have reviled that, at thermophilic conditions due to increased destruction rate of organic matter and pathogens, higher digestion rate can be achieved. Literature review reveals that the variety of anaerobic reactors including anaerobic lagoon, conventional digester, anaerobic filter, two staged fixed film reactors, sludge bed and granular bed reactors have been studied, but little attempts have been made to evaluate the usefulness of thermophilic anaerobic treatment for treating distillery waste. The present study has been carried out, to study feasibility of thermophilic anaerobic digestion to facilitate the design of full scale reactor. A pilot scale anaerobic fixed film fixed bed reactor (AFFFB) of capacity 25m3 was designed, fabricated, installed and commissioned for thermophilic (55-65°C) anaerobic digestion at a constant pH of 6.5-7.5, because these temperature and pH ranges are considered to be optimum for biogas recovery from distillery wastewater. In these conditions, working of the reactor was studied, for different hydraulic retention times (HRT) (0.25days to 12days) and variable organic loading rates (361.46 to 7.96 Kg COD/m3d). The parameters such as flow rate and temperature, various chemical parameters such as pH, chemical oxygen demands (COD), biogas quantity, and biogas composition were regularly monitored. It was observed that, with the increase in OLR, the biogas production was increased, but the specific biogas yield decreased. Similarly, with the increase in HRT, the biogas production got decrease, but the specific biogas yield was increased. This may also be due to the predominant activity of acid producers to methane producers at the higher substrate loading rates. From the present investigation, it can be concluded that for thermophilic conditions the highest COD removal percentage was obtained at an HRT of 08 days, thereafter it tends to decrease from 8 to 12 days HRT. There is a little difference between COD removal efficiency of 8 days HRT (74.03%) and 5 day HRT (78.06%), therefore it would not be feasible to increase the reactor size by 1.5 times for mere 4 percent more efficiency. Hence, 5 days HRT is considered to be optimum, at which the biogas yield was 98 m3/day and specific biogas yield was 0.385 CH4 m3/Kg CODr.

Keywords: spent wash, anaerobic digestion, biomass, biogas

Procedia PDF Downloads 261
1376 Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank

Authors: S. Chikh, S. Boulifa

Abstract:

The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed.

Keywords: evaporation, liquid ammonia, storage tank, numerical simulation

Procedia PDF Downloads 285
1375 Analysis of Delamination in Drilling of Composite Materials

Authors: Navid Zarif Karimi, Hossein Heidary, Giangiacomo Minak, Mehdi Ahmadi

Abstract:

In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled.

Keywords: composite material, delamination, drilling, thrust force

Procedia PDF Downloads 513
1374 Comparison of Different Methods of Evaluating Nozzle Junction Stresses under External Loads

Authors: Vinod Kumar, Arun Kumar, Surjit Angra

Abstract:

This paper addresses the junction stress analysis of orthogonally intersecting thin walled cylindrical shell and thin walled cylindrical nozzle subjected to external loading on nozzle. Junction stresses have been calculated theoretically by welding research council (WRC) bulletins 107 and 297 for different nozzle loads. WRC bulletins 107 and 297 have been used by design engineers for calculating nozzle-vessel junction stresses since their publication. They give simple empirical relations and easy in application. Also 3D FEA in which material is elastic has been done in ANSYS software with 8 node solid element model and results of FEA have been compared with WRC results. Stress intensities obtained by WRC 297 are generally slightly higher than obtained by WRC 107. Membrane stresses obtained by FEA are much higher than WRC and membrane plus bending stresses obtained by FEA are lower than WRC.

Keywords: FEA, junction stress, solid element, WRC 107, WRC 297

Procedia PDF Downloads 577
1373 Can We Develop a Practical and Applicable Ethic in Veterinary Health Care with a Universal Application and without Dogma?

Authors: Theodorus Holtzhausen

Abstract:

With a growing number of professionals in healthcare moving freely between countries and also in general a more mobile global workforce, awareness of cultural differences have become more urgent for health care workers to apply proper care. There is a slowly emerging trend in health care due to globalisation that may create a more uniform cultural base for administering healthcare, but it is still very vulnerable to being hijacked and misdirected by major commercial interests. Veterinary clinics and medical clinics promoting alternative remedies lacking evidence based support and simultaneously practicing medicine as a science have become more common. Such ‘holistic’ clinics see these remedies more as a belief system causing no harm with minimal impact but with added financial benefit to the facility. With the inarguable acceptance and realisation of the interconnection between evolutionary aspects of cognition, knowledge and culture as a global but vulnerable cognition-gaining process affecting us all, we can see the enormous responsibility we carry. Such a responsibility for creating global well-being calling for an universally applicable ethic. Such an ethic with the potential of having significant impact on our cognition gaining process.

Keywords: veterinary health care, ethics, wellbeing, veterinary clinics

Procedia PDF Downloads 640
1372 Investigation of Microstructure, Mechanical Properties and Anti-Corrosive Behavior of Al2O3/Cr2O3 Nanocomposite on Zn Rich Bath

Authors: N. Malatji, A. P. I. Popoola

Abstract:

Zn-Al2O3 and Cr2O3 nanocomposite coatings were successfully produced by electrodeposition technique from chloride acidic bath. Particle loading of Al2O3 (50nm) particles were varied from 5-10 g/L and for Cr2O3(100nm) was 10-20 g/L. Scanning electron microscope (SEM) affixed with energy dispersive spectrometry was used to study the surface morphology and content of the nanoparticles incorporated into the coatings. Microhardness, thermal stability, wear and corrosion behavior of the coatings were also evaluated to study the effect of these nanoparticles on these properties. Zn-Al2O3 nanocomposite was found to exhibit good surface properties especially corrosion resistance. On the other side, Cr2O3 incorporation resulted in the improvement of only mechanical properties. Therefore, Zn-Al2O3 proved to be a better coating for most industrial applications where both chemical and mechanical properties are required.

Keywords: electrodeposition, nanocomposite coatings, corrosion, thermal stability, tribology

Procedia PDF Downloads 387
1371 Performance of an Anaerobic Baffled Reactor (ABR) during Start-Up Period

Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa

Abstract:

Appropriate start-up of an anaerobic baffled reactor (ABR) is considered to be the most delicate and important issue in the anaerobic process, and depends on several factors such as wastewater composition, reactor configuration, inoculum and operating conditions. In this work, the start-up performance of an ABR with working volume of 30 liters, fed continuously with synthetic food industrial wastewater along with semi-batch study to measure the methangenic activity by specific methanogenic activity (SMA) test were carried out at various organic loading rates (OLRs) to determine the best OLR used to start up the reactor. The comparison was based on COD removal efficiencies, start-up time, pH stability and methane production. An OLR of 1.8 Kg COD/m3d (5400 gCOD/m3 and 3 days HRT) showed best overall performance with COD removal efficiency of 94.44% after four days from the feeding and methane production of 3802 ml/L with an overall SMA of 0.36 gCH4-COD/gVS.d

Keywords: anaerobic baffled reactor, anaerobic reactor start-up, food industrial wastewater, specific methanogenic activity

Procedia PDF Downloads 387
1370 The Mechanical Properties of In-Situ Consolidated Nanocrystalline Aluminum Alloys

Authors: Khaled M. Youssef, Sara I. Ahmed

Abstract:

In this study, artifacts-free bulk nanocrystalline pure aluminum alloy samples were prepared through mechanical milling under ultra-high purity argon and at both liquid nitrogen and room temperatures. The nanostructure evolution during milling was examined using X-ray diffraction and transmission electron microscope techniques. The in-situ consolidated samples after milling exhibited an average grain size of 18 nm. The tensile properties of this novel material are reported in comparison with coarse-grained aluminum alloys. The 0.2% offset yield strength of the nanocrystalline aluminum was found to be 340 MPa. This value is at least one order of magnitude higher than that of the coarse-grained aluminum alloy. In addition to this extraordinarily high strength, the nanocrystalline aluminum showed a significant tensile ductility, with 6% uniform elongation and 11% elongation-to-failure. The transmission electron microscope observations in this study provide evidence of deformation twinning in the plastically deformed nanocrystalline aluminum. These results highlight a change of the deformation mechanism from a typical dislocation slip to twinning deformation induced by partial dislocation activities.

Keywords: nanocrystalline, aluminum, strength, ductility

Procedia PDF Downloads 181
1369 Synthesis, Characterization, Photocatalytic and Photovoltaic Performance of Ag-Doped ZnO2 Loaded on the Pt-Carbon Spheres

Authors: M. Mujahid, Omar A. Al-Hartomy

Abstract:

Ag-doped ZnO2 loaded on the Pt-carbon spheres have been synthesized and characterized by standard analytical techniques. i.e., UV-Vis spectroscopy, X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). In order to find the effect of loading of Ag doping on ZnO2, the concentration of Ag was varied from 0-3.5%. The XRD analysis showed that the obtained particles are anatase phase. The SEM images showed Ag-doped ZnO2 are loaded on the surface of the Pt-carbon spheres. The photocatalytic activity of the synthesized particles was tested by studying the degradation of methyl orange dye and 4-chlorophenol as a function of time on irradiation in aqueous suspension. Ag-doped ZnO2@Pt-carbon sphere particle with platinum concentration of 3.0 % showed the highest photocatalytic activity as compared to the other Ag concentrations for the degradation of methyl orange and 4-chlorophenol.

Keywords: Ag-ZnO2, Pt-carbon spheres, degradation, methyl orange, 4-chlorophenol

Procedia PDF Downloads 369
1368 Framework for Implementation of National Electrical Safety Grounding Standards for Communication Infrastructure

Authors: Atif Mahmood, Mohammad Inayatullah Khan Babar

Abstract:

Communication infrastructure has been installed, operated, and maintained all over the world according to defined electrical safety standards for separate or joint structures. These safety standards have been set for the safeguard of public, utility workers (employees and contractors), utility facilities, electrical communication equipment’s connected to the utility facilities and other facilities or premise adjacent to utility facilities. Different communication utilities in Pakistan use standards of different countries due to the absence of Common National Electrical Safety Standards of Pakistan. It is really important to devise a framework for implementation of a uniform standard for strict compliance. In this context, it is important to explore the compliance of safety standards for communication conductors and equipment for separate or joint structures for which NESC standards are taken as reference. Specific reference to grounding techniques including grounding AC/DC systems and its frames, leaving Fences, Messenger wires and special circuits used for the protection for lightning etc, ungrounded so recommendations are also given after in-depth analysis of current technical practices for the installation and maintenance of communication infrastructure.

Keywords: utility facilities, grounding electrodes, special circuits, grounding conductor

Procedia PDF Downloads 347
1367 Performance Evaluation of Moringa Oleifera as Coagulant for Treating Abattoir Wastewater

Authors: Adesiji Adeolu Richard, Hassa Musa, Osita Evaritus Asogwa, Mary Oluwatobi Odekunle, Mangey Jarumi Akila

Abstract:

In this paper, extract from raw Moringa Oleifera seeds for the treatment of 40 liters of abattoir wastewater was studied for a period of ten (10) weeks. A completely randomized design with loading dosages of 10, 12, 14, 16, 18, and 20g of processed Moringa Oleifera seed was used in the treatment. A control sample (with no Moringa Oleifera treatment) was also included. The physical and chemical properties of abattoir wastewater were investigated before and after treatment. The turbidity value was reduced drastically after the treatments from 15.40 to 7.63 mg/l for 16g dosage in week 7. Total alkalinity, Total hardness, Conductivity, Calcium, and Biological Oxygen Demand were all found to be reduced in concentration within the second and fourth weeks of the experiment with 14 to 16g of Moringa Oleifera dosage. The results generally showed that 16g/500ml of Moringa Oleifera was able to treat abattoir wastewater after weeks of the experiment.

Keywords: Moringa Oleifera, abattoir wastewater, turbidity, conductivity, pH

Procedia PDF Downloads 117
1366 Continuum-Based Modelling Approaches for Cell Mechanics

Authors: Yogesh D. Bansod, Jiri Bursa

Abstract:

The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.

Keywords: cell mechanics, computational models, continuum approach, mechanical models

Procedia PDF Downloads 362
1365 Reliability Analysis of Dam under Quicksand Condition

Authors: Manthan Patel, Vinit Ahlawat, Anshh Singh Claire, Pijush Samui

Abstract:

This paper focuses on the analysis of quicksand condition for a dam foundation. The quicksand condition occurs in cohesion less soil when effective stress of soil becomes zero. In a dam, the saturated sediment may appear quite solid until a sudden change in pressure or shock initiates liquefaction. This causes the sand to form a suspension and lose strength hence resulting in failure of dam. A soil profile shows different properties at different points and the values obtained are uncertain thus reliability analysis is performed. The reliability is defined as probability of safety of a system in a given environment and loading condition and it is assessed as Reliability Index. The reliability analysis of dams under quicksand condition is carried by Gaussian Process Regression (GPR). Reliability index and factor of safety relating to liquefaction of soil is analysed using GPR. The results of reliability analysis by GPR is compared to that of conventional method and it is demonstrated that on applying GPR the probabilistic analysis reduces the computational time and efforts.

Keywords: factor of safety, GPR, reliability index, quicksand

Procedia PDF Downloads 480
1364 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 119
1363 Calculation of Stress Intensity Factors in Rotating Disks Containing 3D Semi-Elliptical Cracks

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Initiation and propagation of cracks may cause catastrophic failures in rotating disks, and hence determination of fracture parameter in rotating disks under the different working condition is very important issue. In this paper, a comprehensive study of stress intensity factors in rotating disks containing 3D semi-elliptical cracks under the different working condition is investigated. In this regard, after verification of modeling and analytical procedure, the effects of mechanical properties, rotational velocity, and orientation of cracks on Stress Intensity Factors (SIF) in rotating disks under centrifugal loading are investigated. Also, the effects of using composite patch in reduction of SIF in rotating disks are studied. By that way, the effects of patching design variables like mechanical properties, thickness, and ply angle are investigated individually.

Keywords: stress intensity factor, semi-elliptical crack, rotating disk, finite element analysis (FEA)

Procedia PDF Downloads 362
1362 Controlled Synthesis of Pt₃Sn-SnOx/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Dorottya Guban, Irina Borbath, Istvan Bakos, Peter Nemeth, Andras Tompos

Abstract:

One of the greatest challenges of the implementation of polymer electrolyte membrane fuel cells (PEMFCs) is to find active and durable electrocatalysts. The cell performance is always limited by the oxygen reduction reaction (ORR) on the cathode since it is at least 6 orders of magnitude slower than the hydrogen oxidation on the anode. Therefore high loading of Pt is required. Catalyst corrosion is also more significant on the cathode, especially in case of mobile applications, where rapid changes of loading have to be tolerated. Pt-Sn bulk alloys and SnO2-decorated Pt3Sn nanostructures are among the most studied bimetallic systems for fuel cell applications. Exclusive formation of supported Sn-Pt alloy phases with different Pt/Sn ratios can be achieved by using controlled surface reactions (CSRs) between hydrogen adsorbed on Pt sites and tetraethyl tin. In this contribution our results for commercial and a home-made 20 wt.% Pt/C catalysts modified by tin anchoring via CSRs are presented. The parent Pt/C catalysts were synthesized by modified NaBH4-assisted ethylene-glycol reduction method using ethanol as a solvent, which resulted either in dispersed and highly stable Pt nanoparticles or evenly distributed raspberry-like agglomerates according to the chosen synthesis parameters. The 20 wt.% Pt/C catalysts prepared that way showed improved electrocatalytic performance in the ORR and stability in comparison to the commercial 20 wt.% Pt/C catalysts. Then, in order to obtain Sn-Pt/C catalysts with Pt/Sn= 3 ratio, the Pt/C catalysts were modified with tetraethyl tin (SnEt4) using three and five consecutive tin anchoring periods. According to in situ XPS studies in case of catalysts with highly dispersed Pt nanoparticles, pre-treatment in hydrogen even at 170°C resulted in complete reduction of the ionic tin to Sn0. No evidence of the presence of SnO2 phase was found by means of the XRD and EDS analysis. These results demonstrate that the method of CSRs is a powerful tool to create Pt-Sn bimetallic nanoparticles exclusively, without tin deposition onto the carbon support. On the contrary, the XPS results revealed that the tin-modified catalysts with raspberry-like Pt agglomerates always contained a fraction of non-reducible tin oxide. At the same time, they showed increased activity and long-term stability in the ORR than Pt/C, which was assigned to the presence of SnO2 in close proximity/contact with Pt-Sn alloy phase. It has been demonstrated that the content and dispersion of the fcc Pt3Sn phase within the electrocatalysts can be controlled by tuning the reaction conditions of CSRs. The bimetallic catalysts displayed an outstanding performance in the ORR. The preparation of a highly dispersed 20Pt/C catalyst permits to decrease the Pt content without relevant decline in the electrocatalytic performance of the catalysts.

Keywords: anode catalyst, cathode catalyst, controlled surface reactions, oxygen reduction reaction, PtSn/C electrocatalyst

Procedia PDF Downloads 230
1361 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 217
1360 Controlling Dimensions and Shape of Carbon Nanotubes Using Nanoporous Anodic Alumina under Different Conditions

Authors: Amine Mezni, Merfat Algethami, Ali Aldalbahi, Arwa Alrooqi, Abel Santos, Dusan Losic, Sarah Alharthi, Tariq Altalhi

Abstract:

In situ synthesis of carbon nanotubes featuring different diameters (10-200 nm), lengths (1 to 100 µm) and periodically nanostructured shape was performed in a custom designed chemical vapor deposition (CVD) system using nanoporous anodic alumina (NAA) under different conditions. The morphology of the resulting CNTs/NAA composites and free-standing CNTs were analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results confirm that highly ordered arrays of CNTs with precise control of nanotube dimensions in the range 20-200 nm with tube length in the range < 1 µm to > 100 μm and with periodically shaped morphology can be fabricated using nanostructured NAA templates prepared by anodization. This technique allows us to obtain tubes open at one / both ends with a uniform diameter along the pore length without using any metal catalyst. Our finding suggests that this fabrication strategy for designing new CNTs membranes and structures can be significant for emerging applications as molecular separation/transport, optical biosensing, and drug delivery.

Keywords: carbon nanotubes, CVD approach, composites membrane, nanoporous anodic alumina

Procedia PDF Downloads 280
1359 FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique

Authors: Bahattin Duzgun, Adem Kocyigit, Demet Tatar, Ahmet Battal

Abstract:

Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications.

Keywords: doubly doped, spin coating, FTIR analysis, AFM analysis

Procedia PDF Downloads 449
1358 Turbulence Measurement Over Rough and Smooth Bed in Open Channel Flow

Authors: Kirti Singh, Kesheo Prasad

Abstract:

A 3D Acoustic Doppler velocimeter was used in the current investigation to quantify the mean and turbulence characteristics in non-uniform open-channel flows. Results are obtained from studies done in the laboratory, analysing the behavior of sand particles under turbulent open channel flow conditions flowing through rough, porous beds. Data obtained from ADV is used to calculate turbulent flow characteristics, Reynolds stresses and turbulent kinetic energy. Theoretical formulations for the distribution of Reynolds stress and the vertical velocity have been constructed using the Reynolds equation and the continuity equation of 2D open-channel flow. The measured Reynolds stress profile and the vertical velocity are comparable with the derived expressions. This study uses the Navier-Stokes equations for analysing the behavior of the vertical velocity profile in the dominant region of full-fledged turbulent flows in open channels, and it gives a new origination of the profile. For both wide and narrow open channels, this origination can estimate the time-averaged primary velocity in the turbulent boundary layer's outer region.

Keywords: turbulence, bed roughness, logarithmic law, shear stress correlations, ADV, Reynolds shear stress

Procedia PDF Downloads 106
1357 Lactation Curve at Holstein Cows in Romania and Influencing Factors

Authors: Enea Danut Nicolae, Osman (Defta) Aurelia, Vidu Livia, Marginean Gheorghe, Defta Nicoleta, Moise Andrada

Abstract:

Today, as a result of population growth, there is an increase in demand for animal products; milk and dairy products are an important part of this category. Maintaining production at maximum levels for as long as possible is one of the main objectives of dairy farmers. Over the course of lactation, a cow's milk production is not uniform. During the initial stage of lactation, the cow's milk production follows an upward slope, a plateau, and then a downward slope, which is a reflection of the lactation curve. The evolution of the lactation curve is influenced by numerous factors, which are genetic, exploitation, physiological, environmental and technological. The aim of this study was to observe the lactation curve of Holstein cows in Romania and determine the extent to which they conform to the expected pattern. In addition, there has been an analysis of the factors which have an influence on this curve and the extent of this influence. In order to be able to carry out the present study, data were collected from three farms located in three different geographical areas. To highlight the findings, the data collected was then statistically processed and graphically interpreted. All the farms have only Holstein cows, which are kept in free stalls.

Keywords: lactation curve, Holstein, milk production, influencing factors

Procedia PDF Downloads 60