Search results for: supply chain optimization
5622 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature
Authors: M. Malekian, M. E. Heydari, M. Irani Estyar
Abstract:
Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction
Procedia PDF Downloads 1315621 Adapting the Tweeting Factory Concept for Universal Production Optimization in Industry 5.0
Authors: Sławomir Lasota, Tomasz Kajdanowicz
Abstract:
This paper delves into adapting the Tweeting Factory paradigm to achieve universal production optimization under the Industry 5.0 framework. The proposed system creates a dynamic decision-making environment by collecting and analyzing structured telemetry data (”tweets”) from production lines. A hybrid recommendation engine combines rule-based systems with machine learning models to enhance real-time responsiveness and operator engagement. The research evaluates the system’s ability to optimize diverse industrial processes through predictive KPIs and real-time feedback loops. Results indicate significant advancements in eco-efficiency and operator productivity, showcasing the versatility of the Tweeting Factory approach in meeting the demands of human-centric and sustainable production.Keywords: tweeting factory, production optimization, industry 5.0, recommendation
Procedia PDF Downloads 75620 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd
Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic
Abstract:
Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization
Procedia PDF Downloads 1105619 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.Keywords: economic load dispatch (ELD), constriction factor based particle swarm optimization (CPSO), dispersed particle swarm optimization (DPSO), weight improved particle swarm optimization (WIPSO), ramp rate and constriction factor based particle swarm optimization (RRCPSO)
Procedia PDF Downloads 3825618 Solving Flowshop Scheduling Problems with Ant Colony Optimization Heuristic
Authors: Arshad Mehmood Ch, Riaz Ahmad, Imran Ali Ch, Waqas Durrani
Abstract:
This study deals with the application of Ant Colony Optimization (ACO) approach to solve no-wait flowshop scheduling problem (NW-FSSP). ACO algorithm so developed has been coded on Matlab computer application. The paper covers detailed steps to apply ACO and focuses on judging the strength of ACO in relation to other solution techniques previously applied to solve no-wait flowshop problem. The general purpose approach was able to find reasonably accurate solutions for almost all the problems under consideration and was able to handle a fairly large spectrum of problems with far reduced CPU effort. Careful scrutiny of the results reveals that the algorithm presented results better than other approaches like Genetic algorithm and Tabu Search heuristics etc; earlier applied to solve NW-FSSP data sets.Keywords: no-wait, flowshop, scheduling, ant colony optimization (ACO), makespan
Procedia PDF Downloads 4365617 Fiqh Challenge in Production of Halal Pharmaceutical Products
Authors: Saadan Man, Razidah Othmanjaludin, Madiha Baharuddin
Abstract:
Nowadays, the pharmaceutical products are produced through the mixing of active and complex ingredient, naturally or synthetically; and involve extensive use of prohibited animal products. This article studies the challenges faced from fiqh perspective in the production of halal pharmaceutical products which frequently contain impure elements or prohibited animal derivatives according to Islamic law. This study is qualitative which adopts library research as well as field research by conducting series of interviews with the several related parties. The gathered data is analyzed from Sharia perspective by using some instruments especially the principle of Maqasid of Sharia. This study shows that the halal status of pharmaceutical products depends on the three basic elements: the sources of the basic ingredient; the processes involved in three phases of production, i.e., before, during and after; and the possible effects of the products. Various fiqh challenges need to be traversed in producing halal pharmaceutical products including the sources of the ingredients, the logistic process, the tools used, and the procedures of productions. Thus, the whole supply chain of production of pharmaceutical products must be well managed in accordance to the halal standard.Keywords: fiqh, halal pharmaceutical, pharmaceutical products, Malaysia
Procedia PDF Downloads 1945616 [Keynote Talk]: Production Flow Coordination on Supply Chains: Brazilian Case Studies
Authors: Maico R. Severino, Laura G. Caixeta, Nadine M. Costa, Raísa L. T. Napoleão, Éverton F. V. Valle, Diego D. Calixto, Danielle Oliveira
Abstract:
One of the biggest barriers that companies find nowadays is the coordination of production flow in their Supply Chains (SC). In this study, coordination is understood as a mechanism for incorporating the entire production channel, with everyone involved focused on achieving the same goals. Sometimes, this coordination is attempted by the use of logistics practices or production plan and control methods. No papers were found in the literature that presented the combined use of logistics practices and production plan and control methods. The main objective of this paper is to propose solutions for six case studies combining logistics practices and Ordering Systems (OS). The methodology used in this study was a conceptual model of decision making. This model contains six phases: a) the analysis the types and characteristics of relationships in the SC; b) the choice of the OS; c) the choice of the logistics practices; d) the development of alternative proposals of combined use; e) the analysis of the consistency of the chosen alternative; f) the qualitative and quantitative assessment of the impact on the coordination of the production flow and the verification of applicability of the proposal in the real case. This study was conducted on six Brazilian SC of different sectors: footwear, food and beverages, garment, sugarcane, mineral and metal mechanical. The results from this study showed that there was improvement in the coordination of the production flow through the following proposals: a) for the footwear industry the use of Period Bath Control (PBC), Quick Response (QR) and Enterprise Resource Planning (ERP); b) for the food and beverage sector firstly the use of Electronic Data Interchange (EDI), ERP, Continuous Replenishment (CR) and Drum-Buffer-Rope Order (DBR) (for situations in which the plants of both companies are distant), and secondly EDI, ERP, Milk-Run and Review System Continues (for situations in which the plants of both companies are close); c) for the garment industry the use of Collaborative Planning, Forecasting, and Replenishment (CPFR) and Constant Work-In-Process (CONWIP) System; d) for the sugarcane sector the use of EDI, ERP and CONWIP System; e) for the mineral processes industry the use of Vendor Managed Inventory (VMI), EDI and MaxMin Control System; f) for the metal mechanical sector the use of CONWIP System and Continuous Replenishment (CR). It should be emphasized that the proposals are exclusively recommended for the relationship between client and supplier studied. Therefore, it cannot be generalized to other cases. However, what can be generalized is the methodology used to choose the best practices for each case. Based on the study, it can be concluded that the combined use of OS and logistics practices enable a better coordination of flow production on SC.Keywords: supply chain management, production flow coordination, logistics practices, ordering systems
Procedia PDF Downloads 2095615 Multi-Response Optimization of CNC Milling Parameters Using Taguchi Based Grey Relational Analysis for AA6061 T6 Aluminium Alloy
Authors: Varsha Singh, Kishan Fuse
Abstract:
This paper presents a study of the grey-Taguchi method to optimize CNC milling parameters of AA6061 T6 aluminium alloy. Grey-Taguchi method combines Taguchi method based design of experiments (DOE) with grey relational analysis (GRA). Multi-response optimization of different quality characteristics as surface roughness, material removal rate, cutting forces is done using grey relational analysis (GRA). The milling parameters considered for experiments include cutting speed, feed per tooth, and depth of cut. Each parameter with three levels is selected. A grey relational grade is used to estimate overall quality characteristics performance. The Taguchi’s L9 orthogonal array is used for design of experiments. MINITAB 17 software is used for optimization. Analysis of variance (ANOVA) is used to identify most influencing parameter. The experimental results show that grey relational analysis is effective method for optimizing multi-response characteristics. Optimum results are finally validated by performing confirmation test.Keywords: ANOVA, CNC milling, grey relational analysis, multi-response optimization
Procedia PDF Downloads 3095614 Optimal Power Distribution and Power Trading Control among Loads in a Smart Grid Operated Industry
Authors: Vivek Upadhayay, Siddharth Deshmukh
Abstract:
In recent years utilization of renewable energy sources has increased majorly because of the increase in global warming concerns. Organization these days are generally operated by Micro grid or smart grid on a small level. Power optimization and optimal load tripping is possible in a smart grid based industry. In any plant or industry loads can be divided into different categories based on their importance to the plant and power requirement pattern in the working days. Coming up with an idea to divide loads in different such categories and providing different power management algorithm to each category of load can reduce the power cost and can come handy in balancing stability and reliability of power. An objective function is defined which is subjected to a variable that we are supposed to minimize. Constraint equations are formed taking difference between the power usages pattern of present day and same day of previous week. By considering the objectives of minimal load tripping and optimal power distribution the proposed problem formulation is a multi-object optimization problem. Through normalization of each objective function, the multi-objective optimization is transformed to single-objective optimization. As a result we are getting the optimized values of power required to each load for present day by use of the past values of the required power for the same day of last week. It is quite a demand response scheduling of power. These minimized values then will be distributed to each load through an algorithm used to optimize the power distribution at a greater depth. In case of power storage exceeding the power requirement, profit can be made by selling exceeding power to the main grid.Keywords: power flow optimization, power trading enhancement, smart grid, multi-object optimization
Procedia PDF Downloads 5265613 Optimal Driving Strategies for a Hybrid Street Type Motorcycle: Modelling and Control
Authors: Jhon Vargas, Gilberto Osorio-Gomez, Tatiana Manrique
Abstract:
This work presents an optimal driving strategy proposal for a 125 c.c. street-type hybrid electric motorcycle with a parallel configuration. The results presented in this article are complementary regarding the control proposal of a hybrid motorcycle. In order to carry out such developments, a representative dynamic model of the motorcycle is used, in which also are described different optimization functionalities for predetermined driving modes. The purpose is to implement an off-line optimal driving strategy which distributes energy to both engines by minimizing an objective torque requirement function. An optimal dynamic contribution is found from the optimization routine, and the optimal percentage contribution for vehicle cruise speed is implemented in the proposed online PID controller.Keywords: dynamic model, driving strategies, parallel hybrid motorcycle, PID controller, optimization
Procedia PDF Downloads 1925612 Pressure Regulator Optimization in LPG Fuel Injection Systems
Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner
Abstract:
LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.Keywords: temperature, pressure regulator, LPG, PID
Procedia PDF Downloads 5165611 A Novel Algorithm for Production Scheduling
Authors: Ali Mohammadi Bolban Abad, Fariborz Ahmadi
Abstract:
Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, NP-Hard problems, production scheduling
Procedia PDF Downloads 3815610 Simulation and Optimization of an Annular Methanol Reformer
Authors: Shu-Bo Yang, Wei Wu, Yuan-Heng Liu
Abstract:
This research aims to design a heat-exchanger type of methanol reformer coupled with a preheating design in gPROMS® environment. The endothermic methanol steam reforming reaction (MSR) and the exothermic preferential oxidation reaction (PROX) occur in the inner tube and the outer tube of the reformer, respectively. The effective heat transfer manner between the inner and outer tubes is investigated. It is verified that the countercurrent-flow type reformer provides the higher hydrogen yield than the cocurrent-flow type. Since the hot spot temperature appears in the outer tube, an improved scheme is proposed to suppress the hot spot temperature by splitting the excess air flowing into two sites. Finally, an optimization algorithm for maximizing the hydrogen yield is employed to determine optimal operating conditions.Keywords: methanol reformer, methanol steam reforming, optimization, simulation
Procedia PDF Downloads 3345609 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm
Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder
Abstract:
Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA Data Envelopment Analysis is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding
Procedia PDF Downloads 6415608 Fructooligosaccharide Prebiotics: Optimization of Different Cultivation Parameters on Their Microbial Production
Authors: Elsayed Ahmed Elsayed, Azza Noor El-Deen, Mohamed A. Farid, Mohamed A. Wadaan
Abstract:
Recently, a great attention has been paid to the use of dietary carbohydrates as prebiotic functional foods. Among the new commercially available products, fructooligosaccharides (FOS), which are microbial produced from sucrose, have attracted special interest due to their valuable properties and, thus, have a great economic potential for the sugar industrial branch. They are non-cariogenic sweeteners of low caloric value, as they are not hydrolyzed by the gastro-intestinal enzymes, promoting selectively the growth of the bifidobacteria in the colon, helping to eliminate the harmful microbial species to human and animal health and preventing colon cancer. FOS has been also found to reduce cholesterol, phospholipids and triglyceride levels in blood. FOS has been mainly produced by microbial fructosyltransferase (FTase) enzymes. The present work outlines bioprocess optimization for different cultivation parameters affecting the production of FTase by Penicillium aurantiogriseum AUMC 5605. The optimization involves both traditional as well as fractional factorial design approaches. Additionally, the production process will be compared under batch and fed-batch conditions. Finally, the optimized process conditions will be applied to 5-L stirred tank bioreactor cultivations.Keywords: prebiotics, fructooligosaccharides, optimization, cultivation
Procedia PDF Downloads 3885607 A Concept for Flexible Battery Cell Manufacturing from Low to Medium Volumes
Authors: Tim Giesen, Raphael Adamietz, Pablo Mayer, Philipp Stiefel, Patrick Alle, Dirk Schlenker
Abstract:
The competitiveness and success of new electrical energy storages such as battery cells are significantly dependent on a short time-to-market. Producers who decide to supply new battery cells to the market need to be easily adaptable in manufacturing with respect to the early customers’ needs in terms of cell size, materials, delivery time and quantity. In the initial state, the required output rates do not yet allow the producers to have a fully automated manufacturing line nor to supply handmade battery cells. Yet there was no solution for manufacturing battery cells in low to medium volumes in a reproducible way. Thus, in terms of cell format and output quantity, a concept for the flexible assembly of battery cells was developed by the Fraunhofer-Institute for Manufacturing Engineering and Automation. Based on clustered processes, the modular system platform can be modified, enlarged or retrofitted in a short time frame according to the ordered product. The paper shows the analysis of the production steps from a conventional battery cell assembly line. Process solutions were found by using I/O-analysis, functional structures, and morphological boxes. The identified elementary functions were subsequently clustered by functional coherences for automation solutions and thus the single process cluster was generated. The result presented in this paper enables to manufacture different cell products on the same production system using seven process clusters. The paper shows the solution for a batch-wise flexible battery cell production using advanced process control. Further, the performed tests and benefits by using the process clusters as cyber-physical systems for an integrated production and value chain are discussed. The solution lowers the hurdles for SMEs to launch innovative cell products on the global market.Keywords: automation, battery production, carrier, advanced process control, cyber-physical system
Procedia PDF Downloads 3395606 Measuring the Economic Impact of Cultural Heritage: Comparative Analysis of the Multiplier Approach and the Value Chain Approach
Authors: Nina Ponikvar, Katja Zajc Kejžar
Abstract:
While the positive impacts of heritage on a broad societal spectrum have long been recognized and measured, the economic effects of the heritage sector are often less visible and frequently underestimated. At macro level, economic effects are usually studied based on one of the two mainstream approach, i.e. either the multiplier approach or the value chain approach. Consequently, there is limited comparability of the empirical results due to the use of different methodological approach in the literature. Furthermore, it is also not clear on which criteria the used approach was selected. Our aim is to bring the attention to the difference in the scope of effects that are encompassed by the two most frequent methodological approaches to valuation of economic effects of cultural heritage on macroeconomic level, i.e. the multiplier approach and the value chain approach. We show that while the multiplier approach provides a systematic, theory-based view of economic impacts but requires more data and analysis, the value chain approach has less solid theoretical foundations and depends on the availability of appropriate data to identify the contribution of cultural heritage to other sectors. We conclude that the multiplier approach underestimates the economic impact of cultural heritage, mainly due to the narrow definition of cultural heritage in the statistical classification and the inability to identify part of the contribution of cultural heritage that is hidden in other sectors. Yet it is not possible to clearly determine whether the value chain method overestimates or underestimates the actual economic impact of cultural heritage since there is a risk that the direct effects are overestimated and double counted, but not all indirect and induced effects are considered. Accordingly, these two approaches are not substitutes but rather complementary. Consequently, a direct comparison of the estimated impacts is not possible and should not be done due to the different scope. To illustrate the difference of the impact assessment of the cultural heritage, we apply both approaches to the case of Slovenia in the 2015-2022 period and measure the economic impact of cultural heritage sector in terms of turnover, gross value added and employment. The empirical results clearly show that the estimation of the economic impact of a sector using the multiplier approach is more conservative, while the estimates based on value added capture a much broader range of impacts. According to the multiplier approach, each euro in cultural heritage sector generates an additional 0.14 euros in indirect effects and an additional 0.44 euros in induced effects. Based on the value-added approach, the indirect economic effect of the “narrow” heritage sectors is amplified by the impact of cultural heritage activities on other sectors. Accordingly, every euro of sales and every euro of gross value added in the cultural heritage sector generates approximately 6 euros of sales and 4 to 5 euros of value added in other sectors. In addition, each employee in the cultural heritage sector is linked to 4 to 5 jobs in other sectors.Keywords: economic value of cultural heritage, multiplier approach, value chain approach, indirect effects, slovenia
Procedia PDF Downloads 785605 Association Rules Mining Task Using Metaheuristics: Review
Authors: Abir Derouiche, Abdesslem Layeb
Abstract:
Association Rule Mining (ARM) is one of the most popular data mining tasks and it is widely used in various areas. The search for association rules is an NP-complete problem that is why metaheuristics have been widely used to solve it. The present paper presents the ARM as an optimization problem and surveys the proposed approaches in the literature based on metaheuristics.Keywords: Optimization, Metaheuristics, Data Mining, Association rules Mining
Procedia PDF Downloads 1625604 Application of Single Tuned Passive Filters in Distribution Networks at the Point of Common Coupling
Authors: M. Almutairi, S. Hadjiloucas
Abstract:
The harmonic distortion of voltage is important in relation to power quality due to the interaction between the large diffusion of non-linear and time-varying single-phase and three-phase loads with power supply systems. However, harmonic distortion levels can be reduced by improving the design of polluting loads or by applying arrangements and adding filters. The application of passive filters is an effective solution that can be used to achieve harmonic mitigation mainly because filters offer high efficiency, simplicity, and are economical. Additionally, possible different frequency response characteristics can work to achieve certain required harmonic filtering targets. With these ideas in mind, the objective of this paper is to determine what size single tuned passive filters work in distribution networks best, in order to economically limit violations caused at a given point of common coupling (PCC). This article suggests that a single tuned passive filter could be employed in typical industrial power systems. Furthermore, constrained optimization can be used to find the optimal sizing of the passive filter in order to reduce both harmonic voltage and harmonic currents in the power system to an acceptable level, and, thus, improve the load power factor. The optimization technique works to minimize voltage total harmonic distortions (VTHD) and current total harmonic distortions (ITHD), where maintaining a given power factor at a specified range is desired. According to the IEEE Standard 519, both indices are viewed as constraints for the optimal passive filter design problem. The performance of this technique will be discussed using numerical examples taken from previous publications.Keywords: harmonics, passive filter, power factor, power quality
Procedia PDF Downloads 3085603 A Theory and Empirical Analysis on the Efficency of Chinese Electricity Pricing
Authors: Jianlin Wang, Jiajia Zhao
Abstract:
This paper applies the theory and empirical method to examine the relationship between electricity price and coal price, as well as electricity and industry output, for China during Jan 1999-Dec 2012. Our results indicate that there is no any causality between coal price and electricity price under other factors are controlled. However, we found a bi-directional causality between electricity consumption and industry output. Overall, the electricity price set by China’s NDRC is inefficient, which lead to the electricity supply shortage after 2004. It is time to reform electricity price system for China’s reformers.Keywords: electricity price, coal price, power supply, China
Procedia PDF Downloads 4725602 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway
Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani
Abstract:
Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase
Procedia PDF Downloads 3715601 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling
Authors: Fahad Y. Al-dawish
Abstract:
The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing
Procedia PDF Downloads 4225600 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls
Authors: Ibrahim Aydogdu, Alper Akin
Abstract:
In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.Keywords: bio geography, meta-heuristic search, optimization, retaining wall
Procedia PDF Downloads 4015599 The Impact of Market Orientation on the Adoption of E-Marketing and Value Co-Creation
Authors: Shu-Hui Chuang, Shao-Chun Chiu, Shu-Hsin Chuang
Abstract:
While the marketing management literature is regarding the direct benefits of market orientation (MO) on firm value, the impact of such MO-based value co-creation remains largely an unexplored area of research. Thus, the primary objective of this study is to provide some new perspectives in examining how MO can enhance value co-creation for customers and sellers. In particular, drawing from the relational view of the firm and IT literature, we propose that the chain of MO-based co-creation of value and how adopt e-marketing systems between partners can facilitate this chain. Using data on use of the e-marketing system, we empirically validate that the sellers’ integrated MO is critical in increasing the e-marketing adoption, which in turn helps to creation co-creation value for both parties.Keywords: market orientation, value co-creation, e-marketing system, relational view of the firm
Procedia PDF Downloads 5285598 Design and Optimization of a Small Hydraulic Propeller Turbine
Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink
Abstract:
A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design
Procedia PDF Downloads 1505597 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity
Authors: Shivdayal Patel, Suhail Ahmad
Abstract:
Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling
Procedia PDF Downloads 2795596 Cylindrical Spacer Shape Optimization for Enhanced Inhalation Therapy
Authors: Shahab Azimi, Siamak Arzanpour, Anahita Sayyar
Abstract:
Asthma and Chronic obstructive pulmonary disease (COPD) are common lung diseases that have a significant global impact. Pressurized metered dose inhalers (pMDIs) are widely used for treatment, but they can have limitations such as high medication release speed resulting in drug deposition in the mouth or oral cavity and difficulty achieving proper synchronization with inhalation by users. Spacers are add-on devices that improve the efficiency of pMDIs by reducing the release speed and providing space for aerosol particle breakup to have finer and medically effective medication. The aim of this study is to optimize the size and cylindrical shape of spacers to enhance their drug delivery performance. The study was based on fluid dynamics theory and employed Ansys software for simulation and optimization. Results showed that optimization of the spacer's geometry greatly influenced its performance and improved drug delivery. This study provides a foundation for future research on enhancing the efficiency of inhalation therapy for lung diseases.Keywords: asthma, COPD, pressurized metered dose inhalers, spacers, CFD, shape optimization
Procedia PDF Downloads 995595 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level
Authors: Ahmad Rouhani
Abstract:
Iran has several potentials for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following, the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include the photovoltaic system, wind turbine, diesel generator, and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.Keywords: feasibility, hybrid energy system, Iran, renewable energy
Procedia PDF Downloads 4855594 Estimation of World Steel Production by Process
Authors: Reina Kawase
Abstract:
World GHG emissions should be reduced 50% by 2050 compared with 1990 level. CO2 emission reduction from steel sector, an energy-intensive sector, is essential. To estimate CO2 emission from steel sector in the world, estimation of steel production is required. The world steel production by process is estimated during the period of 2005-2050. The world is divided into aggregated 35 regions. For a steel making process, two kinds of processes are considered; basic oxygen furnace (BOF) and electric arc furnace (EAF). Steel production by process in each region is decided based on a current production capacity, supply-demand balance of steel and scrap, technology innovation of steel making, steel consumption projection, and goods trade. World steel production under moderate countermeasure scenario in 2050 increases by 1.3 times compared with that in 2012. When domestic scrap recycling is promoted, steel production in developed regions increases about 1.5 times. The share in developed regions changes from 34 %(2012) to about 40%(2050). This is because developed regions are main suppliers of scrap. 48-57% of world steel production is produced by EAF. Under the scenario which thinks much of supply-demand balance of steel, steel production in developing regions increases is 1.4 times and is larger than that in developed regions. The share in developing regions, however, is not so different from current level. The increase in steel production by EAF is the largest under the scenario in which supply-demand balance of steel is an important factor. The share reaches 65%.Keywords: global steel production, production distribution scenario, steel making process, supply-demand balance
Procedia PDF Downloads 4525593 Structural Optimization of Shell and Arched Structures
Authors: Mitchell Gohnert, Ryan Bradley
Abstract:
This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.Keywords: arches, economy of stresses, material strength, optimization, shells
Procedia PDF Downloads 118