Search results for: road network functionality
5184 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain
Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik
Abstract:
The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.Keywords: distribution strategy, mathematical model, network design, supply chain management
Procedia PDF Downloads 2965183 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 2215182 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling
Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa
Abstract:
The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.Keywords: flank wear, cutting forces, high speed milling, signal processing, neural network
Procedia PDF Downloads 3925181 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.Keywords: artificial neural network, cement, circular economy, concrete, by products
Procedia PDF Downloads 1125180 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink
Authors: Mohammad Arif Khan
Abstract:
This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network
Procedia PDF Downloads 4505179 Effect of Cement Amount on California Bearing Ratio Values of Different Soil
Authors: Ayse Pekrioglu Balkis, Sawash Mecid
Abstract:
Due to continued growth and rapid development of road construction in worldwide, road sub-layers consist of soil layers, therefore, identification and recognition of type of soil and soil behavior in different condition help to us to select soil according to specification and engineering characteristic, also if necessary sometimes stabilize the soil and treat undesirable properties of soils by adding materials such as bitumen, lime, cement, etc. If the soil beneath the road is not done according to the standards and construction will need more construction time. In this case, a large part of soil should be removed, transported and sometimes deposited. Then purchased sand and gravel is transported to the site and full depth filled and compacted. Stabilization by cement or other treats gives an opportunity to use the existing soil as a base material instead of removing it and purchasing and transporting better fill materials. Classification of soil according to AASHTOO system and USCS help engineers to anticipate soil behavior and select best treatment method. In this study soil classification and the relation between soil classification and stabilization method is discussed, cement stabilization with different percentages have been selected for soil treatment based on NCHRP. There are different parameters to define the strength of soil. In this study, CBR will be used to define the strength of soil. Cement by percentages, 0%, 3%, 7% and 10% added to soil for evaluation effect of added cement to CBR of treated soil. Implementation of stabilization process by different cement content help engineers to select an economic cement amount for the stabilization process according to project specification and characteristics. Stabilization process in optimum moisture content (OMC) and mixing rate effect on the strength of soil in the laboratory and field construction operation have been performed to see the improvement rate in strength and plasticity. Cement stabilization is quicker than a universal method such as removing and changing field soils. Cement addition increases CBR values of different soil types by the range of 22-69%.Keywords: California Bearing Ratio, cement stabilization, clayey soil, mechanical properties
Procedia PDF Downloads 3945178 An Efficient Proxy Signature Scheme Over a Secure Communications Network
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Proxy signature scheme permits an original signer to delegate his/her signing capability to a proxy signer, and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on the discrete logarithm problem.Keywords: proxy signature, warrant partial delegation, key agreement, discrete logarithm
Procedia PDF Downloads 3435177 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 885176 Spatial Transformation of Heritage Area as The Impact of Tourism Activity (Case Study: Kauman Village, Surakarta City, Central Java, Indonesia
Authors: Nafiah Solikhah Thoha
Abstract:
One area that has spatial character as Heritage area is Kauman Villages. Kauman village in The City of Surakarta, Central Java, Indonesia was formed in 1757 by Paku Buwono III as the King of Kasunanan kingdom (Mataram Kingdom) for Kasunanan kingdom courtiers and scholars of Madrasa. Spatial character of Kauman village influenced by Islamic planning and socio-cultural rules of Kasunanan Kingdom. As traditional settlements influenced by Islamic planning, the Grand Mosque is a binding part of the whole area. Circulation pattern forming network (labyrinth) with narrow streets that ended at the Grand Mosque. The outdoor space can be used for circulation. Social activity is dominated by step movement from one place to a different place. Stalemate (the fina/cul de sac) generally only passable on foot, bicycles, and motorcycles. While the pass (main and branch) can be traversed by motor, vehicles. Kauman village has an area that can not be used as a public road that penetrates and serves as a liaison between the outside world to the other. Hierarchy of hall in Kauman village shows that the existence of a space is getting into more important. Firstly, woman in Kauman make the handmade batik for themself. In 2005 many people improving batik tradisional into commercial, and developed program named "Batik Tourism village of Kauman". That program affects the spatial transformations. This study aimed to explore the influence of tourism program towards spatial transformations. The factors that studied are the organization of space, circulation patterns, hierarchical space, and orientation through the descriptive-evaluation approach methods. Based on the study, tourism activity engenders transformations on the spatial scale (macro), residential block (mezo), homes (micro). First, the Grand Mosque and madrasa (religious school) as a binding zoning; tangle of roads as forming the structure of the area developed as a liaison with outside Kauman; organization of space in the residential of batik entrepreneurs firstly just a residential, then develop into residential, factory of batik including showroom. Second, the circulation pattern forming network (labyrinth) and ends at the Grand Mosque. Third, the hierarchy in the form of public space (the shari), semi-public, and private (the fina/culdesac) is no longer to provide protection to women, only as hierarchy of circulation path. Fourth, cluster building orientation does not follow the kiblat direction or axis oriented to cosmos, but influence by the new function as the showroom. It was need the direction of the main road. Kauman grow as an appropriate area for the community. During its development, the settlement function changes according to community activities, especially economic activities. The new function areas as tourism area affect spatial pattern of Kauman village. Spatial existence and activity as a local wisdom that has been done for generations have meaning of holistic, encompassing socio-cultural sustainability, economics, and the heritage area. By reviewing the local wisdom and the way of life of that society, we can learn how to apply the culture as education for sustainable of heritage area.Keywords: impact of tourism, Kauman village, spatial transformation, sustainable of heritage area
Procedia PDF Downloads 4305175 Simulation of Forest Fire Using Wireless Sensor Network
Authors: Mohammad F. Fauzi, Nurul H. Shahba M. Shahrun, Nurul W. Hamzah, Mohd Noah A. Rahman, Afzaal H. Seyal
Abstract:
In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil.Keywords: forest fire monitor, humidity, wind direction, wireless sensor network
Procedia PDF Downloads 4515174 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation
Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou
Abstract:
The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.Keywords: acceleration, comfort, motorcycle, safety, skew superelevation
Procedia PDF Downloads 1515173 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis
Authors: Gon Park
Abstract:
Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.Keywords: cadastral data, green Infrastructure, network analysis, parcel data
Procedia PDF Downloads 2045172 Life Cycle Analysis (LCA) for Transportation of Cross-Laminated Timber (CLT) Panels Comparing Two Origin Points of Supply
Authors: Mahboobeh Hemmati, Tahar Messadi, Hongmei Gu
Abstract:
This overall research is targeted at the assessment of the new CLT-built Adohi Hall residential building located on the campus of the University of Arkansas in Fayetteville, Arkansas. The purpose of the Life Cycle Assessment (LCA) study is to analyze the environmental impacts resulting from the transportation route of the Austrian imported CLT to the construction site with those of the CLT assumed to be originating from Conway, Arkansas. The Global Warming Potential (GWP) of CLT from Europe (Styria-Graz in Austria) to the site was first investigated. The results were then compared with the GWP of the CLT produced in Conway, Arkansas. The impacts of each scenario, using the Ecoinvent database, are then calculated and compared against each other to find the most environmentally efficient scenario in terms of global warming impacts. The quantification of GWP is associated with different transportation systems, water, road, and rail. Obtained through comparison, the findings reveal that the use of local materials is more efficient. In addition, transportation by water produces less Greenhouse Gas (GHG) emission in comparison to freight transportation by rail and road. Thus, besides the travel distance, the utilized transportation system is still a significant factor and should be seriously considered in making decisions for moving materials.Keywords: comparative analysis, GWP, LCA, transportation
Procedia PDF Downloads 2405171 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach
Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi
Abstract:
Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.
Procedia PDF Downloads 715170 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 1475169 Analyzing Transit Network Design versus Urban Dispersion
Authors: Hugo Badia
Abstract:
This research answers which is the most suitable transit network structure to serve specific demand requirements in an increasing urban dispersion process. Two main approaches of network design are found in the literature. On the one hand, a traditional answer, widespread in our cities, that develops a high number of lines to connect most of origin-destination pairs by direct trips; an approach based on the idea that users averse to transfers. On the other hand, some authors advocate an alternative design characterized by simple networks where transfer is essential to complete most of trips. To answer which of them is the best option, we use a two-step methodology. First, by means of an analytical model, three basic network structures are compared: a radial scheme, starting point for the other two structures, a direct trip-based network, and a transfer-based one, which represent the two alternative transit network designs. The model optimizes the network configuration with regard to the total cost for each structure. For a scenario of dispersion, the best alternative is the structure with the minimum cost. This dispersion degree is defined in a simple way considering that only a central area attracts all trips. If this area is small, we have a high concentrated mobility pattern; if this area is too large, the city is highly decentralized. In this first step, we can determine the area of applicability for each structure in function to that urban dispersion degree. The analytical results show that a radial structure is suitable when the demand is so centralized, however, when this demand starts to scatter, new transit lines should be implemented to avoid transfers. If the urban dispersion advances, the introduction of more lines is no longer a good alternative, in this case, the best solution is a change of structure, from direct trips to a network based on transfers. The area of applicability of each network strategy is not constant, it depends on the characteristics of demand, city and transport technology. In the second step, we translate analytical results to a real case study by the relationship between the parameters of dispersion of the model and direct measures of dispersion in a real city. Two dimensions of the urban sprawl process are considered: concentration, defined by Gini coefficient, and centralization by area based centralization index. Once it is estimated the real dispersion degree, we are able to identify in which area of applicability the city is located. In summary, from a strategic point of view, we can obtain with this methodology which is the best network design approach for a city, comparing the theoretical results with the real dispersion degree.Keywords: analytical network design model, network structure, public transport, urban dispersion
Procedia PDF Downloads 2305168 A Global Organizational Theory for the 21st Century
Authors: Troy A. Tyre
Abstract:
Organizational behavior and organizational change are elements of the ever-changing global business environment. Leadership and organizational behavior are 21st century disciplines. Network marketing organizations need to understand the ever-changing nature of global business and be ready and willing to adapt to the environment. Network marketing organizations have a challenge keeping up with a rapid escalation in global growth. Network marketing growth has been steady and global. Network marketing organizations have been slow to develop a 21st century global strategy to manage the rapid escalation of growth degrading organizational behavior, job satisfaction, increasing attrition, and degrading customer service. Development of an organizational behavior and leadership theory for the 21st century to help network marketing develops a global business strategy to manage the rapid escalation in growth that affects organizational behavior. Managing growth means organizational leadership must develop and adapt to the organizational environment. Growth comes with an open mind and one’s departure from the comfort zone. Leadership growth operates in the tacit dimension. Systems thinking and adaptation of mental models can help shift organizational behavior. Shifting the organizational behavior requires organizational learning. Organizational learning occurs through single-loop, double-loop, and triple-loop learning. Triple-loop learning is the most difficult, but the most rewarding. Tools such as theory U can aid in developing a landscape for organizational behavioral development. Additionally, awareness to espoused and portrayed actions is imperatives. Theories of motivation, cross-cultural diversity, and communications are instrumental in founding an organizational behavior suited for the 21st century.Keywords: global, leadership, network marketing, organizational behavior
Procedia PDF Downloads 5525167 Analysis of the Accuracy of Earth Movement with Drone Surveys
Authors: Raúl Pereda García, Julio Manuel de Luis Ruiz, Elena Castillo López, Rubén Pérez Álvarez, Felipe Piña García
Abstract:
New technologies for the capture of point clouds have experienced a great advance in recent years. In this way, its use has been extended in geomatics, providing measurement solutions that have been popularized without there being, many times, a detailed study of its accuracy. This research focuses on the study of the viability of topographic works with drones incorporating different sensors sensitive to the visible spectrum. The fundamentals have been applied to a road, located in Cantabria (Spain), where a platform extension and the reform of a riprap were being constructed. A total of six flights were made during two months, all of them with GPS as part of the photogrammetric process, and the results were contrasted with those measured with total station. The obtained results show that the choice of the camera and the planning of the flight have an important impact on the accuracy. In fact, the representations with a level of detail corresponding to 1/1000 scale are admissible, depending on the existing vegetation, and obtaining better results in the area of the riprap. This set of techniques is, therefore, suitable for the control of earthworks in road works but with certain limitations which are exposed in this paper.Keywords: drone, earth movement control, global position system, surveying technology.
Procedia PDF Downloads 1835166 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network
Authors: Hossain A., Chowdhury S. I.
Abstract:
Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera
Procedia PDF Downloads 1025165 Migratory Trajectory of Transnational Street Beggars in South Western, Nigeria
Authors: Usman Adekunle Ojedokun, Adeyinka Abideen Aderinto
Abstract:
Migration remains an important course of action often resort-to by human and some other classes of animal for survival in the face of life-threatening conditions. However, the activity of certain group of immigrants, who are exploiting the socio-economic and environmental challenges in their home countries to conduct street begging across different countries in Africa, is fast becoming a major cause for concern. This paper examined the migratory trajectory of transnational street beggars in South Western, Nigeria. Strain and Migration Network Theories were adopted for the study. The methods of data collection were survey questionnaire, in-depth interview, and key informant interview. Convenience and purposive sampling techniques were employed for the selection of 395 transnational street beggars and 4 key informants were purposively chosen. Findings revealed that transnational street beggars immigrated into Nigeria all year round and all of them came by road. Also, while some of them entered the country officially, others gained entry illegally. The majority (29.3%) arrived through Sokoto, a border State to some neighbouring countries. This study calls for more security measures at the Nigerian borders as a way of controlling the influx of this category of beggars into the country.Keywords: transnational street beggars, street begging, migration, Nigeria
Procedia PDF Downloads 2595164 Scientific Development as Diffusion on a Social Network: An Empirical Case Study
Authors: Anna Keuchenius
Abstract:
Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.Keywords: diffusion of innovations, network analysis, scientific development, sociology of science
Procedia PDF Downloads 3035163 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach
Authors: Arbnor Pajaziti, Hasan Cana
Abstract:
In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.Keywords: robotic arm, neural network, genetic algorithm, optimization
Procedia PDF Downloads 5225162 Research on the Evaluation and Delineation of Value Units of New Industrial Parks Based on Implementation-Orientation
Authors: Chengfang Wang, Zichao Wu, Jianying Zhou
Abstract:
At present, much attention is paid to the development of new industrial parks in the era of inventory planning. Generally speaking, there are two types of development models: incremental development models and stock development models. The former relies on key projects to build a value innovation park, and the latter relies on the iterative update of the park to build a value innovation park. Take the Baiyun Western Digital Park as an example, considering the growth model of value units, determine the evaluation target. Based on a GIS platform, comprehensive land-use status, regulatory detailed planning, land use planning, blue-green ecological base, rail transit system, road network system, industrial park distribution, public service facilities, and other factors are used to carry out the land use within the planning multi-factor superimposed comprehensive evaluation, constructing a value unit evaluation system, and delineating value units based on implementation orientation and combining two different development models. The research hopes to provide a reference for the planning and construction of new domestic industrial parks.Keywords: value units, GIS, multi-factor evaluation, implementation orientation
Procedia PDF Downloads 1885161 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network
Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar
Abstract:
In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.Keywords: DSEP, fuzzy logic, energy model, WSN
Procedia PDF Downloads 2065160 Delhi Metro: A Race towards Zero Emission
Authors: Pramit Garg, Vikas Kumar
Abstract:
In December 2015, all the members of the United Nations Framework Convention on Climate Change (UNFCCC) unanimously adopted the historic Paris Agreement. As per the convention, 197 countries have followed the guidelines of the agreement and have agreed to reduce the use of fossil fuels and also reduce the carbon emission to reach net carbon neutrality by 2050 and reduce the global temperature by 2°C by the year 2100. Globally, transport accounts for 23% of the energy-related CO2 that feeds global warming. Decarbonization of the transport sector is an essential step towards achieving India’s nationally determined contributions and net zero emissions by 2050. Metro rail systems are playing a vital role in the decarbonization of the transport sector as they create metro cities for the “21st-century world” that could ensure “mobility, connectivity, productivity, safety and sustainability” for the populace. Metro rail was introduced in Delhi in 2002 to decarbonize Delhi-National Capital Region and to provide a sustainable mode of public transportation. Metro Rail Projects significantly contribute to pollution reduction and are thus a prerequisite for sustainable development. The Delhi Metro is the 1ˢᵗ metro system in the world to earn carbon credits from Clean Development Mechanism (CDM) projects registered under United Nations Framework Convention on Climate Change. A good Metro Project with reasonable network coverage attracts a modal shift from various private modes and hence fewer vehicles on the road, thus restraining the pollution at the source. The absence of Greenhouse Gas emissions from the vehicle of modal shift passengers and lower emissions due to decongested roads contribute to the reduction in Green House Gas emissions and hence overall reduction in atmospheric pollution. The reduction in emission during the horizon year 2002 to 2019 has been estimated using emission standards and deterioration factor(s) for different categories of vehicles. Presently, our results indicate that the Delhi Metro system has reduced approximately 17.3% of motorized trips by road resulting in an emission reduction significantly. Overall, Delhi Metro, with an immediate catchment area of 17% of the National Capital Territory of Delhi (NCTD), is helping today to reduce 387 tonnes of emissions per day and 141.2 ktonnes of emissions yearly. The findings indicate that the Metro rail system is driving cities towards a more livable environment.Keywords: Delhi metro, GHG emission, sustainable public transport, urban transport
Procedia PDF Downloads 1245159 Effects of Cannabis and Cocaine on Driving Related Tasks of Perception, Cognition, and Action
Authors: Michelle V. Tomczak, Reyhaneh Bakhtiari, Aaron Granley, Anthony Singhal
Abstract:
Objective: Cannabis and cocaine are associated with a range of mental and physical effects that can impair aspects of human behavior. Driving is a complex cognitive behavior that is an essential part of everyday life and can be broken down into many subcomponents, each of which can uniquely impact road safety. With the growing movement of jurisdictions to legalize cannabis, there is an increased focus on impairment and driving. The purpose of this study was to identify driving-related cognitive-performance deficits that are impacted by recreational drug use. Design and Methods: With the assistance of law enforcement agencies, we recruited over 300 participants under the influence of various drugs including cannabis and cocaine. These individuals performed a battery of computer-based tasks scientifically proven to be re-lated to on-road driving performance and designed to test response-speed, memory processes, perceptual-motor skills, and decision making. Data from a control group with healthy non-drug using adults was collected as well. Results: Compared to controls, the drug group showed def-icits in all tasks. The data also showed clear differences between the cannabis and cocaine groups where cannabis users were faster, and performed better on some aspects of the decision-making and perceptual-motor tasks. Memory performance was better in the cocaine group for simple tasks but not more complex tasks. Finally, the participants who consumed both drugs performed most similarly to the cannabis group. Conclusions: Our results show distinct and combined effects of cannabis and cocaine on human performance relating to driving. These dif-ferential effects are likely related to the unique effects of each drug on the human brain and how they distinctly contribute to mental states. Our results have important implications for road safety associated with driver impairment.Keywords: driving, cognitive impairment, recreational drug use, cannabis and cocaine
Procedia PDF Downloads 1255158 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10
Procedia PDF Downloads 2295157 Achieving Product Robustness through Variation Simulation: An Industrial Case Study
Authors: Narendra Akhadkar, Philippe Delcambre
Abstract:
In power protection and control products, assembly process variations due to the individual parts manufactured from single or multi-cavity tooling is a major problem. The dimensional and geometrical variations on the individual parts, in the form of manufacturing tolerances and assembly tolerances, are sources of clearance in the kinematic joints, polarization effect in the joints, and tolerance stack-up. All these variations adversely affect the quality of product, functionality, cost, and time-to-market. Variation simulation analysis may be used in the early product design stage to predict such uncertainties. Usually, variations exist in both manufacturing processes and materials. In the tolerance analysis, the effect of the dimensional and geometrical variations of the individual parts on the functional characteristics (conditions) of the final assembled products are studied. A functional characteristic of the product may be affected by a set of interrelated dimensions (functional parameters) that usually form a geometrical closure in a 3D chain. In power protection and control products, the prerequisite is: when a fault occurs in the electrical network, the product must respond quickly to react and break the circuit to clear the fault. Usually, the response time is in milliseconds. Any failure in clearing the fault may result in severe damage to the equipment or network, and human safety is at stake. In this article, we have investigated two important functional characteristics that are associated with the robust performance of the product. It is demonstrated that the experimental data obtained at the Schneider Electric Laboratory prove the very good prediction capabilities of the variation simulation performed using CETOL (tolerance analysis software) in an industrial context. Especially, this study allows design engineers to better understand the critical parts in the product that needs to be manufactured with good, capable tolerances. On the contrary, some parts are not critical for the functional characteristics (conditions) of the product and may lead to some reduction of the manufacturing cost, ensuring robust performance. The capable tolerancing is one of the most important aspects in product and manufacturing process design. In the case of miniature circuit breaker (MCB), the product's quality and its robustness are mainly impacted by two aspects: (1) allocation of design tolerances between the components of a mechanical assembly and (2) manufacturing tolerances in the intermediate machining steps of component fabrication.Keywords: geometrical variation, product robustness, tolerance analysis, variation simulation
Procedia PDF Downloads 1635156 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology
Authors: Ugwu O. C., Mamah R. O., Awudu W. S.
Abstract:
This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.Keywords: beamforming algorithm, adaptive beamforming, simulink, reception
Procedia PDF Downloads 405155 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria
Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti
Abstract:
We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence
Procedia PDF Downloads 360