Search results for: optimum stratification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1900

Search results for: optimum stratification

850 Modelling Water Usage for Farming

Authors: Ozgu Turgut

Abstract:

Water scarcity is a problem for many regions which requires immediate action, and solutions cannot be postponed for a long time. It is known that farming consumes a significant portion of usable water. Although in recent years, the efforts to make the transition to dripping or spring watering systems instead of using surface watering started to pay off. It is also known that this transition is not necessarily translated into an increase in the capacity dedicated to other water consumption channels such as city water or power usage. In order to control and allocate the water resource more purposefully, new watering systems have to be used with monitoring abilities that can limit the usage capacity for each farm. In this study, a decision support model which relies on a bi-objective stochastic linear optimization is proposed, which takes crop yield and price volatility into account. The model generates annual planting plans as well as water usage limits for each farmer in the region while taking the total value (i.e., profit) of the overall harvest. The mathematical model is solved using the L-shaped method optimally. The decision support model can be especially useful for regional administrations to plan next year's planting and water incomes and expenses. That is why not only a single optimum but also a set of representative solutions from the Pareto set is generated with the proposed approach.

Keywords: decision support, farming, water, tactical planning, optimization, stochastic, pareto

Procedia PDF Downloads 68
849 Optimization of Turbocharged Diesel Engines

Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz

Abstract:

The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC(Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP(Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital®madules in concepts NREC® respectively.

Keywords: turbocharger, wastegate, diesel engine, concept NREC programs

Procedia PDF Downloads 240
848 Characteristics of Oak Mushroom Cultivar, Bambithyang Developed by Golden Seed Project

Authors: Yeongseon Jang, Rhim Ryoo, Young-Ae Park, Kang-Hyeon Ka, Donha Choi, Sung-Suk Lee

Abstract:

Lentinula edodes (Berk.) Pegler, oak mushroom, is one of the most largely produced mushrooms in the world. To increase the competitiveness of Korean oak mushroom, golden seed project is ongoing. In this project, we develop new oak mushroom varieties to increase its productivity, quality, disease resistance, and so on. Through the project, new oak mushroom cultivar, Bambithyang was developed by mono-mono hybridization method. The optimum temperature for mycelial growth was at 25°C on potato dextrose agar (PDA) media. For the mass production test, it was cultivated using sawdust media with sawdust block type for 100 days. The temperature for primordia formation and fruit body production was broad (between 11°C and 20°C) which is good for spring and fall. Each flush period lasted for 6-7 days and the highest fruit body production was recorded in the first flush. The fruiting is sporadic. The pileus was deep brown. Its diameter was 69.2 mm and width was 17.8 mm. The stipe was ivory. It was 14.7 mm thick and 54.7 mm long. We would continue to develop new varieties while increasing the market share of domestic spawn with this variety.

Keywords: Lentinula edodes, mono-mono hybridization, new cultivar, oak mushroom

Procedia PDF Downloads 344
847 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure

Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong

Abstract:

Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.

Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community

Procedia PDF Downloads 410
846 Effect of Nitrogen Source on Production of CMCase by Bacillus megaterium 1295S Isolated from Sewage Treatment Plants

Authors: Adel A. S. Al-Gheethi, M. O. Abdul-Monem

Abstract:

Cellulase-producing bacteria were isolated from wastewater and sludge, and identified as Bacillus megaterium 1295S, Sporosarcina pasteurii 586S, Bacillus subtilis 117S, Burkholderia cepacia 120S and Staphylococcus xylosus 222W. Among bacteria, B. megaterium 1295S was the best cellulase producer under the catabolic repression and was therefore selected to study the factors affecting cellulase production. The optimum conditions for cellulase production were observed in CMC-Yeast Extract (CYE) agar medium (pH 6.5) inoculated with 0.4 mL of bacterial culture and incubated at 45˚C for 72 h. Twenty amino acids were introduced into the production medium as nitrogen source to investigate the production of cellulase in presence of amino acids in comparison to peptone (as an organic source) and sodium nitrate (as an inorganic source). The results found that the maximum production of cellulase was recorded at 50 ppm when L-hydroxy proline, L-arginine, glycine, L-histidine, L-leucine, DL-isoleucine, DL-β-phenylalanine were used as sole nitrogen sources and at 100 ppm when DL-threonine, L-ornithine 12.29, L-proline were used as sole nitrogen sources. The highest biomass yield was found when glycine 5 ppm and DL-serine 100 ppm used as a nitrogen source.

Keywords: CMCase, Bacillus megaterium 1295S, factors, amino acids

Procedia PDF Downloads 444
845 An Integrated Approach for Optimizing Drillable Parameters to Increase Drilling Performance: A Real Field Case Study

Authors: Hamidoddin Yousife

Abstract:

Drilling optimization requires a prediction of drilling rate of penetration (ROP) since it provides a significant reduction in drilling costs. There are several factors that can have an impact on the ROP, both controllable and uncontrollable. Numerous drilling penetration rate models have been considered based on drilling parameters. This papers considered the effect of proper drilling parameter selection such as bit, Mud Type, applied weight on bit (WOB), Revolution per minutes (RPM), and flow rate on drilling optimization and drilling cost reduction. A predicted analysis is used in real-time drilling performance to determine the optimal drilling operation. As a result of these modeling studies, the real data collected from three directional wells at Azadegan oil fields, Iran, was verified and adjusted to determine the drillability of a specific formation. Simulation results and actual drilling results show significant improvements in inaccuracy. Once simulations had been validated, optimum drilling parameters and equipment specifications were determined by varying weight on bit (WOB), rotary speed (RPM), hydraulics (hydraulic pressure), and bit specification for each well until the highest drilling rate was achieved. To evaluate the potential operational and economic benefits of optimizing results, a qualitative and quantitative analysis of the data was performed.

Keywords: drlling, cost, optimization, parameters

Procedia PDF Downloads 164
844 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry

Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim

Abstract:

An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.

Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant

Procedia PDF Downloads 305
843 Electrospun Nanofibrous Scaffolds Modified with Collagen-I and Fibronectin with LX-2 Cells to Study Liver Fibrosis in vitro

Authors: Prativa Das, Lay Poh Tan

Abstract:

Three-dimensional microenvironment is a need to study the event cascades of liver fibrosis in vitro. Electrospun nanofibers modified with essential extracellular matrix proteins can closely mimic the random fibrous structure of native liver extracellular matrix (ECM). In this study, we fabricate a series of 3D electrospun scaffolds by wet electrospinning process modified with different ratios of collagen-I to fibronectin to achieve optimized distribution of these two ECM proteins on the fiber surface. A ratio of 3:1 of collagen-I to fibronectin was found to be optimum for surface modification of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers by chemisorption process. In 3:1 collagen-I to fibronectin modified scaffolds the total protein content increased by ~2 fold compared to collagen-I modified and ~1.5 fold compared to 1:1/9:1 collagen-I to fibronectin modified scaffolds. We have cultured LX-2 cells on this scaffold over 14 days and found that LX-2 cells acquired more quiescent phenotype throughout the culture period and shown significantly lower expression of alpha smooth muscle actin and collagen-I. Thus, this system can be used as a model to study liver fibrosis by using different fibrogenic mediators in vitro.

Keywords: electrospinning, collagen-I and fibronectin, surface modification of fiber, LX-2 cells, liver fibrosis

Procedia PDF Downloads 123
842 In-situ Oxygen Enrichment for UCG

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane.

Keywords: membranes, oxygen-enrichment, gasification, coal

Procedia PDF Downloads 316
841 Evaluation of Hollocelulase Production for Lignocellulosic Biomass Degradation by Penicillium polonicum

Authors: H. M. Takematsu, B. R. De Camargo, E. F. Noronha

Abstract:

The use of hydrolyzing enzymes for degradation of lignocellulosic biomass is of great concern for the production of second generation ethanol. Although many hollocelulases have already been described in the literature, much more has to be discovered. Therefore, the aim of this study to evaluate hollocelulase production of P. polonicum grown in liquid media containing sugarcane bagasse as the carbon source. From a collection of twenty fungi isolated from Cerrado biome soil, P. polonicum was molecular identified by sequencing of ITS4, βtubulin and Calmodulin genes, and has been chosen to be further investigated regarding its potential production of hydrolyzing enzymes. Spore suspension (1x10-6 ml-1) solution was inoculated in sterilized minimal liquid medium containing 0,5%(w/v) of non-pretreated sugarcane bagasse as the carbon source, and incubated in shaker incubator at 28°C and 120 rpm. The supernatant obtained, was subjected to enzymatic assays to analyze xylanase, mannanase, pectinase and endoglucanase activities. Xylanase activity showed better results (67,36 UI/mg). Xylanases bands were indicated by zymogram and SDS-PAGE, and one of them was partially purified and characterized. It showed maximum activity at 50 °C, was thermostable for 72h at 40°C, and pH5.0 was the optimum observed. This study presents P. polonicum as an interesting source of hollocelulases, especially xylanase, for lignocellulose bio-conversion processes with commercial use.

Keywords: sugarcane bagasse, Cerrado biome , hollocelulase, lignocellulosic biomass

Procedia PDF Downloads 286
840 Heuristic Search Algorithm (HSA) for Enhancing the Lifetime of Wireless Sensor Networks

Authors: Tripatjot S. Panag, J. S. Dhillon

Abstract:

The lifetime of a wireless sensor network can be effectively increased by using scheduling operations. Once the sensors are randomly deployed, the task at hand is to find the largest number of disjoint sets of sensors such that every sensor set provides complete coverage of the target area. At any instant, only one of these disjoint sets is switched on, while all other are switched off. This paper proposes a heuristic search method to find the maximum number of disjoint sets that completely cover the region. A population of randomly initialized members is made to explore the solution space. A set of heuristics has been applied to guide the members to a possible solution in their neighborhood. The heuristics escalate the convergence of the algorithm. The best solution explored by the population is recorded and is continuously updated. The proposed algorithm has been tested for applications which require sensing of multiple target points, referred to as point coverage applications. Results show that the proposed algorithm outclasses the existing algorithms. It always finds the optimum solution, and that too by making fewer number of fitness function evaluations than the existing approaches.

Keywords: coverage, disjoint sets, heuristic, lifetime, scheduling, Wireless sensor networks, WSN

Procedia PDF Downloads 451
839 An Analysis of the Five Most Used Numerals and a Proposal for the Adoption of a Universally Acceptable Numeral (UAN)

Authors: Mufutau Ayinla Abdul-Yakeen

Abstract:

An analysis of the five most used numerals and a proposal for the adoption of a Universally Acceptable Numerals (UAN), came up as a result of the researchers inquisitiveses of the need for a set of numerals that is universally accepted. The researcher sought for the meaning of the first letter, “Nun”, “ن”, of the first verse of Suratul-Kalam (Chapter of the Pen), the Sixty-Eighth Chapter of the Holy Qur'an. It was observed that there was no universally accepted, economical, explainable, linkable and consistent set of numerals used by all scientists up till the moment of making this enquiry. As a theoretical paper, explanatory method is used to review five of the most used numerals (Tally Marks, Roman Figure, Hindu-Arabic, Arabic, and Chinese) and the urgent need for a universally accepted, economical, explainable, linkable and consistent set of numerals arises. The study discovers: ., I, \, _, L, U, =, C, O, 9, and 1.; to be used as numeral 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 respectively; as a set of universally acceptable, economical, explainable, linkable, sustainable, convertible and consistent set of numerals that originates from Islam. They can be called Islameconumerals or UAN. With UAN, everything dropped, written, drawn and/or scribbled has meaning(s) as postulated by the first verse of Qur'an 68 and everyone can easily document all figures within the shortest period. It is suggested that there should be a discipline called Numeralnomics (Study of optimum utilization of Numerals) and everybody should start using the UAN, now, in order in know their strengths and weaknesses so as to suggest a better and acceptable set of numerals for the interested readers. Similarly study can be conducted for the alphabets.

Keywords: acceptable, economical, explainable, Islameconumerals, numeralnomics

Procedia PDF Downloads 317
838 A Customize Battery Management Approach for Satellite

Authors: Muhammad Affan, Muhammad Ilyas Raza, Muhammad Harris Hashmi

Abstract:

This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design.

Keywords: satellite, battery module, passive balancing, dissipative

Procedia PDF Downloads 133
837 Behavior of Reinforced Soil by Polypropylene Fibers

Authors: M. Kamal Elbokl

Abstract:

The beneficial effects of reinforcing the subgrade soil in pavement system with randomly distributed polypropylene fibers were investigated. For this issue, two types of soils and one type of fiber were selected. Proctor, CBR and unconfined compression tests were conducted on unreinforced samples as well as reinforced ones at different concentrations and aspect ratio of fibers. OMC, CBR and modulus of elasticity were investigated and thereby, the optimum value of aspect ratio and fiber content were determined. The static and repeated triaxial tests were also conducted to study the behaviour of fiber reinforced soils under both static and repeated loading. The results indicated that CBR values of reinforced sand and clay were 3.1 and 4.2 times of their unreinforced values respectively. The modulus of elasticity of fiber reinforced soils has increased by 100% for silty sandy soil and 60.20% for silty clay soil due to fiber reinforcement. The reinforced soils exhibited higher failure stresses in the static triaxial tests than the unreinforced ones due to the apparent bond developed between soil particle and the fiber. Fiber reinforcement of subgrade soils can play an important role in control the rut formation in the pavement system.

Keywords: polypropylene fibers, CBR, static triaxial, cyclic triaxial, resilient strain, permanent strain

Procedia PDF Downloads 617
836 Impact of Corn Gluten Hydrolysate on Seedling Growth

Authors: Jyotika Chopra, Dinesh Goyal

Abstract:

A study was initiated to examine the effects of corn gluten hydrolysate on seedlings growth and its development. Corn gluten is the byproduct of starch industry rich in proteins was hydrolysed by acid and alkali, and the impact of hydrolysate was studied on seed germination of Vigna radiata, Phaseolus vulagris (Fabaceae) and Triticum aestivum and Oryza sativa (Gramineae). For this, the optimum hydrolysis was obtained by 4NHCl and 4M NaOH where insoluble protein in gluten was broken down to glutamic acid, alanine, aspartic acid which was initially confirmed by biuret test, xanthoproteic, solubility and chromatographic tests. The seeds of above families were separately treated with different dilutions of corn gluten hydrolysate ranging from 1-100% to see effects produced by these dilutions on seed germination, plumule, and radical growth. The seedlings were put in the Petri plates and placed in the optimized conditions of temperature (37˚C) and photoperiod of 16:8 hours. The results indicate the plumule of all seeds shows the increase in growth pattern up to 25.75%. Whereas radical shows the increase in growth up to 25.88% till 10% of dilution of corn and wheat gluten hydrolysate with respect to water as blank. Further, there is decrease in growth from 30- 100% of dilutions of both, the hydrolysate indicates the inhibitory effects which unveil about the careful usage of gluten hydrolysate.

Keywords: corn gluten, characterization, hydrolysis, seedling growth

Procedia PDF Downloads 109
835 Incorporating Priority Round-Robin Scheduler to Sustain Indefinite Blocking Issue and Prioritized Processes in Operating System

Authors: Heng Chia Ying, Charmaine Tan Chai Nie, Burra Venkata Durga Kumar

Abstract:

Process scheduling is the method of process management that determines which process the CPU will proceed with for the next task and how long it takes. Some issues were found in process management, particularly for Priority Scheduling (PS) and Round Robin Scheduling (RR). The proposed recommendations made for IPRRS are to combine the strengths of both into a combining algorithm while they draw on others to compensate for each weakness. A significant improvement on the combining technique of scheduler, Incorporating Priority Round-Robin Scheduler (IPRRS) address an algorithm for both high and low priority task to sustain the indefinite blocking issue faced in the priority scheduling algorithm and minimize the average turnaround time (ATT) and average waiting time (AWT) in RR scheduling algorithm. This paper will delve into the simple rules introduced by IPRRS and enhancements that both PS and RR bring to the execution of processes in the operating system. Furthermore, it incorporates the best aspects of each algorithm to build the optimum algorithm for a certain case in terms of prioritized processes, ATT, and AWT.

Keywords: round Robin scheduling, priority scheduling, indefinite blocking, process management, sustain, turnaround time

Procedia PDF Downloads 138
834 Identification of Cellulose-Hydrolytic Thermophiles Isolated from Sg. Klah Hot Spring Based on 16S rDNA Gene Sequence

Authors: M. J. Norashirene, Y. Zakiah, S. Nurdiana, I. Nur Hilwani, M. H. Siti Khairiyah, M. J. Muhamad Arif

Abstract:

In this study, six bacterial isolates of a slightly thermophilic organism from the Sg. Klah hot spring, Malaysia were successfully isolated and designated as M7T55D1, M7T55D2, M7T55D3, M7T53D1, M7T53D2 and M7T53D3 respectively. The bacterial isolates were screened for their cellulose hydrolytic ability on Carboxymethlycellulose agar medium. The isolated bacterial strains were identified morphologically, biochemically and molecularly with the aid of 16S rDNA sequencing. All of the bacteria showed their optimum growth at a slightly alkaline pH of 7.5 with a temperature of 55°C. All strains were Gram-negative, non-spore forming type, strictly aerobic, catalase-positive and oxidase-positive with the ability to produce thermostable cellulase. Based on BLASTn results, bacterial isolates of M7T55D2 and M7T53D1 gave the highest homology (97%) with similarity to Tepidimonas ignava while isolates M7T55D1, M7T55D3, M7T53D2 and M7T53D3 showed their closest homology (97%-98%) with Tepidimonas thermarum. These cellulolytic thermophiles might have a commercial potential to produce valuable thermostable cellulase.

Keywords: cellulase, cellulolytic, thermophiles, 16S rDNA gene

Procedia PDF Downloads 342
833 Nilsson Model Performance in Estimating Bed Load Sediment, Case Study: Tale Zang Station

Authors: Nader Parsazadeh

Abstract:

The variety of bed sediment load relationships, insufficient information and data, and the influence of river conditions make the selection of an optimum relationship for a given river extremely difficult. Hence, in order to select the best formulae, the bed load equations should be evaluated. The affecting factors need to be scrutinized, and equations should be verified. Also, re-evaluation may be needed. In this research, sediment bed load of Dez Dam at Tal-e Zang Station has been studied. After reviewing the available references, the most common formulae were selected that included Meir-Peter and Muller, using MS Excel to compute and evaluate data. Then, 52 series of already measured data at the station were re-measured, and the sediment bed load was determined. 1. The calculated bed load obtained by different equations showed a great difference with that of measured data. 2. r difference ratio from 0.5 to 2.00 was 0% for all equations except for Nilsson and Shields equations while it was 61.5 and 59.6% for Nilsson and Shields equations, respectively. 3. By reviewing results and discarding probably erroneous measured data measurements (by human or machine), one may use Nilsson Equation due to its r value higher than 1 as an effective equation for estimating bed load at Tal-e Zang Station in order to predict activities that depend upon bed sediment load estimate to be determined. Also, since only few studies have been conducted so far, these results may be of assistance to the operators and consulting companies.

Keywords: bed load, empirical relation ship, sediment, Tale Zang Station

Procedia PDF Downloads 358
832 Correlation Mapping for Measuring Platelet Adhesion

Authors: Eunseop Yeom

Abstract:

Platelets can be activated by the surrounding blood flows where a blood vessel is narrowed as a result of atherosclerosis. Numerous studies have been conducted to identify the relation between platelets activation and thrombus formation. To measure platelet adhesion, this study proposes an image analysis technique. Blood samples are delivered in the microfluidic channel, and then platelets are activated by a stenotic micro-channel with 90% severity. By applying proposed correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) was estimated without labeling platelets. In order to evaluate the performance of correlation mapping on the detection of platelet adhesion, the effect of tile size was investigated by calculating 2D correlation coefficients with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient is observed with the optimum tile size of 5×5 pixels. As the area of the platelet adhesion increases, the platelets plug the channel and there is only a small amount of blood flows. This image analysis could provide new insights for better understanding of the interactions between platelet aggregation and blood flows in various physiological conditions.

Keywords: platelet activation, correlation coefficient, image analysis, shear rate

Procedia PDF Downloads 334
831 Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Authors: F. L. Motta, M. H. A. Santana

Abstract:

Humic Acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm Empty Fruit Bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Keywords: empty fruit bunch, humic acids, submerged fermentation, Trichoderma viride

Procedia PDF Downloads 301
830 Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study

Authors: Mohammad Zamzam, Wesam Bachir, Imad Asaad

Abstract:

Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite.

Keywords: enamel, Er:YAG, geometrical parameters, orthodontic composite, remnant composite

Procedia PDF Downloads 545
829 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm

Procedia PDF Downloads 117
828 Separation Performance of CO₂ by Mixed Matrix Membrane Comprising Carbide-Derived Carbon

Authors: Musa Najimu, Isam Aljundi

Abstract:

In this study, the development of mixed matrix membrane (MMM) containing carbide-derived carbon (CDC) for the separation of CO₂ was investigated. MMM with four different loadings (0.1 to 2 wt%) were prepared by the dry/wet phase inversion technique. Prior to this, the formula of the control polysulfone (PSF) membrane was optimized in terms of the PSF concentration in a mixture of NMP/THF solvents and ethanol. Prepared samples were characterized and tested for CO₂ and CH₄ gas permeation. The optimization of the control PSF membrane revealed that 30 wt% PSF is the critical polymer concentration in the formulation. Characterization results unveiled reinforcement of thermal stability and improved polarity imparted by CDC in the MMM, in addition to uniform dispersion of filler up to 1 wt% loading. Furthermore, the incorporation of CDC in PSF membrane formulation enhanced both the CO₂ permeance and ideal selectivity over the control membrane. A CDC loading of 0.5 wt% resulted in the highest CO₂ permeance of 5.5 GPU corresponding to 120% increase in permeance while a CDC loading of 1 wt% resulted in the highest selectivity (CO₂ /CH₄) of 27 corresponding to 29% increase in selectivity. Studies of operating temperature effect showed that an optimum operating temperature for M1.0 membrane is 20 ⁰C. In addition, the feed pressure studies showed that high pressure feeds will favor high performance of the membrane and a good CO₂ /CH₄ separation.

Keywords: carbide derived carbon, mixed matrix membrane, CO₂ separation, polysulfone

Procedia PDF Downloads 204
827 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests

Authors: Mustafa Tufekci, Caner Guven

Abstract:

In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved.

Keywords: finite element analysis, sliding door mechanism, element type, structural analysis

Procedia PDF Downloads 324
826 In-situ Oxygen Enrichment for Underground Coal Gasification

Authors: Adesola O. Orimoloye, Edward Gobina

Abstract:

Membrane separation technology is still considered as an emerging technology in the mining sector and does not yet have the widespread acceptance that it has in other industrial sectors. Underground Coal Gasification (UCG), wherein coal is converted to gas in-situ, is a safer alternative to mining method that retains all pollutants underground making the process environmentally friendly. In-situ combustion of coal for power generation allows access to more of the physical global coal resource than would be included in current economically recoverable reserve estimates. Where mining is no longer taking place, for economic or geological reasons, controlled gasification permits exploitation of the deposit (again a reaction of coal to form a synthesis gas) of coal seams in situ. The oxygen supply stage is one of the most expensive parts of any gasification project but the use of membranes is a potentially attractive approach for producing oxygen-enriched air. In this study, a variety of cost-effective membrane materials that gives an optimal amount of oxygen concentrations in the range of interest was designed and tested at diverse operating conditions. Oxygen-enriched atmosphere improves the combustion temperature but a decline is observed if oxygen concentration exceeds optimum. Experimental result also reveals the preparatory method, apparatus and performance of the fabricated membrane.

Keywords: membranes, oxygen-enrichment, gasification, coal

Procedia PDF Downloads 456
825 [Keynote Speech]: Experimental Study on the Effects of Water-in-Oil Emulsions to the Pressure Drop in Pipeline Flow

Authors: S. S. Dol, M. S. Chan, S. F. Wong, J. S. Lim

Abstract:

Emulsion formation is unavoidable and can be detrimental to an oil field production. The presence of stable emulsions also reduces the quality of crude oil and causes more problems in the downstream refinery operations, such as corrosion and pipeline pressure drop. Hence, it is important to know the effects of emulsions in the pipeline. Light crude oil was used for the continuous phase in the W/O emulsions where the emulsions pass through a flow loop to test the pressure drop across the pipeline. The results obtained shows that pressure drop increases as water cut is increased until it peaks at the phase inversion of the W/O emulsion between 30% to 40% water cut. Emulsions produced by gradual constrictions show a lower stability as compared to sudden constrictions. Lower stability of emulsions in gradual constriction has the higher influence of pressure drop compared to a sudden sharp decrease in diameter in sudden constriction. Generally, sudden constriction experiences pressure drop of 0.013% to 0.067% higher than gradual constriction of the same ratio. Lower constriction ratio cases cause larger pressure drop ranging from 0.061% to 0.241%. Considering the higher profitability in lower emulsion stability and lower pressure drop at the developed flow region of different constrictions, an optimum design of constriction is found to be gradual constriction with a ratio of 0.5.

Keywords: constriction, pressure drop, turbulence, water-in-oil emulsions

Procedia PDF Downloads 329
824 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand

Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar

Abstract:

Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.

Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus

Procedia PDF Downloads 270
823 Aerodynamic Design of Three-Dimensional Bellmouth for Low-Speed Open-Circuit Wind Tunnel

Authors: Harshavardhan Reddy, Balaji Subramanian

Abstract:

A systematic parametric study to find the optimum bellmouth profile by relating geometric and performance parameters to satisfy a set of specifications is reported. A careful aerodynamic design of bellmouth intake is critical to properly direct the flow with minimal losses and maximal flow uniformity into the honeycomb located inside the settling chamber of an indraft wind tunnel, thus improving the efficiency of the entire unit. Design charts for elliptically profiled bellmouths with two different contraction ratios (9 and 18) and three different test section speeds (25 m/s, 50 m/s, and 75 m/s) were presented. A significant performance improvement - especially in the Coefficient of discharge and in the flow angularity and boundary layer thickness at the honeycomb inlet - was observed when an entry corner radius (r/D = 0.08) was added to the bellmouth profile. The nonuniformity at the honeycomb inlet drops by about three times (~1% to 0.3%) when moving from square to regular octagonal cross-section. An octagonal cross-sectioned bellmouth intake with L/d = 0.55, D/d = 1.625, and r/D = 0.08 met all the four target performance specifications and is proposed as the best choice for a low-speed wind tunnel.

Keywords: bellmouth intake, low-speed wind tunnel, coefficient of discharge, nonuniformity, flow angularity, boundary layer thickness, CFD, aerodynamics

Procedia PDF Downloads 193
822 Removal of Hexavalent Chromium from Aqueous Solutions by Biosorption Using Macadamia Nutshells: Effect of Different Treatment Methods

Authors: Vusumzi E. Pakade, Themba D. Ntuli, Augustine E. Ofomaja

Abstract:

Macadamia nutshell biosorbents treated in three different methods (raw Macadamia nutshell powder (RMN), acid-treated Macadamia nutshell (ATMN) and base-treated Macadamia nutshell (BTMN)) were investigated for the adsorption of Cr(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) spectra of free and Cr(VI)-loaded sorbents as well as thermogravimetric analysis (TGA) revealed that the acid and base treatments modified the surface properties of the sorbents. The optimum conditions for the adsorption of Cr(VI) by sorbents were pH 2, contact time 10 h, adsorbent dosage 0.2 g L-1, and concentration 100 mg L-1. The different treatment methods altered the surface characteristics of the sorbents and produced different maximum binding capacities of 42.5, 40.6 and 37.5 mg g-1 for RMN, ATMN and BTMN, respectively. The data was fitted into the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms. No single model could clearly explain the data perhaps due to the complexity of process taking place. The kinetic modeling results showed that the process of Cr(VI) biosorption with Macadamia sorbents was better described by a process of chemical sorption in pseudo-second order. These results showed that the three treatment methods yielded different surface properties which then influenced adsorption of Cr(VI) differently.

Keywords: biosorption, chromium(VI), isotherms, Macadamia, reduction, treatment

Procedia PDF Downloads 262
821 Multivariate Control Chart to Determine Efficiency Measurements in Industrial Processes

Authors: J. J. Vargas, N. Prieto, L. A. Toro

Abstract:

Control charts are commonly used to monitor processes involving either variable or attribute of quality characteristics and determining the control limits as a critical task for quality engineers to improve the processes. Nonetheless, in some applications it is necessary to include an estimation of efficiency. In this paper, the ability to define the efficiency of an industrial process was added to a control chart by means of incorporating a data envelopment analysis (DEA) approach. In depth, a Bayesian estimation was performed to calculate the posterior probability distribution of parameters as means and variance and covariance matrix. This technique allows to analyse the data set without the need of using the hypothetical large sample implied in the problem and to be treated as an approximation to the finite sample distribution. A rejection simulation method was carried out to generate random variables from the parameter functions. Each resulting vector was used by stochastic DEA model during several cycles for establishing the distribution of each efficiency measures for each DMU (decision making units). A control limit was calculated with model obtained and if a condition of a low level efficiency of DMU is presented, system efficiency is out of control. In the efficiency calculated a global optimum was reached, which ensures model reliability.

Keywords: data envelopment analysis, DEA, Multivariate control chart, rejection simulation method

Procedia PDF Downloads 372