Search results for: mild oxidation
459 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples
Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari
Abstract:
Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.Keywords: doxycycline, electrochemical sensor, food control, gold nanoparticles, honey, molecular imprinted polymer
Procedia PDF Downloads 317458 Bimetallic Cu/Au Nanostructures and Bio-Application
Authors: Si Yin Tee
Abstract:
Bimetallic nanostructures have received tremendous interests as a new class of nanomaterials which may have better technological usefulness with distinct properties from those of individual atoms and molecules or bulk matter. They excelled over the monometallic counterparts because of their improved electronic, optical and catalytic performances. The properties and the applicability of these bimetallic nanostructures not only depend on their size and shape, but also on the composition and their fine structure. These bimetallic nanostructures are potential candidates for bio-applications such as biosensing, bioimaging, biodiagnostics, drug delivery, targeted therapeutics, and tissue engineering. Herein, gold-incorporated copper (Cu/Au) nanostructures were synthesized through the controlled disproportionation of Cu⁺-oleylamine complex at 220 ºC to form copper nanowires and the subsequent reaction with Au³⁺ at different temperatures of 140, 220 and 300 ºC. This is to achieve their synergistic effect through the combined use of the merits of low-cost transition and high-stability noble metals. Of these Cu/Au nanostructures, Cu/Au nanotubes display the best performance towards electrochemical non-enzymatic glucose sensing, originating from the high conductivity of gold and the high aspect ratio copper nanotubes with high surface area so as to optimise the electroactive sites and facilitate mass transport. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.Keywords: bimetallic, electrochemical sensing, glucose oxidation, gold-incorporated copper nanostructures
Procedia PDF Downloads 521457 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy
Authors: Yasam Palguna, Rajesh Korla
Abstract:
The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures
Procedia PDF Downloads 165456 First Formaldehyde Retrieval Using the Raw Data Obtained from Pandora in Seoul: Investigation of the Temporal Characteristics and Comparison with Ozone Monitoring Instrument Measurement
Abstract:
In this present study, for the first time, we retrieved the Formaldehyde (HCHO) Vertical Column Density (HCHOVCD) using Pandora instruments in Seoul, a megacity in northeast Asia, for the period between 2012 and 2014 and investigated the temporal characteristics of HCHOVCD. HCHO Slant Column Density (HCHOSCD) was obtained using the Differential Optical Absorption Spectroscopy (DOAS) method. HCHOSCD was converted to HCHOVCD using geometric Air Mass Factor (AMFG) as Pandora is the direct-sun measurement. The HCHOVCDs is low at 12:00 Local Time (LT) and is high in the morning (10:00 LT) and late afternoon (16:00 LT) except for winter. The maximum (minimum) values of Pandora HCHOVCD are 2.68×1016 (1.63×10¹⁶), 3.19×10¹⁶ (2.23×10¹⁶), 2.00×10¹⁶ (1.26×10¹⁶), and 1.63×10¹⁶ (0.82×10¹⁶) molecules cm⁻² in spring, summer, autumn, and winter, respectively. In terms of seasonal variations, HCHOVCD was high in summer and low in winter which implies that photo-oxidation plays an important role in HCHO production in Seoul. In comparison with the Ozone Monitoring Instrument (OMI) measurements, the HCHOVCDs from the OMI are lower than those from Pandora. The correlation coefficient (R) between monthly HCHOVCDs values from Pandora and OMI is 0.61, with slop of 0.35. Furthermore, to understand HCHO mixing ratio within Planetary Boundary Layer (PBL) in Seoul, we converted Pandora HCHOVCDs to HCHO mixing ratio in the PBL using several meteorological input data from the Atmospheric InfraRed Sounder (AIRS). Seasonal HCHO mixing ratio in PBL converted from Pandora (OMI) HCHOVCDs are estimated to be 6.57 (5.17), 7.08 (6.68), 7.60 (4.70), and 5.00 (4.76) ppbv in spring, summer, autumn, and winter, respectively.Keywords: formaldehyde, OMI, Pandora, remote sensing
Procedia PDF Downloads 150455 Clinical Outcomes After Radiological Management of Varicoceles
Authors: Eric Lai, Sarah Lorger, David Eisinger, Richard Waugh
Abstract:
Introduction: Percutaneous embolization of varicoceles has shown similar outcomes to surgery. However, there are advantages of radiological intervention as patients are not exposed to general anaesthesia, experience a quicker recovery and face a lower risk of major complications. Radiological interventions are also preferable after a failed surgical approach. We evaluate clinical outcomes of percutaneous embolization at a tertiary hospital in Sydney, Australia. Methods: Retrospective case series without a control group from a single site (Royal Prince Alfred Hospital, Sydney, Australia). A data search was performed on the interventional radiology database with the word “varicocele” between February 2017 and March 2022. 62 patients were identified. Each patient file was reviewed and included in the study if they met the inclusion criteria. Results: A total of 56 patients were included. 6 patients were excluded as they did not receive intervention after the initial diagnostic venography. Technical success was 100%. Complications were seen in 3 patients (5.3%). The complications included post-procedural pain and fever, venous perforation with no clinical adverse outcome, and a mild allergic reaction to contrast. Recurrence occurred in 3 patients (5.6%), all of whom received a successful second procedure. DISCUSSION: This study demonstrates comparable rates of technical success, complication rate and recurrence to other studies in the literature. When compared to surgical outcomes, the results were also similar. The main limitation is multiple patients lack long-term follow-up beyond 1 year, resulting in potential underestimation of the recurrence rate. Conclusion: Percutaneous embolization of varicocele is a safe alternative to surgical intervention.Keywords: varicocele, interventional radiology, urology, radiology
Procedia PDF Downloads 72454 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 387453 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand
Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul
Abstract:
Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals
Procedia PDF Downloads 395452 Transcriptomic Analysis of Non-Alcoholic Fatty Liver Disease in Cafeteria Diet Induced Obese Rats
Authors: Mohammad Jamal
Abstract:
Non-alcoholic fatty liver disease (NAFLD) has become one of the most chronic liver diseases, prevalent among people with morbid obesity. NAFLD does not develop clinically significant liver disease, however cirrhosis and liver cancer develop in subset and currently there are no approved therapies for the treatment of NAFLD. The study is aimed to understand the various key genes involved in the mechanism of NAFLD which can be valuable for developing diagnostic and predictive biomarkers based on their histologic stage of liver. The study was conducted on 16 male Sprague Dawley rats. The animals were divided in two groups: control group (n=8) fed on ad libitum normal chow and regular water and the cafeteria group (CAF)) (n=8) fed on high fatty/ carbohydrate diet. The animals received their respective diet from 4 weeks onwards from D.O.B until 25 weeks. Liver was extracted and RT² Profiler PCR Array was used to assess the NAFLD related genes. Histological evaluation was performed using H&E stain in liver tissue sections. Our PCR array results showed that genes involved in anti-inflammatory activity (Ifng, IL10), fatty acid uptake/oxidation (Fabp5), apoptosis (Fas), lipogenesis (Gck and Srebf1), Insulin signalling (Igfbp1) and metabolic pathway (pdk4) were upregulated in the liver of cafeteria fed obese rats. Bloated hepatocytes, displaced nucleus and higher lipid content were seen in the liver of cafeteria fed obese rats. Although Liver biopsies remain the gold standard in evaluating NAFLD, however an approach towards non-invasive markers could be used in understanding the physiology, therapeutic potential, and the targets to combat NAFLD.Keywords: biomarkers, cafeteria diet, obesity, NAFLD
Procedia PDF Downloads 143451 Right Cerebellar Stroke with a Right Vertebral Artery Occlusion Following an Embolization of the Right Glomus Tympanicum Tumor
Authors: Naim Izet Kajtazi
Abstract:
Context: Although rare, glomus tumor (i.e., nonchromaffin chemodectomas and paragan¬gliomas) is the most common middle ear tumor, with female predominance. Pre-operative embolization is often required to devascularize the hypervascular tumor for better surgical outcomes. Process: A 35-year-old female presented with episodes of frequent dizziness, ear fullness, and right ear tinnitus for 12 months. Head imaging revealed a right glomus tympanicum tumor. She underwent pre-operative endovascular embolization of the glomus tympanicum tumor with surgical, cyanoacrylate-based glue. Immediately after the procedure, she developed drowsiness and severe pain in the right temporal region. Further investigations revealed a right cerebellar stroke in the posterior inferior cerebellar artery territory. She was treated with intravenous heparin, followed by one year of oral anticoagulation. With rehabilitation, she significantly recovered from her post embolization stroke. However, the tumor was resected at another institution. Ten years later, follow-up imaging indicated a gradual increase in the size of the glomus jugulare tumor, compressing the nearby critical vascular structures. She subsequently received radiation therapy to treat the residual tumor. Outcome: Currently, she has no neurological deficit, but her mild dizziness, right ear tinnitus, and hearing impairment persist. Relevance: This case highlights the complex nature of these tumors, which often bring challenges to the patients as well as treatment teams. The multi-disciplinary team approach is necessary to tailor the management plan for individual tumors. Although embolization is a safe procedure, careful attention and thoughtful anatomic knowledge regarding dangerous anastomosis are essential to avoid devastating complications. Complications occur due to encountered vessel anomalies and new anastomoses formed during the gluing and changes in hemodynamics.Keywords: stroke, embolization, MRI brain, cerebral angiogram
Procedia PDF Downloads 71450 The Clinical Characteristics and Their Relationship with Sleep Disorders in Patients with Parkinson Disease Accompanied with Cognitive Impairment
Authors: Peng Guo
Abstract:
Objective To investigate the clinical characteristics and changes of video-polysomnography (v-PSG) in Parkinson disease (PD) patients accompanied with cognitive impairment. Methods Three hundred and ninety-four patients with PD were enrolled in Beijing Tiantan Hospital, according to CI level, the patients were divided into PD without cognitive impairment (PD-NCI), PD with mild cognitive impairment (PD-MCI), and PD with dementia (PDD) group. Collect patient's demographic data, including gender, onset age, education level and duration. The cognitive function of PD patients was evaluated by Montreal cognitive assessment (MoCA) scale, and the overall cognitive function and cognitive domains of the three groups were compared.Using v-PSG to assess the sleep status of patients. Correlation analysis of MoCA Scale and v-PSG results in PD-CI group. Results 1. In 394 cases of PD, 94 cases (23.86%) in PD-NCI group , 177 cases(44.92%) in PD-MCI group , 123 cases (31.22%) in PDD group. 2.There was no significant difference in gender, age of onset, education level and duration in PD-NCI group, PD-MCI group and PDD group (P>0.05). 3. The total score of MoCA scale in PD-NCI group, PD-MCI group and PDD group decreased one by one. In PD-NCI group, PD-MCI group and PDD group, the scores of each cognitive domain in MoCA scale decreased significantly(P<0.05). 4.Compared with the PD-MCI group, PDD group had lower total sleep time, lower sleep efficiency (P<0.05). Compared with PD-NCI group, PDD group had lower total sleep time and lower sleep efficiency (P<0.05).5. The sleep efficiency of PD-CI patients is positively correlated with the total score of MoCA scale, visual spatial function, executive function, delayed recall and attention score(P<0.05). Conclusions The incidence of CI in PD patients was high; The cognitive function and cognitive domains of PD-CI patients were significantly impaired; In patients with PD-CI, total sleep time decreased, sleep efficiency decreased, and it was related to overall cognitive function and partial cognitive impairment.Keywords: Parkinson disease, cognitive impairment, clinical characteristics, sleep disorders, video-polysomnography
Procedia PDF Downloads 31449 Towards the Production of Least Contaminant Grade Biosolids and Biochar via Mild Acid Pre-treatment
Authors: Ibrahim Hakeem
Abstract:
Biosolids are stabilised sewage sludge produced from wastewater treatment processes. Biosolids contain valuable plant nutrient which facilitates their beneficial reuse in agricultural land. However, the increasing levels of legacy and emerging contaminants such as heavy metals (HMs), PFAS, microplastics, pharmaceuticals, microbial pathogens etc., are restraining the direct land application of biosolids. Pyrolysis of biosolids can effectively degrade microbial and organic contaminants; however, HMs remain a persistent problem with biosolids and their pyrolysis-derived biochar. In this work, we demonstrated the integrated processing of biosolids involving the acid pre-treatment for HMs removal and selective reduction of ash-forming elements followed by the bench-scale pyrolysis of the treated biosolids to produce quality biochar and bio-oil enriched with valuable platform chemicals. The pre-treatment of biosolids using 3% v/v H₂SO₄ at room conditions for 30 min reduced the ash content from 30 wt% in raw biosolids to 15 wt% in the treated sample while removing about 80% of limiting HMs without degrading the organic matter. The preservation of nutrients and reduction of HMs concentration and mobility via the developed hydrometallurgical process improved the grade of the treated biosolids for beneficial land reuse. The co-removal of ash-forming elements from biosolids positively enhanced the fluidised bed pyrolysis of the acid-treated biosolids at 700 ℃. Organic matter devolatilisation was improved by 40%, and the produced biochar had higher surface area (107 m²/g), heating value (15 MJ/kg), fixed carbon (35 wt%), organic carbon retention (66% dry-ash free) compared to the raw biosolids biochar with surface area (56 m²/g), heating value (9 MJ/kg), fixed carbon (20 wt%) and organic carbon retention (50%). Pre-treatment also improved microporous structure development of the biochar and substantially decreased the HMs concentration and bioavailability by at least 50% relative to the raw biosolids biochar. The integrated process is a viable approach to enhancing value recovery from biosolids.Keywords: biosolids, pyrolysis, biochar, heavy metals
Procedia PDF Downloads 77448 Quality of Bali Beef and Broiler after Immersion in Liquid Smoke on Different Concentrations and Storage Times
Authors: E. Abustam, M. Yusuf, H. M. Ali, M. I. Said, F. N. Yuliati
Abstract:
The aim of this study was to improve the durability and quality of Bali beef (M. Longissimus dorsi) and broiler carcass through the addition of liquid smoke as a natural preservative. This study was using Longissimus dorsi muscle from male Bali beef aged 3 years, broiler breast and thigh aged 40 days. Three types of meat were marinated in liquid smoke with concentrations of 0, 5, and 10% for 30 minutes at the level of 20% of the sample weight (w/w). The samples were storage at 2-5°C for 1 month. This study designed as a factorial experiment 3 x 3 x 4 based on a completely randomized design with 5 replications; the first factor was meat type (beef, chicken breast and chicken thigh); the 2nd factor was liquid smoke concentrations (0, 5, and 10%), and the 3rd factor was storage duration (1, 2, 3, and 4 weeks). Parameters measured were TBA value, total bacterial colonies, water holding capacity (WHC), shear force value both before and after cooking (80°C – 15min.), and cooking loss. The results showed that the type of meat produced WHC, shear force value, cooking loss and TBA differed between the three types of meat. Higher concentration of liquid smoke, the WHC, shear force value, TBA, and total bacterial colonies were decreased; at a concentration of 10% of liquid smoke, the total bacterial colonies decreased by 57.3% from untreated with liquid smoke. Longer storage, the total bacterial colonies and WHC were increased, while the shear force value and cooking loss were decreased. It can be concluded that a 10% concentration of liquid smoke was able to maintain fat oxidation and bacterial growth in Bali beef and chicken breast and thigh.Keywords: Bali beef, chicken meat, liquid smoke, meat quality
Procedia PDF Downloads 392447 Role of Pulsed-Dye Laser in the Treatment of Inflammatory Acne Vulgaris
Authors: Shirajul Islam Khan, Muhammad Ashraful Alam Bhuiyan, Syeda Tania Begum
Abstract:
Introduction: Acne vulgaris is one of the most common dermatologic conditions and affects the vast majority of people at some point during their lifetime, so effective treatment is of major importance. The failure of usual treatment modalities, teratogenic effects with some severe side effects, and resistance to P.Acne by Retinoides have been focusing on new therapeutic options for the treatment of acne. More recently, pulsed dye laser therapy has been reported to reduce acne lesion counts. The negligible morbidity of these treatment modalities and some other benefits of subsequent acne scar management lead this therapy more attractive. Objective: The objective of this study is to assess the efficacy and safety of pulsed dye laser therapy in the treatment of inflammatory acne vulgaris. Materials and Methods: A prospective clinical trial was done in the Department of Dermatology and Venereology, Combined Military Hospital (CMH), Dhaka, to find out the role of pulse dye laser in the treatment of inflammatory acne vulgaris. The study was carried out with 60 patients with mild to moderate acne vulgaris, and those were treated with pulsed dye laser therapy at baseline and after 4, 8, and 12 weeks. Results: Among 60 patients with inflammatory acne, 42(70%) were in the age group of less than 20 years, and 36(60%) were female. Regarding the number of inflammatory lesions, the baseline mean number (± SD) was 12.77 ± 4.01; after 4 weeks of treatment of inflammatory acne by pulsed dye laser was 7.80 ± 4.11; after 8 weeks of treatment, 6.10 ± 4.03 and after 12 weeks of treatment was 4.17 ± 4.02. After 4 weeks of treatment by pulse dye laser, the level of improvement was excellent at 3.3%, good at 10%, fair at 60%, and poor at 26.7%; after 8 weeks of treatment, excellent was 13.3%, good was 46.7%, the fair was 30% and poor 10% and after 12 weeks of treatment, excellent was 56.7%, good 13.3%, fair 23.3% and poor 6.7%. Regarding safety level, out of 60 patients of inflammatory acne vulgaris treated by pulsed dye laser, about 52(86.7%) patients did not observe any side effects. Conclusions: On the basis of the study results, it can be concluded that pulsed-dye laser is highly effective and well tolerated by patients in the treatment of inflammatory acne.Keywords: pulsed-dye laser, inflammatory acne, acne vulgaris, retinoids
Procedia PDF Downloads 92446 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst
Authors: Kamran Dastafkan, Chuan Zhao
Abstract:
Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction
Procedia PDF Downloads 132445 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon
Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem
Abstract:
The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.Keywords: activated carbon, pollutant, catalysis, TiO₂
Procedia PDF Downloads 56444 Aberrant Genome‐Wide DNA Methylation Profiles of Peripheral Blood Mononuclear Cells from Patients Hospitalized with COVID-19
Authors: Inam Ridha, Christine L. Kuryla, Madhuranga Thilakasiri Madugoda Ralalage Don, Norman J. Kleiman, Yunro Chung, Jin Park, Vel Murugan, Joshua LaBaer
Abstract:
To date, more than 275 million people worldwide have been diagnosed with COVID-19 and the rapid spread of the omicron variant suggests many millions more will soon become infected. Many infections are asymptomatic, while others result in mild to moderate illness. Unfortunately, some infected individuals exhibit more serious symptoms including respiratory distress, thrombosis, cardiovascular disease, multi-organ failure, cognitive difficulties, and, in roughly 2% of cases, death. Studies indicate other coronaviruses can alter the host cell's epigenetic profile and lead to alterations in the immune response. To better understand the mechanism(s) by which SARS-CoV-2 infection causes serious illness, DNA methylation profiles in peripheral blood mononuclear cells (PBMCs) from 90 hospitalized severely ill COVID-19 patients were compared to profiles from uninfected control subjects. Exploratory epigenome-wide DNA methylation analyses were performed using multiplexed methylated DNA immunoprecipitation (MeDIP) followed by pathway enrichment analysis. The findings demonstrated significant DNA methylation changes in infected individuals as compared to uninfected controls. Pathway analysis indicated that apoptosis, cell cycle control, Toll-like receptors (TLR), cytokine interactions, and T cell differentiation were among the most affected metabolic processes. In addition, changes in specific gene methylation were compared to SARS-CoV-2 induced changes in RNA expression using published RNA-seq data from 3 patients with severe COVID-19. These findings demonstrate significant correlations between differentially methylated and differentially expressed genes in a number of critical pathways.Keywords: COVID19, epigenetics, DNA mathylation, viral infection
Procedia PDF Downloads 182443 Proposed Algorithms to Assess Concussion Potential in Rear-End Motor Vehicle Collisions: A Meta-Analysis
Authors: Rami Hashish, Manon Limousis-Gayda, Caitlin McCleery
Abstract:
Introduction: Mild traumatic brain injuries, also referred to as concussions, represent an increasing burden to society. Due to limited objective diagnostic measures, concussions are diagnosed by assessing subjective symptoms, often leading to disputes to their presence. Common biomechanical measures associated with concussion are high linear and/or angular acceleration to the head. With regards to linear acceleration, approximately 80g’s has previously been shown to equate with a 50% probability of concussion. Motor vehicle collisions (MVCs) are a leading cause of concussion, due to high head accelerations experienced. The change in velocity (delta-V) of a vehicle in an MVC is an established metric for impact severity. As acceleration is the rate of delta-V with respect to time, the purpose of this paper is to determine the relation between delta-V (and occupant parameters) with linear head acceleration. Methods: A meta-analysis was conducted for manuscripts collected using the following keywords: head acceleration, concussion, brain injury, head kinematics, delta-V, change in velocity, motor vehicle collision, and rear-end. Ultimately, 280 studies were surveyed, 14 of which fulfilled the inclusion criteria as studies investigating the human response to impacts, reporting head acceleration, and delta-V of the occupant’s vehicle. Statistical analysis was conducted with SPSS and R. The best fit line analysis allowed for an initial understanding of the relation between head acceleration and delta-V. To further investigate the effect of occupant parameters on head acceleration, a quadratic model and a full linear mixed model was developed. Results: From the 14 selected studies, 139 crashes were analyzed with head accelerations and delta-V values ranging from 0.6 to 17.2g and 1.3 to 11.1 km/h, respectively. Initial analysis indicated that the best line of fit (Model 1) was defined as Head Acceleration = 0.465Keywords: acceleration, brain injury, change in velocity, Delta-V, TBI
Procedia PDF Downloads 235442 The Utilization of Tea Extract within the Realm of the Food Industry
Authors: Raana Babadi Fathipour
Abstract:
Tea, a beverage widely cherished across the globe, has captured the interest of scholars with its recent acknowledgement for possessing noteworthy health advantages. Of particular significance is its proven ability to ward off ailments such as cancer and cardiovascular afflictions. Moreover, within the realm of culinary creations, lipid oxidation poses a significant challenge for food product development. In light of these aforementioned concerns, this present discourse turns its attention towards exploring diverse methodologies employed in extracting polyphenols from various types of tea leaves and examining their utility within the vast landscape of the ever-evolving food industry. Based on the discoveries unearthed in this comprehensive investigation, it has been determined that the fundamental constituents of tea are polyphenols possessed of intrinsic health-enhancing properties. This includes an assortment of catechins, namely epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. Moreover, gallic acid, flavonoids, flavonols and theaphlavins have also been detected within this aromatic beverage. Of these myriad components examined vigorously in this study's analysis, catechin emerges as particularly beneficial. Multiple techniques have emerged over time to successfully extract key compounds from tea plants, including solvent-based extraction methodologies, microwave-assisted water extraction approaches and ultrasound-assisted extraction techniques. In particular, consideration is given to microwave-assisted water extraction method as a viable scheme which effectively procures valuable polyphenols from tea extracts. This methodology appears adaptable for implementation within sectors such as dairy production along with meat and oil industries alike.Keywords: camellia sinensis, extraction, food application, shelf life, tea
Procedia PDF Downloads 72441 Effect of Zidovudine on Hematological and Virologic Parameters among Female Sex Workers Receiving Antiretroviral Therapy (ART) in North-Western Nigeria
Authors: N. M. Sani, E. D. Jatau, O. S. Olonitola, M. Y. Gwarzo, P. Moodley, N. S. Mujahid
Abstract:
Haemoglobin (HB) indicates anaemia level and by extension may reflect the nutritional level and perhaps the immunity of an individual. Some antiretroviral drugs like zidovudine are known to cause anaemia in People living with HIV/AIDS (PLWHA). A cross-sectional study using demographic data and blood specimen from 218 female commercial sex workers attending antiretroviral therapy (ART) clinics was conducted between December 2009 and July 2011 to assess the effect of zidovudine on haematologic and RNA viral load of female sex workers receiving antiretroviral treatment in north-western Nigeria. Anaemia is a common and serious complication of both HIV infection and its treatment. In the setting of HIV infection, anaemia has been associated with decreased quality of life, functional status, and survival. Antiretroviral therapy, particularly the highly active antiretroviral therapy (HAART), has been associated with a decrease in the incidence and severity of anaemia in HIV-infected patients who have received a HAART regimen for at least 1 year. In this study, result has shown that out of 218 patients, 26 with haemoglobin count between 5.1–10 g/dl were observed to have the highest viral load count of 300,000–350,000 copies/ml. It was also observed that most patients (190) with HB of 10.1–15.0 g/dl had viral load count of 200,000–250,000 copies/ml. An inverse relationship therefore exists, i.e. the lower the haemoglobin level, the higher the viral load count, even though the test statistics did not show any significance between the two (P=0.206). This shows that multivariate logistic regression analysis demonstrated that anaemia was associated with a CD4+ cell count below 50/µL in female sex workers with a viral load above 100,000 copies/mL who use zidovudine. Severe anaemia was less prevalent in this study population than in historical comparators; however, mild to moderate anaemia rates remain high. The study, therefore, recommends that hematological and virologic parameters be monitored closely in patients receiving first line ART regimen.Keywords: anaemia, female sex worker, haemoglobin, Zidovudine
Procedia PDF Downloads 313440 Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.
Authors: Adetokunbo Ademola Falade, Oluwatoyin Olakunle Akinsete, Hussein Omeiza Aliu
Abstract:
Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology.Keywords: asphaltene, bitumen, diffusivity, hydrocarbon solvent, SARA
Procedia PDF Downloads 39439 Cytotoxic Activity of Acetone and Ethanol Overripe Tempe Extracts against MCF-7 Breast Cancer Cells and Their Antioxidant Property
Authors: Dian Muzdalifah, Anastasia F. Devi, Zatil A. Athaillah, Linar Z. Udin
Abstract:
Tempe is a functional food prepared from soybeans through Rhizopus spp fermentation. It is well known as functional food, originated from Indonesia. Most studies on tempe functionalities refer to ripe (48 h fermentation) tempe and only limited studies discuss overripe tempe while longer fermentation time possibly increased tempe health benefit. Hence, the present study was performed to investigate the cytotoxic activity againts MCF-7 breast cancer cells and antioxidant property of tempe prepared from 0–156 h of fermentation. Tempe samples were dried and extracted with acetone and ethanol, respectively. Their extracts were used for subsequent analysis. The cytotoxic activity was assessed on MCF 7 breast cancer cells using Alamar Blue method. The antioxidant activity was determined by DPPH free radical scavenging assay. The results indicated that acetone extracts of 108 h tempe had a potent cytotoxic activity against MCF-7 breast cancer cells (IC50 = 2.54 ± 0,30 μg/mL). Ethanol extracts of 108 h tempe also showed the potency, but at slightly higher IC50 (5.20 ± 1.01 μg/mL). Both acetone and ethanol extracts of 108 and 120 h tempe showed high antioxidant activity expressed as percent inhibition with no significant difference. However, acetone extracts of 120 h tempe (81.31 ± 3.70 %) had better ability to inhibit oxidation reaction than that of ethanol extracts (75.77 ± 6.00 %). It can be concluded that the cytotoxic activity of tempe from 0–156 h of fermentation is positively correlated to their corresponding antioxidant property. Longer fermentation time, up to 108 h, increased the ability of tempe to inhibit the growth of MCF-7 breast cancer cells and oxidative reaction. But extended fermentation time, up to 156 h, tends to decrease its ability. Further studies are encouraged to identify the active components contained in each extract.Keywords: antioxidant property, cytotoxic activity, extracts, overripe tempeh
Procedia PDF Downloads 277438 Experimental Study for Examination of Nature of Diffusion Process during Wine Microoxygenation
Authors: Ilirjan Malollari, Redi Buzo, Lorina Lici
Abstract:
This study was done for the characterization of polyphenols changes of anthocyanins, flavonoids, the color intensity and total polyphenols index, maturity and oxidation index during the process of micro-oxygenation of wine that comes from a specific geographic area in the southeastern region of the country. Also, through mathematical modeling of the oxygen distribution within solution of wort for wine fermentation, was shown the strong impact of carbon dioxide present in the liquor. Analytical results show periodic increases of color intensity and tonality, reduction level of free anthocyanins and flavonoids free because of polycondensation reactions between tannins and anthocyanins, increased total polyphenols index and decrease the ratio between the flavonoids and anthocyanins offering a red stabilize wine proved by sensory degustation tasting for color intensity, tonality, body, tannic perception, taste and remained back taste which comes by specific area associated with environmental indications. Micro-oxygenation of wine is a wine-making technique, which consists in the addition of small and controlled amounts of oxygen in the different stages of wine production but more efficiently after end of alcoholic fermentation. The objectives of the process include improved mouth feel (body and texture), color enhanced stability, increased oxidative stability, and decreased vegetative aroma during polyphenols changes process. A very important factor is polyphenolics organic grape composition strongly associated with the environment geographical specifics area in which it is grown the grape.Keywords: micro oxygenation, polyphenols, environment, wine stability, diffusion modeling
Procedia PDF Downloads 211437 Multiple Organ Manifestation in Neonatal Lupus Erythematous: Report of Two Cases
Authors: A. Lubis, R. Widayanti, Z. Hikmah, A. Endaryanto, A. Harsono, A. Harianto, R. Etika, D. K. Handayani, M. Sampurna
Abstract:
Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.Keywords: neonatus lupus erythematous, maternal autoantibody, clinical characteristic, multiple organ manifestation
Procedia PDF Downloads 424436 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy
Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann
Abstract:
Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats
Procedia PDF Downloads 368435 Gethuk Marillo: The New Product Development of Anti-Cancer Snacks Utilizing Xanthones and Anthocyanin in Mangosteen Pericarp and Tamarillo Fruit
Authors: Desi Meriyanti, Delina Puspa Rosana Firdaus, Ristia Rinati
Abstract:
Nowadays, the presence of free radicals become a big concern due to its negative impact to the body, which can triggers the formation of degenerative diseases such as cancer, heart disease cardiovascular, diabetic mellitus and others. Free radical oxidation can be prevented by the presence of antioxidants. Naturally, the human body produces its own antioxidants. Because of the free radicals exposure are so intense, especially from the environment, it is necessary to supply antioxidants needed from outside, through the consumption of functional foods with high antioxidant content. Gethuk is one of the traditional snacks in Indonesia. Gethuk is made from cassava with minimal processing such as boiling, destructing, and forming. Gethuk is classified as a familiar snack in the community, so it has a potential for developing, especially into a functional food. The low content of antioxidants in gethuk can be overcome with the development of a product called Gethuk Marillo. Gethuk Marillo is gethuk with the addition of natural antioxidants from mangosteen pericarp extract which has a high content of xanthones, these compounds are classified into flavonoids and act as antioxidants in the body. Gethuk Marillo served along with tamarillo fruit sauce which is also high in antioxidants such as anthocyanin. The combination between 300 grams gethuk Marillo and sauce contain flavonoid about 31% of human antioxidant needs per day. Gethuk Marillo called as a functional food because of high flavonoids content which can prevent degenerative diseases namely cancer, as many studies that the xanthone and anthocyanins compounds can effectively prevent the formation of cancer cells in human body.Keywords: Gethuk marillo, xanthones, anthocyanin, high antioxidants, anti-cancer
Procedia PDF Downloads 656434 Clinical and Epidemiological Profile in Patients with Preeclampsia in a Private Institution in Medellin, Colombia 2015
Authors: Camilo Andrés Agudelo Vélez, Lina María Martínez Sánchez, Isabel Cristina Ortiz Trujillo, Evert Armando Jiménez Cotes, Natalia Perilla Hernández, María de los Ángeles Rodríguez Gázquez, Daniel Duque Restrepo, Felipe Hernández Restrepo, Dayana Andrea Quintero Moreno, Juan José Builes Gómez, Camilo Ruiz Mejía, Ana Lucia Arango Gómez
Abstract:
Preeclampsia is a clinical complication during pregnancy with high incidence in Colombia; therefore, it is important to evaluate the influence of external conditions and medical interventions, in order to promote measures that encourage improvements in the quality of life. Objective: Determine clinical and sociodemographic variables in women with preeclampsia. Methods: This cross-sectional study enrolled 50 patients with the diagnosis of preeclampsia, from a private institution in Medellin, during 2015. We used the software SPSS ver.20 for statistical analysis. For the qualitative variables, we calculated the mean and standard deviation, while, for ordinal and nominal levels of quantitative variables, ratios were estimated. Results: The average age was 26.8±5.9 years. The predominant characteristics were socioeconomic stratum 2 (48%), students (55%), mixed race (46%) and middle school as level of education (38%). As for clinical features, 72% of the cases were mild preeclampsia, and 22% were severe forms. The most common clinical manifestations were edema (46%), headache (62%), and proteinuria (55%). As for the Gyneco-obstetric history, 8% reported previous episodes of this disease and it was the first pregnancy for 60% of the patients. Conclusions: Preeclampsia is a frequent condition in young women; on the other hand, headache and edema were the most common reasons for consultation, therefore, doctors need to be aware of these symptoms in pregnant women.Keywords: pre-eclampsia, hypertension, pregnancy complications, pregnancy, abdominal, edema
Procedia PDF Downloads 365433 Human Metabolism of the Drug Candidate PBTZ169
Authors: Vadim Makarov, Stewart T.Cole
Abstract:
PBTZ169 is novel drug candidate with high efficacy in animals models, and its combination treatment of PBTZ169 with BDQ and pyrazinamide was shown to be more efficacious than the standard treatment for tuberculosis in a mouse model. The target of PBTZ169 is famous DprE1, an essential enzyme in cell wall biosynthesis. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Furthermore, this drug candidate demonstrated during preclinical research ‘drug like’ properties what made it an attractive drug candidate to treat tuberculosis in humans. During first clinical trials several cohorts of the healthy volunteers were treated by the single doses of PBTZ169 as well as two weeks repeated treatment was chosen for two maximal doses. As expected PBTZ169 was well tolerated, and no significant toxicity effects were observed during the trials. The study of the metabolism shown that human metabolism of PBTZ169 is very different from microbial or animals compound transformation. So main pathway of microbial, mice and less rats metabolism connected with reduction processes, but human metabolism mainly connected with oxidation processes. Due to this difference we observed several metabolites of PBTZ169 in humans with antitubercular activity, and now we can conclude that animal antituberculosis activity of PBTZ169 is a result not only activity of the drug itself, but it is a result of the sum activity of the drug and its metabolites. Direct antimicrobial plasma activity was studied, and such activity was observed for 24 hours after human treatment for some doses. This data gets high chance for good efficacy of PBTZ169 in human for treatment TB infection. Second phase of clinical trials was started summer of 2017 and continues to the present day. Available data will be presented.Keywords: clinical trials, DprE1, PBTZ169, metabolism
Procedia PDF Downloads 167432 Perceived Barriers in the Utilisation of Mental Health Services by Youth in Rural Communities
Authors: Mercy Tshilidzi Mulaudzi, Lufuno Mashamba, Lufuno Ramabulana
Abstract:
Access to high-quality mental health services is sometimes challenging, especially for underserved populations in rural areas, including racial and ethnic minorities, and those from low socioeconomic status (SES). Youth experience more mental health challenges which need to be attended to by mental health specialists. They present symptoms which range from mild to severe. Once they consult mental health services, the diagnosis is made, and the etiology of the condition is identified so that treatment can be prescribed. This study used a qualitative approach to understand the barriers preventing utilisation of mental health service for young people in rural communities. In-depth individual interviews were conducted with 5 youth aged 22-30. Thematic Content analysis was used where 10 main themes emerged and were grouped as follows: (i) Poor mental health literacy / Lack of awareness of available mental health services, (ii) Travelling long distances to reach services which becomes expensive, (iii) Lack of access to transportation, (iv) Parents’ and teachers’ poor/delayed detection youth problems, (v) Lack of qualified professionals in their region who specialize in youth mental health, (vi) Stigma and social exclusion towards youth who utilise mental health services, (vii) Increased time out of work or school, (viii) Belief that problems would go away without help, (ix) Misinformation about mental health problems, (x) Rural community factors such as gossip networks and social visibility. An awareness campaign needs to be conducted where youth are provided with information on mental health and available services. The co-existence of mental health and general health services is suggested as one way to reduce the fear associated with being seen entering a stand-alone mental health service. Mobile clinics which offer primary health care is imperative. It is also recommended that community and school-based interventions which aim at reducing the social stigma of young people with mental illness in rural communities be developed.Keywords: barrier, mental health services, utilisation, youth
Procedia PDF Downloads 10431 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property
Authors: Neha Verma, Manik Rakhra
Abstract:
Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor
Procedia PDF Downloads 155430 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines
Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya
Abstract:
Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry
Procedia PDF Downloads 317