Search results for: climatic hazards
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1248

Search results for: climatic hazards

198 New Evaluation of the Richness of Cactus (Opuntia) in Active Biomolecules and their Use in Agri-Food, Cosmetic, and Pharmaceutical

Authors: Lazhar Zourgui

Abstract:

Opuntia species are used as local medicinal interventions for chronic diseases and as food sources, mainly because they possess nutritional properties and biological activities. Opuntia ficus-indica (L.) Mill, commonly known as prickly pear or nopal cactus, is the most economically valuable plant in the Cactaceae family worldwide. It is a tropical or subtropical plant native to tropical and subtropical America, which can grow in arid and semi-arid climates. It belongs to the family of angiosperms dicotyledons Cactaceae of which about 1500 species of cacti are known. The Opuntia plant is distributed throughout the world and has great economic potential. There are differences in the phytochemical composition of Opuntia species between wild and domesticated species and within the same species. It is an interesting source of plant bioactive compounds. Bioactive compounds are compounds with nutritional benefits and are generally classified into phenolic and non-phenolic compounds and pigments. Opuntia species are able to grow in almost all climates, for example, arid, temperate, and tropical climates, and their bioactive compound profiles change depending on the species, cultivar, and climatic conditions. Therefore, there is an opportunity for the discovery of new compounds from different Opuntia cultivars. Health benefits of prickly pear are widely demonstrated: There is ample evidence of the health benefits of consuming prickly pear due to its source of nutrients and vitamins and its antioxidant properties due to its content of bioactive compounds. In addition, prickly pear is used in the treatment of hyperglycemia and high cholesterol levels, and its consumption is linked to a lower incidence of coronary heart disease and certain types of cancer. It may be effective in insulin-independent type 2 diabetes mellitus. Opuntia ficus-Indica seed oil has shown potent antioxidant and prophylactic effects. Industrial applications of these bioactive compounds are increasing. In addition to their application in the pharmaceutical industries, bioactive compounds are used in the food industry for the production of nutraceuticals and new food formulations (juices, drinks, jams, sweeteners). In my lecture, I will review in a comprehensive way the phytochemical, nutritional, and bioactive compound composition of the different aerial and underground parts of Opuntia species. The biological activities and applications of Opuntia compounds are also discussed.

Keywords: medicinal plants, cactus, Opuntia, actives biomolecules, biological activities

Procedia PDF Downloads 96
197 An Analysis of the Recent Flood Scenario (2017) of the Southern Districts of the State of West Bengal, India

Authors: Soumita Banerjee

Abstract:

The State of West Bengal is mostly watered by innumerable rivers, and they are different in nature in both the northern and the southern part of the state. The southern part of West Bengal is mainly drained with the river Bhagirathi-Hooghly, and its major distributaries and tributaries have divided this major river basin into many subparts like the Ichamati-Bidyadhari, Pagla-Bansloi, Mayurakshi-Babla, Ajay, Damodar, Kangsabati Sub-basin to name a few. These rivers basically drain the Districts of Bankura, Burdwan, Hooghly, Nadia and Purulia, Birbhum, Midnapore, Murshidabad, North 24-Parganas, Kolkata, Howrah and South 24-Parganas. West Bengal has a huge number of flood-prone blocks in the southern part of the state of West Bengal, the responsible factors for flood situation are the shape and size of the catchment area, its steep gradient starting from plateau to flat terrain, the river bank erosion and its siltation, tidal condition especially in the lower Ganga Basin and very low maintenance of the embankments which are mostly used as communication links. Along with these factors, DVC (Damodar Valley Corporation) plays an important role in the generation (with the release of water) and controlling the flood situation. This year the whole Gangetic West Bengal is being flooded due to high intensity and long duration rainfall, and the release of water from the Durgapur Barrage As most of the rivers are interstate in nature at times floods also take place with release of water from the dams of the neighbouring states like Jharkhand. Other than Embankments, there is no such structural measures for combatting flood in West Bengal. This paper tries to analyse the reasons behind the flood situation this year especially with the help of climatic data collected from the Indian Metrological Department, flood related data from the Irrigation and Waterways Department, West Bengal and GPM (General Precipitation Measurement) data for rainfall analysis. Based on the threshold value derived from the calculation of the past available flood data, it is possible to predict the flood events which may occur in the near future and with the help of social media it can be spread out within a very short span of time to aware the mass. On a larger or a governmental scale, heightening the settlements situated on the either banks of the river can yield a better result than building up embankments.

Keywords: dam failure, embankments, flood, rainfall

Procedia PDF Downloads 219
196 Climate Change Impact on Water Resources Management in Remote Islands Using Hybrid Renewable Energy Systems

Authors: Elissavet Feloni, Ioannis Kourtis, Konstantinos Kotsifakis, Evangelos Baltas

Abstract:

Water inadequacy in small dry islands scattered in the Aegean Sea (Greece) is a major problem regarding Water Resources Management (WRM), especially during the summer period due to tourism. In the present work, various WRM schemes are designed and presented. The WRM schemes take into account current infrastructure and include Rainwater Harvesting tanks and Reverse Osmosis Desalination Units. The energy requirements are covered mainly by wind turbines and/or a seawater pumped storage system. Sizing is based on the available data for population and tourism per island, after taking into account a slight increase in the population (up to 1.5% per year), and it guarantees at least 80% reliability for the energy supply and 99.9% for potable water. Evaluation of scenarios is carried out from a financial perspective, after calculating the Life Cycle Cost (LCC) of each investment for a lifespan of 30 years. The wind-powered desalination plant was found to be the most cost-effective practice, from an economic point of view. Finally, in order to estimate the Climate Change (CC) impact, six different CC scenarios were investigated. The corresponding rate of on-grid versus off-grid energy required for ensuring the targeted reliability for the zero and each climatic scenario was investigated per island. The results revealed that under CC the grid-on energy required would increase and as a result, the reduction in wind turbines and seawater pumped storage systems’ reliability will be in the range of 4 to 44%. However, the range of this percentage change does not exceed 22% per island for all examined CC scenarios. Overall, CC is proposed to be incorporated into the design process for WRM-related projects. Acknowledgements: This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Program «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Development of a combined rain harvesting and renewable energy-based system for covering domestic and agricultural water requirements in small dry Greek Islands” (MIS 5004775).

Keywords: small dry islands, water resources management, climate change, desalination, RES, seawater pumped storage system, rainwater harvesting

Procedia PDF Downloads 113
195 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones

Authors: Mohamed Abdelkareem

Abstract:

Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.

Keywords: GIS, remote sensing, groundwater, Egypt

Procedia PDF Downloads 91
194 An Exploratory Study on the Impact of Climate Change on Design Rainfalls in the State of Qatar

Authors: Abdullah Al Mamoon, Niels E. Joergensen, Ataur Rahman, Hassan Qasem

Abstract:

Intergovernmental Panel for Climate Change (IPCC) in its fourth Assessment Report AR4 predicts a more extreme climate towards the end of the century, which is likely to impact the design of engineering infrastructure projects with a long design life. A recent study in 2013 developed new design rainfall for Qatar, which provides an improved design basis of drainage infrastructure for the State of Qatar under the current climate. The current design standards in Qatar do not consider increased rainfall intensity caused by climate change. The focus of this paper is to update recently developed design rainfalls in Qatar under the changing climatic conditions based on IPCC's AR4 allowing a later revision to the proposed design standards, relevant for projects with a longer design life. The future climate has been investigated based on the climate models released by IPCC’s AR4 and A2 story line of emission scenarios (SRES) using a stationary approach. Annual maximum series (AMS) of predicted 24 hours rainfall data for both wet (NCAR-CCSM) scenario and dry (CSIRO-MK3.5) scenario for the Qatari grid points in the climate models have been extracted for three periods, current climate 2010-2039, medium term climate (2040-2069) and end of century climate (2070-2099). A homogeneous region of the Qatari grid points has been formed and L-Moments based regional frequency approach is adopted to derive design rainfalls. The results indicate no significant changes in the design rainfall on the short term 2040-2069, but significant changes are expected towards the end of the century (2070-2099). New design rainfalls have been developed taking into account climate change for 2070-2099 scenario and by averaging results from the two scenarios. IPCC’s AR4 predicts that the rainfall intensity for a 5-year return period rain with duration of 1 to 2 hours will increase by 11% in 2070-2099 compared to current climate. Similarly, the rainfall intensity for more extreme rainfall, with a return period of 100 years and duration of 1 to 2 hours will increase by 71% in 2070-2099 compared to current climate. Infrastructure with a design life exceeding 60 years should add safety factors taking the predicted effects from climate change into due consideration.

Keywords: climate change, design rainfalls, IDF, Qatar

Procedia PDF Downloads 387
193 A Strategic Water and Energy Project as a Climate Change Adaptation Tool for Israel, Jordan and the Middle East

Authors: Doron Markel

Abstract:

Water availability in most of the Middle East (especially in Jordan) is among the lowest in the world and has been even further exacerbated by the regional climatic change and the reduced rainfall. The Araba Valley in Israel is disconnected from the national water system. On the other hand, the Araba Valley, both in Israel and Jordan, is an excellent area for solar energy gaining. The Dead Sea (Israel and Jordan) is a hypersaline lake which its level declines at a rate of more than 1 m/y. The decline stems from the increasing use of all available freshwater resources that discharge into the Dead Sea and decreasing natural precipitation due to climate change in the Middle East. As an adaptation tool for this humanmade and Climate Change results, a comprehensive water-energy and environmental project were suggested: The Red Sea-Dead Sea Conveyance. It is planned to desalinate the Red Sea water, supply the desalinated water to both Israel and Jordan, and convey the desalination brine to the Dead Sea to stabilize its water level. Therefore, the World Bank had led a multi-discipline feasibility study between 2008 and 2013, that had mainly dealt with the mixing of seawater and Dead Sea Water. The possible consequences of such mixing were precipitation and possible suspension of secondary Gypsum, as well as blooming of Dunaliella red algae. Using a comprehensive hydrodynamic-geochemical model for the Dead Sea, it was predicted that while conveying up to 400 Million Cubic Meters per year of seawater or desalination brine to the Dead Sea, the latter would not be stratified as it was until 1979; hence Gypsum precipitation and algal blooms would be neglecting. Using another hydrodynamic-biological model for the Red Sea, it was predicted the Seawater pump from the Gulf of Eilat would not harm the ecological system of the gulf (including the sensitive coral reef), giving a pump depth of 120-160 m. Based on these studies, a pipeline conveyance was recommended to convey desalination brine to the Dead Sea with the use of a hydropower plant, utilizing the elevation difference of 400 m between the Red Sea and the Dead Sea. The complementary energy would come from solar panels coupled with innovative storage technology, needed to produce a continuous energy production for an appropriate function of the desalination plant. The paper will describe the proposed project as well as the feasibility study results. The possibility to utilize this water-energy-environmental project as a climate change adaptation strategy for both Israel and Jordan will also be discussed.

Keywords: Red Sea, Dead Sea, water supply, hydro-power, Gypsum, algae

Procedia PDF Downloads 108
192 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264

Authors: V. Ziegler, F. Schneider, M. Pesch

Abstract:

With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.

Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection

Procedia PDF Downloads 145
191 Dialectic Relationship between Urban Pattern Structural Methods and Construction Materials in Traditional Settlements

Authors: Sawsan Domi

Abstract:

Identifying urban patterns of traditional settlements perfumed in various ways. One of them through the three-dimensional ‘reading’ of the urban web: the density of structures, the construction materials and the colors used. Objectives of this study are to paraphrase and understand the relation between the formation of the traditional settlements and the shape and structure of their structural method. In the beginning, the study considered the components of the historical neighborhood, which reflected the social and economical effects in the urban planning pattern. Then, by analyzing the main components of the old neighborhood which included: analysis of urban patterns & streets systems, analysis of traditional architectural elements and the construction materials and their usage. ‘’Hamasa’’ Neighborhood in ‘’Al Buraimi’’ Governorate is considered as one of the most important archaeological sites in the Sultanate of Oman. The vivid features of this archaeological site are the living witness to the genius of the Omani person and his unique architecture. ‘’Hamasa’’ Neighborhood is also considered as the oldest human settlement at ‘’Al Buraimi’’ Governorate. It used to be the gathering area for Arab and Omani tribes who are coming from other governorates of Oman. In this old settlement, local characters were created to meet the climate problems and the social, religious requirements of the life. Traditional buildings were built of materials that were available in the surround environment and within hand reach. The Historical component was containing four main separate neighborhoods. The morphological structure of ‘’Hamasa’’ was characterized by a continuous and densely built-up pattern, featuring close interdependence between the spatial and functional pattern. The streets linked the plots, the marketplace and the open areas. Consequently, the traditional fabric had narrow streets with one- and two- storey houses. The material used in building facilities at ‘’Hamasa’' historical are from the traditionally used materials. These materials were cleverly used in building of local facilities. Most of these materials are locally made and formed, and used by the locals. ‘’Hamasa’’ neighborhood is an example of analyzing the urban patterns and geometrical features. The old ‘’ Hamasa’’ retains the patterns of its old settlements. Urban patterns were defined by both forms and structure. The traditional architecture of ‘’Hamasa’’ neighborhood has evolved as a direct result of its climatic conditions. The study figures out that the neighborhood characterized by the used construction materials, the scope of the residential structures and by the streets system. All formed the urban pattern of the settlement.

Keywords: urban pattern, construction materials, neighborhood, architectural elements, historical

Procedia PDF Downloads 90
190 Self-Sensing Concrete Nanocomposites for Smart Structures

Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi

Abstract:

In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.

Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring

Procedia PDF Downloads 225
189 Disability Management and Occupational Health Enhancement Program in Hong Kong Hospital Settings

Authors: K. C. M. Wong, C. P. Y. Cheng, K. Y. Chan, G. S. C. Fung, T. F. O. Lau, K. F. C. Leung, J. P. C. Fok

Abstract:

Hospital Authority (HA) is the statutory body to manage all public hospitals in Hong Kong. Occupational Care Medicine Service (OMCS) is an in-house multi-disciplinary team responsible for injury management in HA. Hospital administrative services (AS) provides essential support in hospital daily operation to facilitate the provision of quality healthcare services. An occupational health enhancement program in Tai Po Hospital (TPH) domestic service supporting unit (DSSU) was piloted in 2013 with satisfactory outcome, the keys to success were staff engagement and management support. Riding on the success, the program was rolled out to another 5 AS departments of Alice Ho Miu Ling Nethersole Hospital (AHNH) and TPH in 2015. This paper highlights the indispensable components of disability management and occupational health enhancement program in hospital settings. Objectives: 1) Facilitate workplace to support staff with health affecting work problem, 2) Enhance staff’s occupational health. Methodology: Hospital Occupational Safety and Health (OSH) team and AS departments (catering, linen services, and DSSU) of AHNH and TPH worked closely with OMCS. Focus group meetings and worksite visits were conducted with frontline staff engagement. OSH hazards were identified with corresponding OSH improvement measures introduced, e.g., invention of high dusting device to minimize working at height; tailor-made linen cart to minimize back bending at work, etc. Specific MHO trainings were offered to each AS department. A disability management workshop was provided to supervisors in order to enhance their knowledge and skills in return-to-work (RTW) facilitation. Based on injured staff's health condition, OMCS would provide work recommendation, and RTW plan was formulated with engagement of staff and their supervisors. Genuine communication among stakeholders with expectation management paved the way for realistic goals setting and success in our program. Outcome: After implementation of the program, a significant drop of 26% in musculoskeletal disorders related sickness absence day was noted in 2016 as compared to the average of 2013-2015. The improvement was postulated by innovative OSH improvement measures, teamwork, staff engagement and management support. Staff and supervisors’ feedback were very encouraging that 90% respondents rated very satisfactory in program evaluation. This program exemplified good work sharing among departments to support staff in need.

Keywords: disability management, occupational health, return to work, occupational medicine

Procedia PDF Downloads 201
188 The Predictive Utility of Subjective Cognitive Decline Using Item Level Data from the Everyday Cognition (ECog) Scales

Authors: J. Fox, J. Randhawa, M. Chan, L. Campbell, A. Weakely, D. J. Harvey, S. Tomaszewski Farias

Abstract:

Early identification of individuals at risk for conversion to dementia provides an opportunity for preventative treatment. Many older adults (30-60%) report specific subjective cognitive decline (SCD); however, previous research is inconsistent in terms of what types of complaints predict future cognitive decline. The purpose of this study is to identify which specific complaints from the Everyday Cognition Scales (ECog) scales, a measure of self-reported concerns for everyday abilities across six cognitive domains, are associated with: 1) conversion from a clinical diagnosis of normal to either MCI or dementia (categorical variable) and 2) progressive cognitive decline in memory and executive function (continuous variables). 415 cognitively normal older adults were monitored annually for an average of 5 years. Cox proportional hazards models were used to assess associations between self-reported ECog items and progression to impairment (MCI or dementia). A total of 114 individuals progressed to impairment; the mean time to progression was 4.9 years (SD=3.4 years, range=0.8-13.8). Follow-up models were run controlling for depression. A subset of individuals (n=352) underwent repeat cognitive assessments for an average of 5.3 years. For those individuals, mixed effects models with random intercepts and slopes were used to assess associations between ECog items and change in neuropsychological measures of episodic memory or executive function. Prior to controlling for depression, subjective concerns on five of the eight Everyday Memory items, three of the nine Everyday Language items, one of the seven Everyday Visuospatial items, two of the five Everyday Planning items, and one of the six Everyday Organization items were associated with subsequent diagnostic conversion (HR=1.25 to 1.59, p=0.003 to 0.03). However, after controlling for depression, only two specific complaints of remembering appointments, meetings, and engagements and understanding spoken directions and instructions were associated with subsequent diagnostic conversion. Episodic memory in individuals reporting no concern on ECog items did not significantly change over time (p>0.4). More complaints on seven of the eight Everyday Memory items, three of the nine Everyday Language items, and three of the seven Everyday Visuospatial items were associated with a decline in episodic memory (Interaction estimate=-0.055 to 0.001, p=0.003 to 0.04). Executive function in those reporting no concern on ECog items declined slightly (p <0.001 to 0.06). More complaints on three of the eight Everyday Memory items and three of the nine Everyday Language items were associated with a decline in executive function (Interaction estimate=-0.021 to -0.012, p=0.002 to 0.04). These findings suggest that specific complaints across several cognitive domains are associated with diagnostic conversion. Specific complaints in the domains of Everyday Memory and Language are associated with a decline in both episodic memory and executive function. Increased monitoring and treatment of individuals with these specific SCD may be warranted.

Keywords: alzheimer’s disease, dementia, memory complaints, mild cognitive impairment, risk factors, subjective cognitive decline

Procedia PDF Downloads 75
187 Visitor Management in the National Parks: Recreational Carrying Capacity Assessment of Çıralı Coast, Turkey

Authors: Tendü H. Göktuğ, Gönül T. İçemer, Bülent Deniz

Abstract:

National parks, which are rich in natural and cultural resources values are protected in the context of the idea to develop sustainability, are among the most important recreated areas demanding with each passing day. Increasing recreational use or unplanned use forms negatively affect the resource values and visitor satisfaction. The intent of national parks management is to protect the natural and cultural resource values and to provide the visitors with a quality of recreational experience, as well. In this context, the current studies to improve the appropriate tourism and recreation planning and visitor management, approach have focused on recreational carrying capacity analysis. The aim of this study is to analyze recreational carrying capacity of Çıralı Coast in the Bey Mountains Coastal National Park to compare the analyze results with the current usage format and to develop alternative management strategies. In the first phase of the study, the annual and daily visitations, geographic, bio-physical, and managerial characteristics of the park and the type of recreational usage and the recreational areas were analyzed. In addition to these, ecological observations were carried out in order to determine recreational-based pressures on the ecosystems. On-site questionnaires were administrated to a sample of 284 respondents in the August 2015 - 2016 to collect data concerning the demographics and visit characteristics. The second phase of the study, the coastal area separated into four different usage zones and the methodology proposed by Cifuentes (1992) was used for capacity analyses. This method supplies the calculation of physical, real and effective carrying capacities by using environmental, ecological, climatic and managerial parameters in a formulation. Expected numbers which estimated three levels of carrying capacities were compared to current numbers of national parks’ visitors. In the study, it was determined that the current recreational uses in the north of the beach were caused by ecological pressures, and the current numbers in the south of beach much more than estimated numbers of visitors. Based on these results management strategies were defined and the appropriate management tools were developed in accordance with these strategies. The authors are grateful for the financial support of this project by The Scientific and Technological Research Council of Turkey (No: 114O344)

Keywords: Çıralı Coast, national parks, recreational carrying capacity, visitor management

Procedia PDF Downloads 271
186 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 102
185 Understanding the Common Antibiotic and Heavy Metal Resistant-Bacterial Load in the Textile Industrial Effluents

Authors: Afroza Parvin, Md. Mahmudul Hasan, Md. Rokunozzaman, Papon Debnath

Abstract:

The effluents of textile industries have considerable amounts of heavy metals, causing potential microbial metal loads if discharged into the environment without treatment. Aim: In this present study, both lactose and non-lactose fermenting bacterial isolates were isolated from textile industrial effluents of a specific region of Bangladesh, named Savar, to compare and understand the load of heavy metals in these microorganisms determining the effects of heavy metal resistance properties on antibiotic resistance. Methods: Five different textile industrial canals of Savar were selected, and effluent samples were collected in 2016 between June to August. Total bacterial colony (TBC) was counted for day 1 to day 5 for 10-6 dilution of samples to 10-10 dilution. All the isolates were isolated and selected using 4 differential media, and tested for the determination of minimum inhibitory concentration (MIC) of heavy metals and antibiotic susceptibility test with plate assay method and modified Kirby-Bauer disc diffusion method, respectively. To detect the combined effect of heavy metals and antibiotics, a binary exposure experiment was performed, and to understand the plasmid profiling plasmid DNA was extracted by alkaline lysis method of some selective isolates. Results: Most of the cases, the colony forming units (CFU) per plate for 50 ul diluted sample were uncountable at 10-6 dilution, however, countable for 10-10 dilution and it didn’t vary much from canal to canal. A total of 50 Shigella, 50 Salmonella, and 100 E.coli (Escherichia coli) like bacterial isolates were selected for this study where the MIC was less than or equal to 0.6 mM for 100% Shigella and Salmonella like isolates, however, only 3% E. coli like isolates had the same MIC for nickel (Ni). The MIC for chromium (Cr) was less than or equal to 2.0 mM for 16% Shigella, 20% Salmonella, and 17% E. coli like isolates. Around 60% of both Shigella and Salmonella, but only 20% of E.coli like isolates had a MIC of less than or equal to 1.2 mM for lead (Pb). The most prevalent resistant pattern for azithromycin (AZM) for Shigella and Salmonella like isolates was found 38% and 48%, respectively; however, for E.coli like isolates, the highest pattern (36%) was found for sulfamethoxazole-trimethoprim (SXT). In the binary exposure experiment, antibiotic zone of inhibition was mostly increased in the presence of heavy metals for all types of isolates. The highest sized plasmid was found 21 Kb and 14 Kb for lactose and non-lactose fermenting isolates, respectively. Conclusion: Microbial resistance to antibiotics and metal ions, has potential health hazards because these traits are generally associated with transmissible plasmids. Microorganisms resistant to antibiotics and tolerant to metals appear as a result of exposure to metal-contaminated environments.

Keywords: antibiotics, effluents, heavy metals, minimum inhibitory concentration, resistance

Procedia PDF Downloads 314
184 Effect of Chronic Exposure to Diazinon on Glucose Homeostasis and Oxidative Stress in Pancreas of Rats and the Potential Role of Mesna in Ameliorating This Effect

Authors: Azza El-Medany, Jamila El-Medany

Abstract:

Residential and agricultural pesticide use is widespread in the world. Their extensive and indiscriminative use, in addition with their ability to interact with biological systems other than their primary targets constitute a health hazards to both humans and animals. The toxic effects of pesticides include alterations in metabolism; there is a lack of knowledge that organophosphates can cause pancreatic toxicity. The primary goal of this work is to study the effects of chronic exposure to Diazinon an organophosphate used in agriculture on pancreatic tissues and evaluate the ameliorating effect of Mesna as antioxidant on the toxicity of Diazinon on pancreatic tissues.40 adult male rats, their weight ranged between 300-350 g. The rats were classified into three groups; control (10 rats) was received corn oil at a dose of 1 0 mg/kg/day by gavage once a day for 2 months. Diazinon (15 rats) was received Diazinon at a dose of 10 mg/kg/day dissolved in corn oil by gavage once a day for 2 months. Treated group (15 rats), were received Mesna 180mg/kg once a week by gavage 15 minutes before administration of Diazinon for 2 months. At the end of the experiment, animals were anesthetized, blood samples were taken by cardiac puncture for glucose and insulin assays and pancreas was removed and divided into 3 portions; first portion for histopathological study; second portion for ultrastructural study; third portion for biochemical study using Elisa Kits including determination of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), myeloperoxidase activity (MPO), interleukin 1β (IL-1β). A significant increase in the levels of MDA, TNF-α, MPO activity, IL-1β, serum glucose levels in the toxicated group with Diazinon were observed, while a significant reduction was noticed in GSH in serum insulin levels. After treatment with Mesna a significant reduction was observed in the previously mentioned parameters except that there was a significant rise in GSH in insulin levels. Histopathological and ultra-structural studies showed destruction in pancreatic tissues and β cells were the most affected cells among the injured islets as compared with the control group. The current study try to spot light about the effects of chronic exposure to pesticides on vital organs as pancreas also the role of oxidative stress that may be induced by them in evoking their toxicity. This study shows the role of antioxidant drugs in ameliorating or preventing the toxicity. This appears to be a promising approach that may be considered as a complementary treatment of pesticide toxicity.

Keywords: Diazinon, reduced glutathione, myeloperoxidase activity, tumor necrosis factor α, Mesna

Procedia PDF Downloads 233
183 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 60
182 Management of Soil Borne Plant Diseases Using Agricultural Waste Residues as Green Waste and Organic Amendment

Authors: Temitayo Tosin Alawiye

Abstract:

Plant disease control is important in maintaining plant vigour, grain quantity, abundance of food, feed, and fibre produced by farmers all over the world. Farmers make use of different methods in controlling these diseases but one of the commonly used method is the use of chemicals. However, the continuous and excessive usages of these agrochemicals pose a danger to the environment, man and wildlife. The more the population growth the more the food security challenge which leads to more pressure on agronomic growth. Agricultural waste also known as green waste are the residues from the growing and processing of raw agricultural products such as fruits, vegetables, rice husk, corn cob, mushroom growth medium waste, coconut husk. They are widely used in land bioremediation, crop production and protection which include disease control. These agricultural wastes help the crop by improving the soil fertility, increase soil organic matter and reduce in many cases incidence and severity of disease. The objective was to review the agricultural waste that has worked effectively against certain soil-borne diseases such as Fusarium oxysporum, Pythiumspp, Rhizoctonia spp so as to help minimize the use of chemicals. Climate change is a major problem of agriculture and vice versa. Climate change and agriculture are interrelated. Change in climatic conditions is already affecting agriculture with effects unevenly distributed across the world. It will increase the risk of food insecurity for some vulnerable groups such as the poor in Sub Saharan Africa. The food security challenge will become more difficult as the world will need to produce more food estimated to feed billions of people in the near future with Africa likely to be the biggest hit. In order to surmount this hurdle, smallholder farmers in Africa must embrace climate-smart agricultural techniques and innovations which includes the use of green waste in agriculture, conservative agriculture, pasture and manure management, mulching, intercropping, etc. Training and retraining of smallholder farmers on the use of green energy to mitigate the effect of climate change should be encouraged. Policy makers, academia, researchers, donors, and farmers should pay more attention to the use of green energy as a way of reducing incidence and severity of soilborne plant diseases to solve looming food security challenges.

Keywords: agricultural waste, climate change, green energy, soil borne plant disease

Procedia PDF Downloads 263
181 Exposure to Radon on Air in Tourist Caves in Bulgaria

Authors: Bistra Kunovska, Kremena Ivanova, Jana Djounova, Desislava Djunakova, Zdenka Stojanovska

Abstract:

The carcinogenic effects of radon as a radioactive noble gas have been studied and show a strong correlation between radon exposure and lung cancer occurrence, even in the case of low radon levels. The major part of the natural radiation dose in humans is received by inhaling radon and its progenies, which originates from the decay chain of U-238. Indoor radon poses a substantial threat to human health when build-up occurs in confined spaces such as homes, mines and caves and the risk increases with the duration of radon exposure and is proportional to both the radon concentration and the time of exposure. Tourist caves are a case of special environmental conditions that may be affected by high radon concentration. Tourist caves are a recognized danger in terms of radon exposure to cave workers (guides, employees working in shops built above the cave entrances, etc.), but due to the sensitive nature of the cave environment, high concentrations cannot be easily removed. Forced ventilation of the air in the caves is considered unthinkable due to the possible harmful effects on the microclimate, flora and fauna. The risks to human health posed by exposure to elevated radon levels in caves are not well documented. Various studies around the world often detail very high concentrations of radon in caves and exposure of employees but without a follow-up assessment of the overall impact on human health. This study was developed in the implementation of a national project to assess the potential health effects caused by exposure to elevated levels of radon in buildings with public access under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018. The purpose of the work is to assess the radon level in Bulgarian caves and the exposure of the visitors and workers. The number of caves (sampling size) was calculated for simple random selection from total available caves 65 (sampling population) are 13 caves with confidence level 95 % and confidence interval (margin of error) approximately 25 %. A measurement of the radon concentration in air at specific locations in caves was done by using CR-39 type nuclear track-etch detectors that were placed by the participants in the research team. Despite the fact that all of the caves were formed in karst rocks, the radon levels were rather different from each other (97–7575 Bq/m3). An assessment of the influence of the orientation of the caves in the earth's surface (horizontal, inclined, vertical) on the radon concentration was performed. Evaluation of health hazards and radon risk exposure causing by inhaling the radon and its daughter products in each surveyed caves was done. Reducing the time spent in the cave has been recommended in order to decrease the exposure of workers.

Keywords: tourist caves, radon concentration, exposure, Bulgaria

Procedia PDF Downloads 182
180 Water Supply and Demand Analysis for Ranchi City under Climate Change Using Water Evaluation and Planning System Model

Authors: Pappu Kumar, Ajai Singh, Anshuman Singh

Abstract:

There are different water user sectors such as rural, urban, mining, subsistence and commercial irrigated agriculture, commercial forestry, industry, power generation which are present in the catchment in Subarnarekha River Basin and Ranchi city. There is an inequity issue in the access to water. The development of the rural area, construction of new power generation plants, along with the population growth, the requirement of unmet water demand and the consideration of environmental flows, the revitalization of small-scale irrigation schemes is going to increase the water demands in almost all the water-stressed catchment. The WEAP Model was developed by the Stockholm Environment Institute (SEI) to enable evaluation of planning and management issues associated with water resources development. The WEAP model can be used for both urban and rural areas and can address a wide range of issues including sectoral demand analyses, water conservation, water rights and allocation priorities, river flow simulation, reservoir operation, ecosystem requirements and project cost-benefit analyses. This model is a tool for integrated water resource management and planning like, forecasting water demand, supply, inflows, outflows, water use, reuse, water quality, priority areas and Hydropower generation, In the present study, efforts have been made to access the utility of the WEAP model for water supply and demand analysis for Ranchi city. A detailed works have been carried out and it was tried to ascertain that the WEAP model used for generating different scenario of water requirement, which could help for the future planning of water. The water supplied to Ranchi city was mostly contributed by our study river, Hatiya reservoir and ground water. Data was collected from various agencies like PHE Ranchi, census data of 2011, Doranda reservoir and meteorology department etc. This collected and generated data was given as input to the WEAP model. The model generated the trends for discharge of our study river up to next 2050 and same time also generated scenarios calculating our demand and supplies for feature. The results generated from the model outputs predicting the water require 12 million litter. The results will help in drafting policies for future regarding water supplies and demands under changing climatic scenarios.

Keywords: WEAP model, water demand analysis, Ranchi, scenarios

Procedia PDF Downloads 415
179 Reducing the Impact of Pathogenic Fungi on Barley Using Bacteria: Bacterial Biocontrol in the Barley-Malt-Beer Industry

Authors: Eusèbe Gnonlonfoun, Xavier Framboisier, Michel Fick, Emmanuel Rondags

Abstract:

Pathogenic fungi represent a generic problem for cereals, including barley, as they can produce a number of thermostable toxic metabolites such as mycotoxins that contaminate plants and food products, leading to serious health issues for humans and animals and causing significant losses in global food production. In addition, mycotoxins represent a significant technological concern for the malting and brewing industries, as they may affect the quality and safety of raw materials (barley and malt) and final products (beer). Moreover, this situation is worsening due to the highly variable climatic conditions that favor microbial development and the societal desire to reduce the use of phytosanitary products, including fungicides. In this complex environmental, regulatory and economic context for the French barley-malt-beer industry, this project aims to develop an innovative biocontrol process by using technological bacteria, isolated from infection-resistant barley cultures, that are able to reduce the development of spoilage fungi and the associated mycotoxin production. The experimental approach consists of i) coculturing bacterial and pathogenic fungal strains in solid and liquid media to access the growth kinetics of these microorganisms and to evaluate the impact of these bacteria on fungal growth and mycotoxin production; then ii) the results will be used to carry out a micro-malting process in order to develop the aforementioned process, and iii) the technological and sanitary properties of the generated barley malts will finally be evaluated in order to validate the biocontrol process developed. The process is expected to make it possible to guarantee, with controlled costs, an irreproachable hygienic and technological quality of the malt, despite the increasingly complex and variable conditions for barley production. Thus, the results will not only make it possible to maintain the dominant world position of the French barley-malt chain but will also allow it to conquer emerging markets, mainly in Africa and Asia. The use of this process will also contribute to the reduction of the use of phytosanitary products in the field for barley production while reducing the level of contamination of malting plant effluents. Its environmental impact would therefore be significant, especially considering that barley is the fourth most-produced cereal in the world.

Keywords: barley, pathogenic fungi, mycotoxins, malting, bacterial biocontrol

Procedia PDF Downloads 168
178 The Interaction of Climate Change and Human Health in Italy

Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta

Abstract:

The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.

Keywords: heat waves, Italy, local warming, temperature

Procedia PDF Downloads 237
177 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 140
176 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods

Authors: Thabo M. Bafitlhile, Adewole Oladele

Abstract:

Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.

Keywords: drainage, estimate, evaluation, floods, flood forecasting

Procedia PDF Downloads 363
175 Development of a Framework for Assessing Public Health Risk Due to Pluvial Flooding: A Case Study of Sukhumvit, Bangkok

Authors: Pratima Pokharel

Abstract:

When sewer overflow due to rainfall in urban areas, this leads to public health risks when an individual is exposed to that contaminated floodwater. Nevertheless, it is still unclear the extent to which the infections pose a risk to public health. This study analyzed reported diarrheal cases by month and age in Bangkok, Thailand. The results showed that the cases are reported higher in the wet season than in the dry season. It was also found that in Bangkok, the probability of infection with diarrheal diseases in the wet season is higher for the age group between 15 to 44. However, the probability of infection is highest for kids under 5 years, but they are not influenced by wet weather. Further, this study introduced a vulnerability that leads to health risks from urban flooding. This study has found some vulnerability variables that contribute to health risks from flooding. Thus, for vulnerability analysis, the study has chosen two variables, economic status, and age, that contribute to health risk. Assuming that the people's economic status depends on the types of houses they are living in, the study shows the spatial distribution of economic status in the vulnerability maps. The vulnerability map result shows that people living in Sukhumvit have low vulnerability to health risks with respect to the types of houses they are living in. In addition, from age the probability of infection of diarrhea was analyzed. Moreover, a field survey was carried out to validate the vulnerability of people. It showed that health vulnerability depends on economic status, income level, and education. The result depicts that people with low income and poor living conditions are more vulnerable to health risks. Further, the study also carried out 1D Hydrodynamic Advection-Dispersion modelling with 2-year rainfall events to simulate the dispersion of fecal coliform concentration in the drainage network as well as 1D/2D Hydrodynamic model to simulate the overland flow. The 1D result represents higher concentrations for dry weather flows and a large dilution of concentration on the commencement of a rainfall event, resulting in a drop of the concentration due to runoff generated after rainfall, whereas the model produced flood depth, flood duration, and fecal coliform concentration maps, which were transferred to ArcGIS to produce hazard and risk maps. In addition, the study also simulates the 5-year and 10-year rainfall simulations to show the variation in health hazards and risks. It was found that even though the hazard coverage is very high with a 10-year rainfall events among three rainfall events, the risk was observed to be the same with a 5-year and 10-year rainfall events.

Keywords: urban flooding, risk, hazard, vulnerability, health risk, framework

Procedia PDF Downloads 68
174 Strategic Interventions to Combat Socio-economic Impacts of Drought in Thar - A Case Study of Nagarparkar

Authors: Anila Hayat

Abstract:

Pakistan is one of those developing countries that are least involved in emissions but has the most vulnerable environmental conditions. Pakistan is ranked 8th in most affected countries by climate change on the climate risk index 1992-2011. Pakistan is facing severe water shortages and flooding as a result of changes in rainfall patterns, specifically in the least developed areas such as Tharparkar. Nagarparkar, once an attractive tourist spot located in Tharparkar because of its tropical desert climate, is now facing severe drought conditions for the last few decades. This study investigates the present socio-economic situation of local communities, major impacts of droughts and their underlying causes and current mitigation strategies adopted by local communities. The study uses both secondary (quantitative in nature) and primary (qualitative in nature) methods to understand the impacts and explore causes on the socio-economic life of local communities of the study area. The relevant data has been collected through household surveys using structured questionnaires, focus groups and in-depth interviews of key personnel from local and international NGOs to explore the sensitivity of impacts and adaptation to droughts in the study area. This investigation is limited to four rural communities of union council Pilu of Nagarparkar district, including Bheel, BhojaBhoon, Mohd Rahan Ji Dhani and Yaqub Ji Dhani villages. The results indicate that drought has caused significant economic and social hardships for the local communities as more than 60% of the overall population is dependent on rainfall which has been disturbed by irregular rainfall patterns. The decline in Crop yields has forced the local community to migrate to nearby areas in search of livelihood opportunities. Communities have not undertaken any appropriate adaptive actions to counteract the adverse effect of drought; they are completely dependent on support from the government and external aid for survival. Respondents also reported that poverty is a major cause of their vulnerability to drought. An increase in population, limited livelihood opportunities, caste system, lack of interest from the government sector, unawareness shaped their vulnerability to drought and other social issues. Based on the findings of this study, it is recommended that the local authorities shall create awareness about drought hazards and improve the resilience of communities against drought. It is further suggested to develop, introduce and implement water harvesting practices at the community level to promote drought-resistant crops.

Keywords: migration, vulnerability, awareness, Drought

Procedia PDF Downloads 127
173 Food for Health: Understanding the Importance of Food Safety in the Context of Food Security

Authors: Carmen J. Savelli, Romy Conzade

Abstract:

Background: Access to sufficient amounts of safe and nutritious food is a basic human necessity, required to sustain life and promote good health. Food safety and food security are therefore inextricably linked, yet the importance of food safety in this relationship is often overlooked. Methodologies: A literature review and desk study were conducted to examine existing frameworks for discussing food security, especially from an international perspective, to determine the entry points for enhancing considerations for food safety in national and international policies. Major Findings: Food security is commonly understood as the state when all people at all times have physical, social and economic access to sufficient, safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life. Conceptually, food security is built upon four pillars including food availability, access, utilization and stability. Within this framework, the safety of food is often wrongly assumed as a given. However, in places where food supplies are insufficient, coping mechanisms for food insecurity are primarily focused on access to food without considerations for ensuring safety. Under such conditions, hygiene and nutrition are often ignored as people shift to less nutritious diets and consume more potentially unsafe foods, in which chemical, microbiological, zoonotic and other hazards can pose serious, acute and chronic health risks. While food supplies might be safe and nutritious, if consumed in quantities insufficient to support normal growth, health and activity, the result is hunger and famine. Recent estimates indicate that at least 842 million people, or roughly one in eight, still suffer from chronic hunger. Even if people eat enough food that is safe, they will become malnourished if the food does not provide the proper amounts of micronutrients and/or macronutrients to meet daily nutritional requirements, resulting in under- or over-nutrition. Two billion people suffer from one or more micronutrient deficiencies and over half a billion adults are obese. Access to sufficient amounts of nutritious food is not enough. If food is unsafe, whether arising from poor quality supplies or inadequate treatment and preparation, it increases the risk of foodborne infections such as diarrhoea. 70% of diarrhoea episodes occurring annually in children under five are due to biologically contaminated food. Conclusions: An integrated approach is needed where food safety and nutrition are systematically introduced into mainstream food system policies and interventions worldwide in order to achieve health and development goals. A new framework, “Food for Health” is proposed to guide policy development and requires all three aspects of food security to be addressed in balance: sufficiency, nutrition and safety.

Keywords: food safety, food security, nutrition, policy

Procedia PDF Downloads 413
172 Nuclear Near Misses and Their Learning for Healthcare

Authors: Nick Woodier, Iain Moppett

Abstract:

Background: It is estimated that one in ten patients admitted to hospital will suffer an adverse event in their care. While the majority of these will result in low harm, patients are being significantly harmed by the processes meant to help them. Healthcare, therefore, seeks to make improvements in patient safety by taking learning from other industries that are perceived to be more mature in their management of safety events. Of particular interest to healthcare are ‘near misses,’ those events that almost happened but for an intervention. Healthcare does not have any guidance as to how best to manage and learn from near misses to reduce the chances of harm to patients. The authors, as part of a larger study of near-miss management in healthcare, sought to learn from the UK nuclear sector to develop principles for how healthcare can identify, report, and learn from near misses to improve patient safety. The nuclear sector was chosen as an exemplar due to its status as an ultra-safe industry. Methods: A Grounded Theory (GT) methodology, augmented by a scoping review, was used. Data collection included interviews, scenario discussion, field notes, and the literature. The review protocol is accessible online. The GT aimed to develop theories about how nuclear manages near misses with a focus on defining them and clarifying how best to support reporting and analysis to extract learning. Near misses related to radiation release or exposure were focused on. Results: Eightnuclear interviews contributed to the GT across nuclear power, decommissioning, weapons, and propulsion. The scoping review identified 83 articles across a range of safety-critical industries, with only six focused on nuclear. The GT identified that nuclear has a particular focus on precursors and low-level events, with regulation supporting their management. Exploration of definitions led to the recognition of the importance of several interventions in a sequence of events, but that do not solely rely on humans as these cannot be assumed to be robust barriers. Regarding reporting and analysis, no consistent methods were identified, but for learning, the role of operating experience learning groups was identified as an exemplar. The safety culture across nuclear, however, was heard to vary, which undermined reporting of near misses and other safety events. Some parts of the industry described that their focus on near misses is new and that despite potential risks existing, progress to mitigate hazards is slow. Conclusions: Healthcare often sees ‘nuclear,’ as well as other ultra-safe industries such as ‘aviation,’ as homogenous. However, the findings here suggest significant differences in safety culture and maturity across various parts of the nuclear sector. Healthcare can take learning from some aspects of management of near misses in nuclear, such as how they are defined and how learning is shared through operating experience networks. However, healthcare also needs to recognise that variability exists across industries, and comparably, it may be more mature in some areas of safety.

Keywords: culture, definitions, near miss, nuclear safety, patient safety

Procedia PDF Downloads 99
171 Application of the State of the Art of Hydraulic Models to Manage Coastal Problems, Case Study: The Egyptian Mediterranean Coast Model

Authors: Alsayed Ibrahim Diwedar, Ahmed ElKut, Mohamed Yossef

Abstract:

Coastal problems are stressing the coastal environment due to its complexity. The dynamic interaction between the sea and the land results in serious problems that threaten coastal areas worldwide, in addition to human interventions and activities. This makes the coastal environment highly vulnerable to natural processes like flooding, erosion, and the impact of human activities as pollution. Protecting and preserving this vulnerable coastal zone with its valuable ecosystems calls for addressing the coastal problems. This, in the end, will support the sustainability of the coastal communities and maintain the current and future generations. Consequently applying suitable management strategies and sustainable development that consider the unique characteristics of the coastal system is a must. The coastal management philosophy aims to solve the conflicts of interest between human development activities and this dynamic nature. Modeling emerges as a successful tool that provides support to decision-makers, engineers, and researchers for better management practices. Modeling tools proved that they are accurate and reliable in prediction. With its capability to integrate data from various sources such as bathymetric surveys, satellite images, and meteorological data, it offers the possibility for engineers and scientists to understand this complex dynamic system and get in-depth into the interaction between both the natural and human-induced factors. Enabling decision makers to make informed choices and develop effective strategies for sustainable development and risk mitigation. The application of modeling tools supports the evaluation of various scenarios by affording the possibility to simulate and forecast different coastal processes from the hydrodynamic and wave actions and the resulting flooding and erosion. The state-of-the-art application of modeling tools in coastal management allows for better understanding and predicting coastal processes, optimizing infrastructure planning and design, supporting ecosystem-based approaches, assessing climate change impacts, managing hazards, and finally facilitating stakeholder engagement. This paper emphasizes the role of hydraulic models in enhancing the management of coastal problems by discussing the diverse applications of modeling in coastal management. It highlights the modelling role in understanding complex coastal processes, and predicting outcomes. The importance of informing decision-makers with modeling results which gives technical and scientific support to achieve sustainable coastal development and protection.

Keywords: coastal problems, coastal management, hydraulic model, numerical model, physical model

Procedia PDF Downloads 12
170 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 543
169 Upward Spread Forced Smoldering Phenomenon: Effects and Applications

Authors: Akshita Swaminathan, Vinayak Malhotra

Abstract:

Smoldering is one of the most persistent types of combustion which can take place for very long periods (hours, days, months) if there is an abundance of fuel. It causes quite a notable number of accidents and is one of the prime suspects for fire and safety hazards. It can be ignited with weaker ignition and is more difficult to suppress than flaming combustion. Upward spread smoldering is the case in which the air flow is parallel to the direction of the smoldering front. This type of smoldering is quite uncontrollable, and hence, there is a need to study this phenomenon. As compared to flaming combustion, a smoldering phenomenon often goes unrecognised and hence is a cause for various fire accidents. A simplified experimental setup was raised to study the upward spread smoldering, its effects due to varying forced flow and its effects when it takes place in the presence of external heat sources and alternative energy sources such as acoustic energy. Linear configurations were studied depending on varying forced flow effects on upward spread smoldering. Effect of varying forced flow on upward spread smoldering was observed and studied: (i) in the presence of external heat source (ii) in the presence of external alternative energy sources (acoustic energy). The role of ash removal was observed and studied. Results indicate that upward spread forced smoldering was affected by various key controlling parameters such as the speed of the forced flow, surface orientation, interspace distance (distance between forced flow and the pilot fuel). When an external heat source was placed on either side of the pilot fuel, it was observed that the smoldering phenomenon was affected. The surface orientation and interspace distance between the external heat sources and the pilot fuel were found to play a huge role in altering the regression rate. Lastly, by impinging an alternative energy source in the form of acoustic energy on the smoldering front, it was observed that varying frequencies affected the smoldering phenomenon in different ways. The surface orientation also played an important role. This project highlights the importance of fire and safety hazard and means of better combustion for all kinds of scientific research and practical applications. The knowledge acquired from this work can be applied to various engineering systems ranging from aircrafts, spacecrafts and even to buildings fires, wildfires and help us in better understanding and hence avoiding such widespread fires. Various fire disasters have been recorded in aircrafts due to small electric short circuits which led to smoldering fires. These eventually caused the engine to catch fire that cost damage to life and property. Studying this phenomenon can help us to control, if not prevent, such disasters.

Keywords: alternative energy sources, flaming combustion, ignition, regression rate, smoldering

Procedia PDF Downloads 135