Search results for: Palm Fiber
515 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact
Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze
Abstract:
Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric
Procedia PDF Downloads 170514 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats
Authors: S. Mohammadzadehmoghadam, Y. Dong
Abstract:
In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.Keywords: electrospinning, gelatin, silk fibroin, mechanical properties, nanocomposites
Procedia PDF Downloads 156513 Proposal for Sustainable Construction of a New College Hostel Building
Authors: Reshma Raskar-Phule, Abhay Shinde, Manesh Konkani, Rohit Nighot, Shrirang Mahajan, Viraj Thorat
Abstract:
Sustainability in construction projects can be considered from three dimensions - environment, economy and society. Key concepts of sustainable construction include the protection of the natural environment, choice of non-toxic materials, reduction and reuse of resources, waste minimization, and life cycle analysis. The present paper attempts to identify and analyze the use of sustainable construction materials for a new college hostel building in terms of sustainability development indices (SDIs). Low SDI materials, say as composite fiberglass reinforcement (SDI 4074.96), compressed earth blocks (SDI 0.47), and fiber-reinforced doors (SDI 0.13) are the proposed sustainable materials for the hostel building. Indian Green Building Certification (IGBC) is applied for the hostel building and it earns 5 points out of total 16 points for criterion 5 – Building Materials and Resources of IGBC.Keywords: sustainable development, construction materials, IGBC, hostel building
Procedia PDF Downloads 116512 Soil Reinforcement by Fibers Using Triaxial Compression Test
Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima
Abstract:
In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.Keywords: soil, monotonic, triaxial test, root fiber, undrained
Procedia PDF Downloads 415511 Rheological Properties of Polysulfone-Sepiolite Nanocomposites
Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan
Abstract:
Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing
Procedia PDF Downloads 424510 Pullout Strength of Textile Reinforcement in Concrete by Embedded Length and Concrete Strength
Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park
Abstract:
The deterioration of the reinforced concrete is continuously accelerated due to aging of the reinforced concrete, enlargement of the structure, increase if the self-weight due to the manhattanization and cracking due to external force. Also, due to the abnormal climate phenomenon, cracking of reinforced concrete structures is accelerated. Therefore, research on the Textile Reinforced Concrete (TRC) which replaced reinforcement with textile is under study. However, in previous studies, adhesion performance to single yarn was examined without parameters, which does not reflect the effect of fiber twisting and concrete strength. In the present paper, the effect of concrete strength and embedded length on 2400tex (gram per 1000 meters) and 640tex textile were investigated. The result confirm that the increasing compressive strength of the concrete did not affect the pullout strength. However, as the embedded length increased, the pullout strength tended to increase gradually, especially at 2400tex with more twists.Keywords: textile, TRC, pullout, strength, embedded length, concrete
Procedia PDF Downloads 402509 Development of Risk Management System for Urban Railroad Underground Structures and Surrounding Ground
Authors: Y. K. Park, B. K. Kim, J. W. Lee, S. J. Lee
Abstract:
To assess the risk of the underground structures and surrounding ground, we collect basic data by the engineering method of measurement, exploration and surveys and, derive the risk through proper analysis and each assessment for urban railroad underground structures and surrounding ground including station inflow. Basic data are obtained by the fiber-optic sensors, MEMS sensors, water quantity/quality sensors, tunnel scanner, ground penetrating radar, light weight deflectometer, and are evaluated if they are more than the proper value or not. Based on these data, we analyze the risk level of urban railroad underground structures and surrounding ground. And we develop the risk management system to manage efficiently these data and to support a convenient interface environment at input/output of data.Keywords: urban railroad, underground structures, ground subsidence, station inflow, risk
Procedia PDF Downloads 336508 Evaluation of Non-Destructive Application to Detect Pesticide Residue on Leaf Mustard Using Spectroscopic Method
Authors: Nazmi Mat Nawi, Muhamad Najib Mohamad Nor, Che Dini Maryani Ishkandar
Abstract:
This study was conducted to evaluate the capability of spectroscopic methods to detect the presence of pesticide residues on leaf mustard. A total of 105 leaf mustard used were divided into five batches, four batches were treated with four different types of pesticides whereas one batch with no pesticide applied. Spectral data were obtained using visible shortwave near infrared spectrometer (VSWNIRS) which is Ocean Optics HR4000 High-resolution Miniature Fiber Optic Spectrometer. Reflectance value was collected to determine the difference between one pesticide to the other. The obtained spectral data were pre-processed for optimum performance. The effective wavelength of approximate 880 nm, 675-710 nm also 550 and 700 nm indicates the overtones -CH stretching vibration, tannin, also chlorophyll content present in the leaf mustard respectively. This study has successfully demonstrated that the spectroscopic method was able to differentiate between leaf mustard sample with and without pesticide residue.Keywords: detect, leaf mustard, non-destructive, pesticide residue
Procedia PDF Downloads 257507 Immunostimulant from Biodiversity to Enhance Shrimp Survival against Vibriosis
Authors: Frank Alexis, Jenny Antonia Rodriguez Leon, Cristobal Leonardo Dominguez Borbor, Mery Rosario Ramirez Munoz
Abstract:
The shrimp industry has increased in the last years to the point of becoming one of the most dynamic industries. However, the appearance of diseases that significantly affect the production of shrimps has been an obstacle for the shrimp industry. We hypothesized that natural fibers from biodiversity can stimulate the immune system to prevent shrimp diseases like vibriosis. In this project, we extracted the fibers from vegetal sources in Ecuador and characterized them using common techniques like XRD, SEM, and then we tested the effect of fibers as immunostimulants for shrimps in-vitro and in-vivo using small aquarium and large pools. Our results demonstrate that vegetal fibers can significantly increase the survival of shrimps. Moreover, the production of shrimps in a large pool was significantly increased. Lastly, the test of color and taste successfully surpass the control group of shrimps not treated with fiber food supplements.Keywords: fibers, immunostimulant, shrimp, vibriosis
Procedia PDF Downloads 157506 Genomic and Evolutionary Diversity of Long Terminal Repeat (LTR) Retrotransposons in Date Palm (Phoenix dactylifera)
Authors: Faisal Nouroz, Mukaramin Mukaramin
Abstract:
Of the transposable elements (TEs), the retrotransposons are the most copious elements identified from many sequenced genomes. They have played a major role in genome evolution, rearrangement, and expansions based on their copy and paste mode of proliferation. They are further divided into LTR and Non-LTR retrotransposons. The purpose of the current study was to identify the LTR REs in sequenced Phoenix dactylifera genome and to study their structural diversity. A total of 150 P. dactylifera BAC sequences with > 60kb sizes were randomly retrieved from National Center for Biotechnology Information (NCBI) database and screened for the presence of LTR retrotransposons. Seven bacterial artificial chromosomes (BAC) sequences showed full-length LTR Retrotransposons with 4 Copia and 3 Gypsy families having variable copy numbers in respective families. Reverse transcriptase (RT) domain was found as the most conserved domain among Copia and Gypsy superfamilies and was used to deduce evolutionary analysis. The amino acid residues among various RT sequences showed variability in their percentages indicating post divergence evolution. Amino acid Leucine was found in highest proportions followed by Lysine, while Methionine and Tryptophan were in lowest percentages. The phylogenetic analysis based on RT domains confirmed that although having most conserved RT regions, several evolutionary events occurred causing nucleotide polymorphisms and hence clustering of Gypsy and Copia superfamilies into their respective lineages. The study will be helpful in identification and annotation of these elements in other species and genera and their distribution patterns on chromosomes by fluorescent in situ hybridization techniques.Keywords: transposable elements, Phoenix dactylifera, retrotransposons, phylogenetic analysis
Procedia PDF Downloads 128505 Synthesis of NiNW/ Cellulose Nano Hybrid via Liquid-Phase Reduction
Authors: Siti Rahmah Shamsuri, Eiichiro Matsubara, Shohei Shiomi
Abstract:
The 1D nanomaterial is far surpassed the 0D nanomaterial. It does not just offer most of the benefit of the 0D nanomaterial such as the large surface area, a great number of active site and an efficient interfacial charge transfer but also can assemble into free-standing and flexible electrode due to their high aspect ratio. Thus, it is essential to develop a simple and ease synthesis of this 1D nanomaterial for the practical application. Here, nickel nanowire/cellulose hybrid has been successfully fabricated via a simple liquid-phase method with the assist of the magnetic field. A finer nickel nanowire was heterogeneously nucleated on the surface of the cellulose fiber, which demonstrated the effect of the hydroxyl group on the cellulose structure. The result of the nickel nanowire size was found to vary from 66-114 nm. A detailed discussion on the mechanism of the nickel nanowire/ cellulose hybrid formation is also shown in this paper.Keywords: cellulose nanofiber, liquid-phase reduction, metal nanowire, nano hybrid material
Procedia PDF Downloads 340504 Surface Modified Electrospun Expanded Polystyrene Fibre with Superhydrophobic/Superoleophillic Properties as Potential Oil Membrane
Authors: S. Oluwagbemiga Alayande, E. Olugbenga Dare, Titus A. M. Msagati, A. Kehinde Akinlabi , P. O. Aiyedun
Abstract:
This paper presents a cheap route procedure for the preparation of a potential oil membrane with superhydrophobic /superoleophillic properties for selective removal of crude oil from water. In these study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophic and superoleophillic wetting properties with water and crude oil. The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry.Keywords: expanded polystyrene, superhydrophobic, superoleophillic, oil-membrane
Procedia PDF Downloads 472503 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading
Authors: C. Shalini Devi
Abstract:
This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.Keywords: composite, stress concentration, finite element analysis, tensile strength
Procedia PDF Downloads 449502 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses
Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul
Abstract:
The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.Keywords: aluminum foam, composite panel, flexure, transport application
Procedia PDF Downloads 338501 Effect of Transmission Distance on the Performance of Hybrid Configuration Using Non Return to Zero (NRZ) Pulse Format
Authors: Mais Wa'ad
Abstract:
The effect of transmission distance on the performance of hybrid configuration H 10-40 Gb/s with Non-Return to Zero (NRZ) pulse format, 100 GHz channel spacing, and Multiplexer/De-Multiplexer Band width (MUX/DEMUX BW) of 60 GHz has been investigated in this study. The laser Continuous Wave (CW) power launched into the modulator is set to 4 dBm. Eight neighboring DWDM channels are selected around 1550.12 nm carrying different data rates in hybrid optical communication systems travel through the same optical fiber and use the same passive and active optical modules. The simulation has been done using Optiwave Inc Optisys software. Usually, increasing distance will lead to decrease in performance; however this is not always the case, as the simulation conducted in this work, shows different system performance for each channel. This is due to differences in interaction between dispersion and non-linearity, and the differences in residual dispersion for each channel.Keywords: dispersion and non-linearity interaction, optical hybrid configuration, multiplexer/de multiplexer bandwidth, non-return to zero, optical transmission distance, optisys
Procedia PDF Downloads 559500 Strengthening of Concrete Slabs with Steel Beams
Authors: Mizam Doğan
Abstract:
In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity
Procedia PDF Downloads 260499 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties
Authors: M. Kheirandish, S. Borhani
Abstract:
In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.Keywords: electrospininng, nanoparticle, polystyrene, ZnO
Procedia PDF Downloads 241498 Design of Structural Health Monitoring System for a Damaged Reinforced Concrete Bridge
Authors: Muhammad Fawad
Abstract:
Monitoring and structural health assessment are the primary requirements for the performance evaluation of damaged bridges. This paper highlights the case study of a damaged Reinforced Concrete (RC) bridge structure where the Finite element (FE) modelling of this structure was done using the material properties extracted by the in-situ testing. Analysis was carried out to evaluate the bridge damage. On the basis of FE analysis results, this study proposes a proper Structural Health Monitoring (SHM) system that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on the bridge.Keywords: bridges, reinforced concrete, finite element method, structural health monitoring, sensors
Procedia PDF Downloads 105497 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers
Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre
Abstract:
In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.Keywords: directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton, superfocusing
Procedia PDF Downloads 274496 Fermented Fruit and Vegetable Discard as a Source of Feeding Ingredients and Functional Additives
Authors: Jone Ibarruri, Mikel Manso, Marta Cebrián
Abstract:
A high amount of food is lost or discarded in the World every year. In addition, in the last decades, an increasing demand of new alternative and sustainable sources of proteins and other valuable compounds is being observed in the food and feeding sectors and, therefore, the use of food by-products as nutrients for these purposes sounds very interesting from the environmental and economical point of view. However, the direct use of discarded fruit and vegetables that present, in general, a low protein content is not interesting as feeding ingredient except if they are used as a source of fiber for ruminants. Especially in the case of aquaculture, several alternatives to the use of fish meal and other vegetable protein sources have been extensively explored due to the scarcity of fish stocks and the unsustainability of fishing for these purposes. Fish mortality is also of great concern in this sector as this problem highly reduces their economic feasibility. So, the development of new functional and natural ingredients that could reduce the need for vaccination is also of great interest. In this work, several fermentation tests were developed at lab scale using a selected mixture of fruit and vegetable discards from a wholesale market located in the Basque Country to increase their protein content and also to produce some bioactive extracts that could be used as additives in aquaculture. Fruit and vegetable mixtures (60/40 ww) were centrifugated for humidity reduction and crushed to 2-5 mm particle size. Samples were inoculated with a selected Rhizopus oryzae strain and fermented for 7 days in controlled conditions (humidity between 65 and 75% and 28ºC) in Petri plates (120 mm) by triplicate. Obtained results indicated that the final fermented product presented a twofold protein content (from 13 to 28% d.w). Fermented product was further processed to determine their possible functionality as a feed additive. Extraction tests were carried out to obtain an ethanolic extract (60:40 ethanol: water, v.v) and remaining biomass that also could present applications in food or feed sectors. The extract presented a polyphenol content of about 27 mg GAE/gr d.w with antioxidant activity of 8.4 mg TEAC/g d.w. Remining biomass is mainly composed of fiber (51%), protein (24%) and fat (10%). Extracts also presented antibacterial activity according to the results obtained in Agar Diffusion and to the Minimum Inhibitory Concentration (MIC) tests determined against several food and fish pathogen strains. In vitro, digestibility was also assessed to obtain preliminary information about the expected effect of extraction procedure on fermented product digestibility. First results indicated that remaining biomass after extraction doesn´t seem to improve digestibility in comparison to the initial fermented product. These preliminary results show that fermented fruit and vegetables can be a useful source of functional ingredients for aquaculture applications and a substitute of other protein sources in the feeding sector. Further validation will be also carried out through “in vivo” tests with trout and bass.Keywords: fungal solid state fermentation, protein increase, functional extracts, feed ingredients
Procedia PDF Downloads 64495 Women as Victims of Land Grabbing: Implications for Household Food Security and Livelihoods in Cameroon
Authors: Valentine Ndi
Abstract:
This multi-sited research will make use of primary and secondary data to understand the multiple implications of land grabbing for local food production and rural livelihoods in Cameroon. Amidst restricted access to land and forest resources, this study will demonstrate how land previously accessed by communities to grow crops and to harvest forest resources is being acquired and transformed into commercial oil palm plantations by Herakles Farms, a US-based company, with Sithe Global Sustainable Oils Cameroon as its local subsidiary. Focusing on selected land grabbing communities in Cameroon, the study uses a feminist political ecology lens to examine the gendered nature in resources access and its impacts for women’s food production in particular, and rural livelihoods in general. The paper will argue that the change in land use particularly erodes women’s rights to access land and forest resources, and in turn negatively affects local food production and rural livelihood in the region. It will show how women in the region play instrumental and dominant roles in ensuring local food production through subsistence and semi-subsistence agriculture but are unfortunately the main losers of territory that the state considers as ‘empty’ or underutilized - and is subjected to appropriation. The paper will conclude that, rural women’s active participation in the decision-making processes concerning the use of and/or allotment of land to foreign investors is indispensable to guarantee local, national and global food security, but also to ensure that alternative livelihood options are provided, particularly to those rural women facing dispossession or at risk of being dispossessed.Keywords: land grabbing, feminst political ecology, gender, access to resources, rural livelihoods, Cameroon
Procedia PDF Downloads 266494 Influence of Composite Adherents Properties on the Dynamic Behavior of Double Lap Bonded Joint
Authors: P. Saleh, G. Challita, R. Hazimeh, K. Khalil
Abstract:
In this paper 3D FEM analysis was carried out on double lap bonded joint with composite adherents subjected to dynamic shear. The adherents are made of Carbon/Epoxy while the adhesive is epoxy Araldite 2031. The maximum average shear stress and the stress homogeneity in the adhesive layer were examined. Three fibers textures were considered: UD; 2.5D and 3D with same volume fiber then a parametric study based on changing the thickness and the type of fibers texture in 2.5D was accomplished. Moreover, adherents’ dissimilarity was also investigated. It was found that the main parameter influencing the behavior is the longitudinal stiffness of the adherents. An increase in the adherents’ longitudinal stiffness induces an increase in the maximum average shear stress in the adhesive layer and an improvement in the shear stress homogeneity within the joint. No remarkable improvement was observed for dissimilar adherents.Keywords: adhesive, composite adherents, impact shear, finite element
Procedia PDF Downloads 442493 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators
Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi
Abstract:
The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.Keywords: automatic bias control, optical fiber communication, optical modulation, optical devices
Procedia PDF Downloads 189492 From Parchment to Pixels: Digital Preservation for the Future
Authors: Abida Khatoon
Abstract:
This study provides an overview of ancient manuscripts, including their historical significance, current digital preservation methods, and the challenges we face in safeguarding these invaluable resources. India has a long-standing tradition of manuscript preservation, with texts that span a wide range of subjects, from religious scriptures to scientific treatises. These manuscripts were written on various materials, including palm leaves, parchment, metal, bark, wood, animal skin, and paper. These manuscripts offer a deep insight into India's cultural and intellectual history. Ancient manuscripts are crucial historical records, providing valuable insights into past civilizations and knowledge systems. As these physical documents become increasingly fragile, digital preservation methods have become essential to ensure their continued accessibility. Digital preservation involves several key techniques. Scanning and digitization create high-resolution digital images of manuscripts, while reprography produces copies to reduce wear on originals. Digital archiving ensures proper storage and management of these digital files, and preservation of electronic data addresses modern formats like web pages and emails. Despite its benefits, digital preservation faces several challenges. Technological obsolescence, data integrity issues, and the resource-intensive nature of the process are significant hurdles. Securing adequate funding is particularly challenging due to high initial costs and ongoing expenses. Looking ahead, the future of digital preservation is promising. Advancements in technology, increased collaboration among institutions, and the development of sustainable funding models will enhance the preservation and accessibility of these important historical documents.Keywords: preservation strategies, Indian manuscript, cultural heritage, archiving
Procedia PDF Downloads 19491 Development of a New Method for T-Joint Specimens Testing under Shear Loading
Authors: Radek Doubrava, Roman Ruzek
Abstract:
Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology
Procedia PDF Downloads 442490 Low Sulfur Diesel-Like Fuel From Quick Remediation Process of Waste Oil Sludge
Authors: Isam A. H. Al Zubaidy
Abstract:
A quick process may be needed to get the benefit the big generated quantity of waste oil sludge (WOS). The process includes the mixing process of WOS with commercial diesel fuel. Different ratios of WOS to diesel fuel were prepared ranging 1:1 to 20:1 by mass. The mixture was continuously mixing for 10 minutes using bench type overhead stirrer and followed by filtration process to separate the soil waste from filtrate oil product. The quantity and the physical properties of the oil filtrate were measured. It was found that the addition of up to 15% WOS to diesel fuel was accepted without dramatic changes to the properties of diesel fuel. The amount of waste oil sludge was decreased by about 60% by mass. This means that about 60 % of the mass of sludge was recovered as light fuel oil. The physical properties of the resulting fuel from 10% sludge mixing ratio showed that the specific gravity, ash content, carbon residue, asphaltene content, viscosity, diesel index, cetane number, and calorific value were affected slightly. The color was changed to light black color. The sulfur content was increased also. This requires other processes to reduce the sulfur content of the resulting light fuel. A new desulfurization process was achieved using adsorption techniques with activated biomaterial to reduce the sulfur content to acceptable limits. Adsorption process by ZnCl₂ activated date palm kernel powder was effective for improvement of the physical properties of diesel like fuel. The final sulfur content was increased to 0.185 wt%. This diesel like fuel can be used in all tractors, buses, tracks inside and outside the refineries. The solid remaining seems to be smooth and can be mixed with asphalt mixture for asphalting the roads or can be used with other materials as an asphalt coating material for constructed buildings. Through this process, valuable fuel has been recovered, and the amount of waste material had decreased.Keywords: oil sludge, diesel fuel, blending process, filtration process
Procedia PDF Downloads 118489 Effect of Impact Load on the Bond between Steel and CFRP Laminate
Authors: Alaa Al-Mosawe, Riadh Al-Mahaidi
Abstract:
Carbon fiber reinforced polymers have been wildly used to strengthen steel structural elements. Those structural elements are normally subjected to static, dynamic, fatigue loadings during their life time. CFRP laminate is one of the common methods to strengthen these structures under the subjected loads. A number of researches have been focused on the bond characteristics of CFRP sheets to steel members under static, dynamic and fatigue loadings. There is a lack in understanding the behavior of the CFRP laminates under impact loading. This paper is showing the effect of high load rate on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joint by using Araldite 420 epoxy. The results showed that applying high load rate has a significant effect on the bond strength while a little influence on the effective bond length.Keywords: adhesively bonded joints, bond strength, CFRP laminate, impact tensile loading
Procedia PDF Downloads 361488 Long-Term Treatment Efficiency of an Integrated Constructed Wetland System for the Removal of Pollutants Using Biomaterials/ Cork and Date Palm By-Product
Authors: Khadija Kraiem, Salma Bessadok, Dorra Tabassi, Atef Jaouani
Abstract:
This study investigated the long-term impact of incorporating biowaste (i.e., cork and date stones) as a natural and cost-effective alternative to traditional substrates (e.g., gravel) in constructed wetlands (CWs). Results showed that pollutant removal efficiency was significantly improved after the addition of biowaste under different hydraulic retention time (HRT) conditions. The addition of cork in vertical flow constructed wetlands (VFCWs) improved chemical oxygen demand (COD) removal from 64% to 86%. Similarly, in horizontal flow constructed wetlands (HFCWs), COD removal increased from 67% to 81% with cork and 85% with date seeds. In terms of ammonium removal, cork in VFCWs increased efficiency from 34% to 56%, while in HFCWs, it improved from 24% to 47% with cork and reached 44% with date stones. Furthermore, our data showed that the addition of biowastes improved the removal of micropollutants, such as bisphenol A (BPA) and diclofenac (DFC), with the highest removal of BPA of 86% and DFC of 89% observed in the date seeds wetland. However, no significant changes were observed in pathogens removal. The evaluation of the impact of biowaste addition on the contribution of plant species and its interaction with hydraulic retention time (HRT) was also conducted for pollutant removal. The addition of biowaste resulted in a decrease in the required HRT for effective contaminant elimination, but it had no notable impact on the contribution of plant species. To summarize, our findings indicate that utilizing biowastes in artificial wetlands for the treatment of wastewater with various pollutants can result in synergistic effects, presenting potential benefits in terms of both efficiency and cost-effectiveness.Keywords: constructed wetlands, cork, date stones, pollutant removal, wastewater
Procedia PDF Downloads 22487 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography
Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song
Abstract:
A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.Keywords: common-path OCT, FD-OCT, OCT, tracking algorithm
Procedia PDF Downloads 380486 Comparative Analysis of the Treatment of Okra Seed and Soy Beans Oil with Crude Enzyme Extract from Malted Rice
Authors: Eduzor Esther, Uhiara Ngozi, Ya’u Abubakar Umar, Anayo Jacob Gabriel, Umar Ahmed
Abstract:
The study investigated the characteristic effect of treating okra seed and soybeans seed oil with crude enzymes extract from malted rice. The oils from okra seeds and soybeans were obtained by solvent extraction method using N-hexane solvent. Soybeans seeds had higher percentage oil yield than okra seed. 250ml of each oil was thoroughly mixed with 5ml of the malted rice extract at 400C for 5mins and then filtered and regarded as treated oil while another batch of 250ml of each oil was not mixed with the malted rice extract and regarded as untreated oil. All the oils were analyzed for specific gravity, refractive index, emulsification capacity, absortivity, TSS and viscosity. Treated okra seed and soybeans oil gave higher values for specific gravity, than the untreated oil for okra seed and soybeans oil respectively. The emulsification capacity values were also higher for treated oils, when compared to the untreated oil, for okra seed and soybeans oil respectively. Treated okra seed and soybeans oil also had higher range of values for absorptivity, than the untreated oil for okra seed and soybeans respectively. The ranges of T.S.S values of the treated oil were also higher, than those of the untreated oil for okra seed and soybeans respectively. The results of viscosity showed that the treated oil had higher values, than the untreated oil for okra seed and soybeans oil respectively. However, the results of refractive index showed that the untreated oils had higher values ranges of than the treated oils for okra seed and soybeans respectively. Treated oil show better quality in respect to the parameters analyst, except the refractive index which is slightly less but also is within the rangiest of standard, the oils are high in unsaturation especially okra oil when compared with soya beans oil. It is recommended that, treated oil of okra seeds and soya beans can serve better than many oils that presently in use such as ground nut oil, palm oil and cotton seeds oil.Keywords: extract, malted, oil, okra, rice, seed, soybeans
Procedia PDF Downloads 443