Search results for: PM machinesautonomous agricultural machines
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2655

Search results for: PM machinesautonomous agricultural machines

1605 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 477
1604 Mage Fusion Based Eye Tumor Detection

Authors: Ahmed Ashit

Abstract:

Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.

Keywords: image fusion, eye tumor, canny operators, superimposed

Procedia PDF Downloads 363
1603 Development of Solar Poly House Tunnel Dryer (STD) for Medicinal Plants

Authors: N. C. Shahi, Anupama Singh, E. Kate

Abstract:

Drying is practiced to enhance the storage life, to minimize losses during storage, and to reduce transportation costs of agricultural products. Drying processes range from open sun drying to industrial drying. In most of the developing countries, use of fossil fuels for drying of agricultural products has not been practically feasible due to unaffordable costs to majority of the farmers. On the other hand, traditional open sun drying practiced on a large scale in the rural areas of the developing countries suffers from high product losses due to inadequate drying, fungal growth, encroachment of insects, birds and rodents, etc. To overcome these problems a middle technology dryer having low cost need to be developed for farmers. In case of mechanical dryers, the heated air is the main driving force for removal of moisture. The air is heated either electrically or by burning wood, coal, natural gas etc. using heaters. But, all these common sources have finite supplies. The lifetime is estimated to range from 15 years for a natural gas to nearly 250 years for coal. So, mankind must turn towards its safe and reliable utilization and may have undesirable side effects. The mechanical drying involves higher cost of drying and open sun drying deteriorates the quality. The solar tunnel dryer is one of promising option for drying various agricultural and agro-industrial products on large scale. The advantage of Solar tunnel dryer is its relatively cheaper cost of construction and operation. Although many solar dryers have been developed, still there is a scope of modification in them. Therefore, an attempt was made to develop Solar tunnel dryer and test its performance using highly perishable commodity i.e. leafy vegetables (spinach). The effect of air velocity, loading density and shade net on performance parameters namely, collector efficiency, drying efficiency, overall efficiency of dryer and specific heat energy consumption were also studied. Thus, the need for an intermediate level technology was realized and an effort was made to develop a small scale Solar Tunnel Dryer . A dryer consisted of base frame, semi cylindrical drying chamber, solar collector and absorber, air distribution system with chimney and auxiliary heating system, and wheels for its mobility were the main functional components. Drying of fenugreek was carried out to analyze the performance of the dryer. The Solar Tunnel Dryer temperature was maintained using the auxiliary heating system. The ambient temperature was in the range of 12-33oC. The relative humidity was found inside and outside the Solar Tunnel Dryer in the range of 21-75% and 35-79%, respectively. The solar radiation was recorded in the range of 350-780W/m2 during the experimental period. Studies revealed that total drying time was in range of 230 to 420 min. The drying time in Solar Tunnel Dryer was considerably reduced by 67% as compared to sun drying. The collector efficiency, drying efficiency, overall efficiency and specific heat consumption were determined and were found to be in the range of 50.06- 38.71%, 15.53-24.72%, 4.25 to 13.34% and 1897.54-3241.36 kJ/kg, respectively.

Keywords: overall efficiency, solar tunnel dryer, specific heat consumption, sun drying

Procedia PDF Downloads 313
1602 Analysis and Modeling of Vibratory Signals Based on LMD for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Slimane Mekhilef, Kamel Tadjine

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally non-stationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA) and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. the results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, local mean decomposition, rolling element bearing, vibration analysis

Procedia PDF Downloads 407
1601 Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters

Authors: Samira Ghizellaoui, Manel Boumagoura

Abstract:

Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate).

Keywords: water, scaling, calcium carbonate, green inhibitor

Procedia PDF Downloads 68
1600 Carbon Footprint Assessment and Application in Urban Planning and Geography

Authors: Hyunjoo Park, Taehyun Kim, Taehyun Kim

Abstract:

Human life, activity, and culture depend on the wider environment. Cities offer economic opportunities for goods and services, but cannot exist in environments without food, energy, and water supply. Technological innovation in energy supply and transport speeds up the expansion of urban areas and the physical separation from agricultural land. As a result, division of urban agricultural areas causes more energy demand for food and goods transport between the regions. As the energy resources are leaking all over the world, the impact on the environment crossing the boundaries of cities is also growing. While advances in energy and other technologies can reduce the environmental impact of consumption, there is still a gap between energy supply and demand by current technology, even in technically advanced countries. Therefore, reducing energy demand is more realistic than relying solely on the development of technology for sustainable development. The purpose of this study is to introduce the application of carbon footprint assessment in fields of urban planning and geography. In urban studies, carbon footprint has been assessed at different geographical scales, such as nation, city, region, household, and individual. Carbon footprint assessment for a nation and a city is available by using national or city level statistics of energy consumption categories. By means of carbon footprint calculation, it is possible to compare the ecological capacity and deficit among nations and cities. Carbon footprint also offers great insight on the geographical distribution of carbon intensity at a regional level in the agricultural field. The study shows the background of carbon footprint applications in urban planning and geography by case studies such as figuring out sustainable land-use measures in urban planning and geography. For micro level, footprint quiz or survey can be adapted to measure household and individual carbon footprint. For example, first case study collected carbon footprint data from the survey measuring home energy use and travel behavior of 2,064 households in eight cities in Gyeonggi-do, Korea. Second case study analyzed the effects of the net and gross population densities on carbon footprint of residents at an intra-urban scale in the capital city of Seoul, Korea. In this study, the individual carbon footprint of residents was calculated by converting the carbon intensities of home and travel fossil fuel use of respondents to the unit of metric ton of carbon dioxide (tCO₂) by multiplying the conversion factors equivalent to the carbon intensities of each energy source, such as electricity, natural gas, and gasoline. Carbon footprint is an important concept not only for reducing climate change but also for sustainable development. As seen in case studies carbon footprint may be measured and applied in various spatial units, including but not limited to countries and regions. These examples may provide new perspectives on carbon footprint application in planning and geography. In addition, additional concerns for consumption of food, goods, and services can be included in carbon footprint calculation in the area of urban planning and geography.

Keywords: carbon footprint, case study, geography, urban planning

Procedia PDF Downloads 288
1599 Auto-Tuning of CNC Parameters According to the Machining Mode Selection

Authors: Jenq-Shyong Chen, Ben-Fong Yu

Abstract:

CNC(computer numerical control) machining centers have been widely used for machining different metal components for various industries. For a specific CNC machine, its everyday job is assigned to cut different products with quite different attributes such as material type, workpiece weight, geometry, tooling, and cutting conditions. Theoretically, the dynamic characteristics of the CNC machine should be properly tuned match each machining job in order to get the optimal machining performance. However, most of the CNC machines are set with only a standard set of CNC parameters. In this study, we have developed an auto-tuning system which can automatically change the CNC parameters and in hence change the machine dynamic characteristics according to the selection of machining modes which are set by the mixed combination of three machine performance indexes: the HO (high surface quality) index, HP (high precision) index and HS (high speed) index. The acceleration, jerk, corner error tolerance, oscillation and dynamic bandwidth of machine’s feed axes have been changed according to the selection of the machine performance indexes. The proposed auto-tuning system of the CNC parameters has been implemented on a PC-based CNC controller and a three-axis machining center. The measured experimental result have shown the promising of our proposed auto-tuning system.

Keywords: auto-tuning, CNC parameters, machining mode, high speed, high accuracy, high surface quality

Procedia PDF Downloads 380
1598 Growth Studies and Leaf Mineral Composition of Amaranthus hybridus L. in Soil Medium Supplemended with Palm Bunch Ash Extract from Elaeis Guineensis jacq. in Abak Agricultural Zone of Akwa Ibom State, Nigeria

Authors: Etukudo, M. Mbosowo, Nyananyo, L. Bio, Negbenebor, A. Charles

Abstract:

An aqueous extract of palm bunch ash from Elaeis guineensis Jacq., equilibrated with water was used to assess the growth and minerals composition of Amaranthus hybridus L. in agricultural soil of Abak, Akwa Ibom State, nigeria. Various concentrations, 0 (control), 10, 20, 30, 40, and 50% of palm bunch extract per 4kg of sandy-loam soil were used for the study. Chemical characteristics of the extract, Growth parameters (Plant height, root length, fresh weight, dry weight and moisture content), leaf minerals composition (Nitrogen, phosphorus, potassium, calcium and magnesium) of the crop and soil chemical composition before and after harvest (pH, organic matter, nitrogen, phosphorus, potassium, calcium and magnesium) were examined. The results showed that palm bunch ash extract significantly (P < 0.05) increased the soil pH at all levels of treatments compared to the control. Similarly, the soil and leaf minerals component (N, P, K. Ca, and Mg) of the crop increased with increase in the concentration of palm bunch extract, except at 40 and 50% for leaf minerals composition, Soil organic matter, nitrogen and phosphorus J(before and after harvest). In addition, The plant height, Root length, fresh weight, dry weight and moisture content of the crop increased significantly (P < 0.05) with increase in the concentration of the extract, Except at 30, 40 and 50% where these growth parameters decreased in relation to the control treatment. Therefore, this study suggests that palm bunch ash extract could be utilized at lower concentration as a nutrient supplement for both Amaranthus hubridus L. and soil medium, most especially in the tropical soils of the Niger Delta region of Nigeria.

Keywords: Amaranthus hybridus L., growth, leaf minerals composition, palm bunch ash extract

Procedia PDF Downloads 445
1597 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 74
1596 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm

Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim

Abstract:

All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.

Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features

Procedia PDF Downloads 235
1595 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 97
1594 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field

Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot

Abstract:

The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.

Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management

Procedia PDF Downloads 132
1593 The Production of Biofertilizer from Naturally Occurring Microorganisms by Using Nuclear Technologies

Authors: K. S. Al-Mugren, A. Yahya, S. Alodah, R. Alharbi, S. H. Almsaid , A. Alqahtani, H. Jaber, A. Basaqer, N. Alajra, N. Almoghati, A. Alsalman, Khalid Alharbi

Abstract:

Context: The production of biofertilizers from naturally occurring microorganisms is an area of research that aims to enhance agricultural practices by utilizing local resources. This research project focuses on isolating and screening indigenous microorganisms with PK-fixing and phosphate solubilizing characteristics from local sources. Research Aim: The aim of this project is to develop a biofertilizer product using indigenous microorganisms and composted agro waste as a carrier. The objective is to enhance crop productivity and soil fertility through the application of biofertilizers. Methodology: The research methodology includes several key steps. Firstly, indigenous microorganisms will be isolated from local resources using the ten-fold serial dilutions technique. Screening assays will be conducted to identify microorganisms with phosphate solubilizing and PK-fixing activities. Agro-waste materials will be collected from local agricultural sources, and composting experiments will be conducted to convert them into organic matter-rich compost. Physicochemical analysis will be performed to assess the composition of the composted agro-waste. Gamma and X-ray irradiation will be used to sterilize the carrier material. The sterilized carrier will be tested for sterility using the ten-fold serial dilutions technique. Finally, selected indigenous microorganisms will be developed into biofertilizer products. Findings: The research aims to find suitable indigenous microorganisms with phosphate solubilizing and PK-fixing characteristics for biofertilizer production. Additionally, the research aims to assess the suitability of composted agro waste as a carrier for biofertilizers. The impact of gamma irradiation sterilization on pathogen elimination will also be investigated. Theoretical Importance: This research contributes to the understanding of utilizing indigenous microorganisms and composted agro waste for biofertilizer production. It expands knowledge on the potential benefits of biofertilizers in enhancing crop productivity and soil fertility. Data Collection and Analysis Procedures: The data collection process involves isolating indigenous microorganisms, conducting screening assays, collecting and composting agro waste, analyzing the physicochemical composition of composted agro waste, and testing carrier sterilization. The analysis procedures include assessing the abilities of indigenous microorganisms, evaluating the composition of composted agro waste, and determining the sterility of the carrier material. Conclusion: The research project aims to develop biofertilizer products using indigenous microorganisms and composted agro waste as a carrier. Through the isolation and screening of indigenous microorganisms, the project aims to enhance crop productivity and soil fertility by utilizing local resources. The research findings will contribute to the understanding of the suitability of composted agro waste as a carrier and the efficacy of gamma irradiation sterilization. The research outcomes will have theoretical importance in the field of biofertilizer production and agricultural practices.

Keywords: biofertilizer, microorganisms, agro waste, nuclear technologies

Procedia PDF Downloads 139
1592 Delineating Floodplain along the Nasia River in Northern Ghana Using HAND Contour

Authors: Benjamin K. Ghansah, Richard K. Appoh, Iliya Nababa, Eric K. Forkuo

Abstract:

The Nasia River is an important source of water for domestic and agricultural purposes to the inhabitants of its catchment. Major farming activities takes place within the floodplain of the river and its network of tributaries. The actual inundation extent of the river system is; however, unknown. Reasons for this lack of information include financial constraints and inadequate human resources as flood modelling is becoming increasingly complex by the day. Knowledge of the inundation extent will help in the assessment of risk posed by the annual flooding of the river, and help in the planning of flood recession agricultural activities. This study used a simple terrain based algorithm, Height Above Nearest Drainage (HAND), to delineate the floodplain of the Nasia River and its tributaries. The HAND model is a drainage normalized digital elevation model, which has its height reference based on the local drainage systems rather than the average mean sea level (AMSL). The underlying principle guiding the development of the HAND model is that hillslope flow paths behave differently when the reference gradient is to the local drainage network as compared to the seaward gradient. The new terrain model of the catchment was created using the NASA’s SRTM Digital Elevation Model (DEM) 30m as the only data input. Contours (HAND Contour) were then generated from the normalized DEM. Based on field flood inundation survey, historical information of flooding of the area as well as satellite images, a HAND Contour of 2m was found to best correlates with the flood inundation extent of the river and its tributaries. A percentage accuracy of 75% was obtained when the surface area created by the 2m contour was compared with surface area of the floodplain computed from a satellite image captured during the peak flooding season in September 2016. It was estimated that the flooding of the Nasia River and its tributaries created a floodplain area of 1011 km².

Keywords: digital elevation model, floodplain, HAND contour, inundation extent, Nasia River

Procedia PDF Downloads 457
1591 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa

Authors: B. Mavhuru, N. S. Nethengwe

Abstract:

Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.

Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load

Procedia PDF Downloads 307
1590 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)

Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar

Abstract:

Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.

Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli

Procedia PDF Downloads 166
1589 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement

Authors: Rhadinia Tayag-Relanes, Felina C. Young

Abstract:

This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data.

Keywords: continuous improvement, process, operations, PDCA

Procedia PDF Downloads 72
1588 Resource-Constrained Assembly Line Balancing Problems with Multi-Manned Workstations

Authors: Yin-Yann Chen, Jia-Ying Li

Abstract:

Assembly line balancing problems can be categorized into one-sided, two-sided, and multi-manned ones by using the number of operators deployed at workstations. This study explores the balancing problem of a resource-constrained assembly line with multi-manned workstations. Resources include machines or tools in assembly lines such as jigs, fixtures, and hand tools. A mathematical programming model was developed to carry out decision-making and planning in order to minimize the numbers of workstations, resources, and operators for achieving optimal production efficiency. To improve the solution-finding efficiency, a genetic algorithm (GA) and a simulated annealing algorithm (SA) were designed and developed in this study to be combined with a practical case in car making. Results of the GA/SA and mathematics programming were compared to verify their validity. Finally, analysis and comparison were conducted in terms of the target values, production efficiency, and deployment combinations provided by the algorithms in order for the results of this study to provide references for decision-making on production deployment.

Keywords: heuristic algorithms, line balancing, multi-manned workstation, resource-constrained

Procedia PDF Downloads 208
1587 Effect of Climate Variability on Children Health Outcomes in Rural Uganda

Authors: Emily Injete Amondo, Alisher Mirzabaev, Emmanuel Rukundo

Abstract:

Children in rural farming households are often vulnerable to a multitude of risks, including health risks associated with climate change and variability. Cognizant of this, this study empirically traced the relationship between climate variability and nutritional health outcomes in rural children while identifying the cause-and-effect transmission mechanisms. We combined four waves of the rich Uganda National Panel Survey (UNPS), part of the World Bank Living Standards Measurement Studies (LSMS) for the period 2009-2014, with long-term and high-frequency rainfall and temperature datasets. Self-reported drought and flood shock variables were further used in separate regressions for triangulation purposes and robustness checks. Panel fixed effects regressions were applied in the empirical analysis, accounting for a variety of causal identification issues. The results showed significant negative outcomes for children’s anthropometric measurements due to the impacts of moderate and extreme droughts, extreme wet spells, and heatwaves. On the contrary, moderate wet spells were positively linked with nutritional measures. Agricultural production and child diarrhea were the main transmission channels, with heatwaves, droughts, and high rainfall variability negatively affecting crop output. The probability of diarrhea was positively related to increases in temperature and dry spells. Results further revealed that children in households who engaged in ex-ante or anticipatory risk-reducing strategies such as savings had better health outcomes as opposed to those engaged in ex-post coping such as involuntary change of diet. These results highlight the importance of adaptation in smoothing the harmful effects of climate variability on the health of rural households and children in Uganda.

Keywords: extreme weather events, undernutrition, diarrhea, agricultural production, gridded weather data

Procedia PDF Downloads 102
1586 Potential for Massive Use of Biodiesel for Automotive in Italy

Authors: Domenico Carmelo Mongelli

Abstract:

The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.

Keywords: biodiesel, economy, engines, environment

Procedia PDF Downloads 75
1585 Multi-Elemental Analysis Using Inductively Coupled Plasma Mass Spectrometry for the Geographical Origin Discrimination of Greek Giant Beans “Gigantes Elefantes”

Authors: Eleni C. Mazarakioti, Anastasios Zotos, Anna-Akrivi Thomatou, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas

Abstract:

“Gigantes Elefantes” is a particularly dynamic crop of giant beans cultivated in western Macedonia (Greece). This variety of large beans growing in this area and specifically in the regions of Prespes and Kastoria is a protected designation of origin (PDO) species with high nutritional quality. Mislabeling of geographical origin and blending with unidentified samples are common fraudulent practices in Greek food market with financial and possible health consequences. In the last decades, multi-elemental composition analysis has been used in identifying the geographical origin of foods and agricultural products. In an attempt to discriminate the authenticity of Greek beans, multi-elemental analysis (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, Ga, Ge, K, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, Se, Sr, Ta, Ti, Tl, U, V, W, Zn, Zr) was performed by inductively coupled plasma mass spectrometry (ICP-MS) on 320 samples of beans, originated from Greece (Prespes and Kastoria), China and Poland. All samples were collected during the autumn of 2021. The obtained data were analysed by principal component analysis (PCA), an unsupervised statistical method, which allows for to reduce of the dimensionality of the enormous datasets. Statistical analysis revealed a clear separation of beans that had been cultivated in Greece compared with those from China and Poland. An adequate discrimination of geographical origin between bean samples originating from the two Greece regions, Prespes and Kastoria, was also evident. Our results suggest that multi-elemental analysis combined with the appropriate multivariate statistical method could be a useful tool for bean’s geographical authentication. Acknowledgment: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.

Keywords: geographical origin, authenticity, multi-elemental analysis, beans, ICP-MS, PCA

Procedia PDF Downloads 78
1584 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops

Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho

Abstract:

Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensifying the occurrence of fungal resistance, are highly toxic to the environment, farmers, and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, and biodefensivesornon-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute to covering such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces damage to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.

Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management

Procedia PDF Downloads 42
1583 Assessing the Risk of Socio-economic Drought: A Case Study of Chuxiong Yi Autonomous Prefecture, China

Authors: Mengdan Guo, Zongmin Wang, Haibo Yang

Abstract:

Drought is one of the most complex and destructive natural disasters, with a huge impact on both nature and society. In recent years, adverse climate conditions and uncontrolled human activities have exacerbated the occurrence of global droughts, among which socio-economic droughts are closely related to human survival. The study of socio-economic drought risk assessment is crucial for sustainable social development. Therefore, this study comprehensively considered the risk of disaster causing factors, the exposure level of the disaster-prone environment, and the vulnerability of the disaster bearing body to construct a socio-economic drought risk assessment model for Chuxiong Prefecture in Yunnan Province. Firstly, a threedimensional frequency analysis of intensity area duration drought was conducted, followed by a statistical analysis of the drought risk of the socio-economic system. Secondly, a grid analysis model was constructed to assess the exposure levels of different agents and study the effects of drought on regional crop growth, industrial economic growth, and human consumption thresholds. Thirdly, an agricultural vulnerability model for different irrigation levels was established by using the DSSAT crop model. Industrial economic vulnerability and domestic water vulnerability under the impact of drought were investigated by constructing a standardized socio-economic drought index and coupling water loss. Finally, the socio-economic drought risk was assessed by combining hazard, exposure, and vulnerability. The results show that the frequency of drought occurrence in Chuxiong Prefecture, Yunnan Province is relatively high, with high population and economic exposure concentrated in urban areas of various counties and districts, and high agricultural exposure concentrated in mountainous and rural areas. Irrigation can effectively reduce agricultural vulnerability in Chuxiong, and the yield loss rate under the 20mm winter irrigation scenario decreased by 10.7% compared to the rain fed scenario. From the perspective of comprehensive risk, the distribution of long-term socio-economic drought risk in Chuxiong Prefecture is relatively consistent, with the more severe areas mainly concentrated in Chuxiong City and Lufeng County, followed by counties such as Yao'an, Mouding and Yuanmou. Shuangbai County has the lowest socio-economic drought risk, which is basically consistent with the economic distribution trend of Chuxiong Prefecture. And in June, July, and August, the drought risk in Chuxiong Prefecture is generally high. These results can provide constructive suggestions for the allocation of water resources and the construction of water conservancy facilities in Chuxiong Prefecture, and provide scientific basis for more effective drought prevention and control. Future research is in the areas of data quality and availability, climate change impacts, human activity impacts, and countermeasures for a more comprehensive understanding and effective response to drought risk in Chuxiong Prefecture.

Keywords: DSSAT model, risk assessment, socio-economic drought, standardized socio-economic drought index

Procedia PDF Downloads 50
1582 Efficiency of Google Translate and Bing Translator in Translating Persian-to-English Texts

Authors: Samad Sajjadi

Abstract:

Machine translation is a new subject increasingly being used by academic writers, especially students and researchers whose native language is not English. There are numerous studies conducted on machine translation, but few investigations have assessed the accuracy of machine translation from Persian to English at lexical, semantic, and syntactic levels. Using Groves and Mundt’s (2015) Model of error taxonomy, the current study evaluated Persian-to-English translations produced by two famous online translators, Google Translate and Bing Translator. A total of 240 texts were randomly selected from different academic fields (law, literature, medicine, and mass media), and 60 texts were considered for each domain. All texts were rendered by the two translation systems and then by four human translators. All statistical analyses were applied using SPSS. The results indicated that Google translations were more accurate than the translations produced by the Bing Translator, especially in the domains of medicine (lexis: 186 vs. 225; semantic: 44 vs. 48; syntactic: 148 vs. 264 errors) and mass media (lexis: 118 vs. 149; semantic: 25 vs. 32; syntactic: 110 vs. 220 errors), respectively. Nonetheless, both machines are reasonably accurate in Persian-to-English translation of lexicons and syntactic structures, particularly from mass media and medical texts.

Keywords: machine translations, accuracy, human translation, efficiency

Procedia PDF Downloads 77
1581 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 402
1580 Healthcare Big Data Analytics Using Hadoop

Authors: Chellammal Surianarayanan

Abstract:

Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.

Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare

Procedia PDF Downloads 413
1579 Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking

Authors: Masaru Sumida

Abstract:

This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration.

Keywords: fiber dispersion, headbox, pulp liquid, wake flow

Procedia PDF Downloads 385
1578 Lessons from Farmers Performing Agroforestry for Reclamation of Gold Mine Spoils in Colombia

Authors: Bibiana Betancur-Corredor, Juan Carlos Loaiza, Manfred Denich, Christian Borgemeister

Abstract:

Alluvial gold mining generates a vast amount of deposits that cover the natural soil and negatively impacts riverbeds and valleys, causing loss of livelihood opportunities for farmers of these regions. In Colombia, more than 79,000 ha are affected by alluvial gold mining, therefore developing strategies to return this land to productivity is of crucial importance for the country. A novel restoration strategy has been created by a mining company, where the land is restored through the establishment of agroforestry systems, in which agricultural crops and livestock are combined to complement reforestation in the area. The purpose of this study is to capture the knowledge of farmers who perform agroforestry in areas with deposits created by alluvial gold mining activities. Semi structured interviews were conducted with farmers with regard to the following: indicators of soil fertility, management practices, soil heterogeneity, pest outbreaks and weeds. In order to compare the perceptions of soil fertility of farmers with physicochemical properties of soils, the farmers were asked to identify spots within their farms that have exhibited good and poor yields. Soil samples were collected in order to correlate farmer’s perceptions with soil physicochemical properties. The findings suggest that the main challenge that farmers face is the identification of fertile soil for crop establishment. They identify the fertile soil through visually analyzing soil color and compaction as well as the use of spontaneous growth of specific plants as indicator of soil fertility. For less fertile areas, nitrogen fixing plants are used as green manure to restore soil fertility for crop establishment. The findings of this study imply that if gold mining is followed by reclamation practices that involve the successful establishment of productive farmlands, agricultural productivity of these lands might improve, increasing food security of the affected communities.

Keywords: agroforestry, knowledge, mining, restoration

Procedia PDF Downloads 233
1577 Finite Elemental Simulation of the Combined Process of Asymmetric Rolling and Plastic Bending

Authors: A. Pesin, D. Pustovoytov, M. Sverdlik

Abstract:

Traditionally, the need in items represents a large body of rotation (e.g. shrouds of various process units: a converter, a mixer, a scrubber, a steel ladle and etc.) is satisfied by using them at engineering enterprises. At these enterprises large parts of bodies of rotation are made on stamping units or bending and forming machines. In Nosov Magnitogorsk State Technical University in alliance with JSC "Magnitogorsk Metal and Steel Works" there was suggested and implemented the technology for producing such items based on a combination of asymmetric rolling processes and plastic bending under conditions of the plate mill. In this paper, based on finite elemental mathematical simulation in technology of a combined process of asymmetric rolling and bending plastic has been improved. It is shown that for the same curvature along the entire length of the metal sheet it is necessary to introduce additional asymmetry speed when rolling front end and tape trailer. Production of large bodies of rotation at mill 4500 JSC "Magnitogorsk Metal and Steel Works" showed good convergence of theoretical and experimental values of the curvature of the metal. Economic effect obtained more than 1.0 million dollars.

Keywords: asymmetric rolling, plastic bending, combined process, FEM

Procedia PDF Downloads 320
1576 Analysis of Vibratory Signals Based on Local Mean Decomposition (LMD) for Rolling Bearing Fault Diagnosis

Authors: Toufik Bensana, Medkour Mihoub, Slimane Mekhilef

Abstract:

The use of vibration analysis has been established as the most common and reliable method of analysis in the field of condition monitoring and diagnostics of rotating machinery. Rolling bearings cover a broad range of rotary machines and plays a crucial role in the modern manufacturing industry. Unfortunately, the vibration signals collected from a faulty bearing are generally nonstationary, nonlinear and with strong noise interference, so it is essential to obtain the fault features correctly. In this paper, a novel numerical analysis method based on local mean decomposition (LMD) is proposed. LMD decompose the signal into a series of product functions (PFs), each of which is the product of an envelope signal and a purely frequency modulated FM signal. The envelope of a PF is the instantaneous amplitude (IA), and the derivative of the unwrapped phase of a purely flat frequency demodulated (FM) signal is the IF. After that, the fault characteristic frequency of the roller bearing can be extracted by performing spectrum analysis to the instantaneous amplitude of PF component containing dominant fault information. The results show the effectiveness of the proposed technique in fault detection and diagnosis of rolling element bearing.

Keywords: fault diagnosis, rolling element bearing, local mean decomposition, condition monitoring

Procedia PDF Downloads 389