Search results for: Large Wind Turbine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8246

Search results for: Large Wind Turbine

7196 Recycling the Lanthanides from Permanent Magnets by Electrochemistry in Ionic Liquid

Authors: Celine Bonnaud, Isabelle Billard, Nicolas Papaiconomou, Eric Chainet

Abstract:

Thanks to their high magnetization and low mass, permanent magnets (NdFeB and SmCo) have quickly became essential for new energies (wind turbines, electrical vehicles…). They contain large quantities of neodymium, samarium and dysprosium, that have been recently classified as critical elements and that therefore need to be recycled. Electrochemical processes including electrodissolution followed by electrodeposition are an elegant and environmentally friendly solution for the recycling of such lanthanides contained in permanent magnets. However, electrochemistry of the lanthanides is a real challenge as their standard potentials are highly negative (around -2.5V vs ENH). Consequently, non-aqueous solvents are required. Ionic liquids (IL) are novel electrolytes exhibiting physico-chemical properties that fulfill many requirements of the sustainable chemistry principles, such as extremely low volatility and non-flammability. Furthermore, their chemical and electrochemical properties (solvation of metallic ions, large electrochemical windows, etc.) render them very attractive media to implement alternative and sustainable processes in view of integrated processes. All experiments that will be presented were carried out using butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Linear sweep, cyclic voltammetry and potentiostatic electrochemical techniques were used. The reliability of electrochemical experiments, performed without glove box, for the classic three electrodes cell used in this study has been assessed. Deposits were obtained by chronoamperometry and were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The IL cathodic behavior under different constraints (argon, nitrogen, oxygen atmosphere or water content) and using several electrode materials (Pt, Au, GC) shows that with argon gas flow and gold as a working electrode, the cathodic potential can reach the maximum value of -3V vs Fc+/Fc; thus allowing a possible reduction of lanthanides. On a gold working electrode, the reduction potential of samarium and neodymium was found to be -1.8V vs Fc+/Fc while that of dysprosium was -2.1V vs Fc+/Fc. The individual deposits obtained were found to be porous and presented some significant amounts of C, N, F, S and O atoms. Selective deposition of neodymium in presence of dysprosium was also studied and will be discussed. Next, metallic Sm, Nd and Dy electrodes were used in replacement of Au, which induced changes in the reduction potential values and the deposit structures of lanthanides. The individual corrosion potentials were also measured in order to determine the parameters influencing the electrodissolution of these metals. Finally, a full recycling process was investigated. Electrodissolution of a real permanent magnet sample was monitored kinetically. Then, the sequential electrodeposition of all lanthanides contained in the IL was investigated. Yields, quality of the deposits and consumption of chemicals will be discussed in depth, in view of the industrial feasibility of this process for real permanent magnets recycling.

Keywords: electrodeposition, electrodissolution, ionic liquids, lanthanides, rcycling

Procedia PDF Downloads 274
7195 Surface Morphology and Wetting Behavior of the Aspidiotus spp. Scale Covers

Authors: Meril Kate Mariano, Billy Joel Almarinez Divina Amalin, Jose Isagani Janairo

Abstract:

The scale insects Aspidiotus destructor and Aspidiotus rigidus exhibit notable scale covers made of wax which provides protection against water loss and is capable to resist wetting, thus making them a desirable model for biomimetic designs. Their waxy covers enable them to infest mainly leaves of coconut trees despite the harsh wind and rain. This study aims to describe and compare the micro morphological characters on the surfaces of their scale covers consequently, how these micro structures affect their wetting properties. Scanning electron microscope was used for the surface characterization while an optical contact angle meter was employed in the wetting measurement. The scale cover of A. destructor is composed of multiple overlapping layers of wax that is arranged regularly while that of A. rigidus is composed of a uniform layer of wax with much more prominent wax ribbons irregularly arranged compared to the former. The protrusions found on the two organisms are formed by the wax ribbons that differ in arrangement with their height being A. destructor (3.57+1.29) < A. rigidus (4.23+1.22) and their density A. destructor (15+2.94) < A. rigidus (18.33+2.64). These morphological measurements could affect the contact angle (CA θ) measurement of A. destructor (102.66+9.78°) < A. rigidus (102.77 + 11.01°) wherein the assessment that the interaction of the liquid to the microstructures of the substrate is a large factor in the wetting properties of the insect scales is realized. The calculated surface free energy of A. destructor (38.47 mJ/m²) > A. rigidus (31.02 mJ/m²) shows inverse proportionality with the CA measurement. The dispersive interaction between the surface and liquid is more prevalent compared to the polar interaction for both Aspidiotus species, which was observed using the Fowkes method. The results of this study have possible applications to be a potential biomimetic design for various industries such as textiles and coatings.

Keywords: Aspidiotus spp., biomimetics, contact angle, surface characterization, wetting behavior

Procedia PDF Downloads 121
7194 Design Improvement of Aircraft Turbofan Engine Following Bird Ingestion Testing

Authors: Ahmed H. Elkholy

Abstract:

Aircraft gas turbine engines are subject to damage by airborne foreign objects such as birds and garbage dumps. In order to assess their effect on engine performance, a complete foreign object damage (FOD) test was carried out and a component failure analysis was used to verify airworthiness standards (AWS) requirements for engine certification as set by international regulations. Ingestion damage due to 1.8 Kg (4 lb.) bird strike on an engine is presented in some detail. Based on the observed damage, improvements to the engine design were suggested in two different locations: the front bearing housing and the low compressor shaft. When these improvements were implemented, the engine showed an acceptable containment capability that meets AWS requirements.

Keywords: aircraft engine, airworthiness standards, bird ingestion, foreign object damage

Procedia PDF Downloads 421
7193 A Comparative Assessment of the FoodSupply Vulnerability to Large-Scale Disasters in OECD Countries

Authors: Karolin Bauer, Anna Brinkmann

Abstract:

Vulnerabilities in critical infrastructure can cause significant difficulties for the affected population during crises. Securing the food supply as part of the critical infrastructure in crisis situations is an essential part of public services and a ground stone for a successful concept of civil protection. In most industrialized countries, there are currently no comparative studies regarding the food supply of the population during crisis and disaster events. In order to mitigate the potential impact in case of major disasters in Germany, it is absolutely necessary to investigate how the food supply can be secured. The research project aims to provide in-depth research on the experiences gathered during past large-scale disasters in the 34 OECD member countries in order to discover alternatives for an updated civil protection system in Germany. The basic research question is: "Which international approaches and structures of civil protection have been proven and would be useful to modernize the German civil protection with regards to the critical infrastructure and food supply?" Research findings should be extracted from an extensive literature review covering the entire research period as well as from personal and online-based interviews with experts and responsible persons from involved institutions. The capability of the research project insists on the deliberate choice to investigate previous large-scale disasters to formulate important and practical approaches to modernize civil protection in Germany.

Keywords: food supply, vulnerabilty, critical infratstructure, large-scale disaster

Procedia PDF Downloads 336
7192 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting

Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu

Abstract:

large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.

Keywords: automatic attendance, face detection, haar-like cascade, manual attendance

Procedia PDF Downloads 72
7191 Social Media and the Future of Veganism Influence on Gender Norms

Authors: Athena Johnson

Abstract:

Veganism has seen a rapid increase in members over recent years. Understanding the mechanisms of social change associated with these dietary practices in relation to gender is significant as these groups may seem small, but they have a large impact as they influence many and change the food market. This research article's basic methodology is primarily a deep article research literature review with empirical research. The research findings show that the popularity of veganism is growing, in large part due to the extensive use of social media, which dispels longstanding gendered connotations with food, such as the correlations between meat and masculinity.

Keywords: diversity, gender roles, social media, veganism

Procedia PDF Downloads 113
7190 EduEasy: Smart Learning Assistant System

Authors: A. Karunasena, P. Bandara, J. A. T. P. Jayasuriya, P. D. Gallage, J. M. S. D. Jayasundara, L. A. P. Y. P. Nuwanjaya

Abstract:

Usage of smart learning concepts has increased rapidly all over the world recently as better teaching and learning methods. Most educational institutes such as universities are experimenting those concepts with their students. Smart learning concepts are especially useful for students to learn better in large classes. In large classes, the lecture method is the most popular method of teaching. In the lecture method, the lecturer presents the content mostly using lecture slides, and the students make their own notes based on the content presented. However, some students may find difficulties with the above method due to various issues such as speed in delivery. The purpose of this research is to assist students in large classes in the following content. The research proposes a solution with four components, namely note-taker, slide matcher, reference finder, and question presenter, which are helpful for the students to obtain a summarized version of the lecture note, easily navigate to the content and find resources, and revise content using questions.

Keywords: automatic summarization, extractive text summarization, speech recognition library, sentence extraction, automatic web search, automatic question generator, sentence scoring, the term weight

Procedia PDF Downloads 148
7189 Energy Budget Equation of Superfluid HVBK Model: LES Simulation

Authors: M. Bakhtaoui, L. Merahi

Abstract:

The reliability of the filtered HVBK model is now investigated via some large eddy simulations of freely decaying isotropic superfluid turbulence. For homogeneous turbulence at very high Reynolds numbers, comparison of the terms in the spectral kinetic energy budget equation indicates, in the energy-containing range, that the production and energy transfer effects become significant except for dissipation. In the inertial range, where the two fluids are perfectly locked, the mutual friction maybe neglected with respect to other terms. Also the LES results for the other terms of the energy balance are presented.

Keywords: superfluid turbulence, HVBK, energy budget, Large Eddy Simulation

Procedia PDF Downloads 374
7188 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District

Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A

Abstract:

There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).

Keywords: simulation, noise exposure, weather, proxy

Procedia PDF Downloads 379
7187 Availability Analysis of a Power Plant by Computer Simulation

Authors: Mehmet Savsar

Abstract:

Reliability and availability of power stations are extremely important in order to achieve a required level of power generation. In particular, in the hot desert climate of Kuwait, reliable power generation is extremely important because of cooling requirements at temperatures exceeding 50-centigrade degrees. In this paper, a particular power plant, named Sabiya Power Plant, which has 8 steam turbines and 13 gas turbine stations, has been studied in detail; extensive data are collected; and availability of station units are determined. Furthermore, a simulation model is developed and used to analyze the effects of different maintenance policies on availability of these stations. The results show that significant improvements can be achieved in power plant availabilities if appropriate maintenance policies are implemented.

Keywords: power plants, steam turbines, gas turbines, maintenance, availability, simulation

Procedia PDF Downloads 618
7186 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework

Authors: Abbas Raza Ali

Abstract:

Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.

Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation

Procedia PDF Downloads 175
7185 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 44
7184 Application of Fuzzy Approach to the Vibration Fault Diagnosis

Authors: Jalel Khelil

Abstract:

In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification.

Keywords: fault diagnosis, fuzzy classification k-nearest neighbor, vibration

Procedia PDF Downloads 466
7183 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps

Authors: Arkadiusz Zurek

Abstract:

The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.

Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0

Procedia PDF Downloads 86
7182 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider

Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz

Abstract:

The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.

Keywords: anomalos couplings, FCC-eh, Higgs, Z boson

Procedia PDF Downloads 210
7181 Shape Management Method of Large Structure Based on Octree Space Partitioning

Authors: Gichun Cha, Changgil Lee, Seunghee Park

Abstract:

The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)."

Keywords: 3D scan data, octree space partitioning, shape management, structural health monitoring, terrestrial laser scanning

Procedia PDF Downloads 297
7180 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 297
7179 Effect of Fuel Type on Design Parameters and Atomization Process for Pressure Swirl Atomizer and Dual Orifice Atomizer for High Bypass Turbofan Engine

Authors: Mohamed K. Khalil, Mohamed S. Ragab

Abstract:

Atomizers are used in many engineering applications including diesel engines, petrol engines and spray combustion in furnaces as well as gas turbine engines. These atomizers are used to increase the specific surface area of the fuel, which achieve a high rate of fuel mixing and evaporation. In all combustion systems reduction in mean drop size is a challenge which has many advantages since it leads to rapid and easier ignition, higher volumetric heat release rate, wider burning range and lower exhaust concentrations of the pollutant emissions. Pressure atomizers have a different configuration for design such as swirl atomizer (simplex), dual orifice, spill return, plain orifice, duplex and fan spray. Simplex pressure atomizers are the most common type of all. Among all types of atomizers, pressure swirl types resemble a special category since they differ in quality of atomization, the reliability of operation, simplicity of construction and low expenditure of energy. But, the disadvantages of these atomizers are that they require very high injection pressure and have low discharge coefficient owing to the fact that the air core covers the majority of the atomizer orifice. To overcome these problems, dual orifice atomizer was designed. This paper proposes a detailed mathematical model design procedure for both pressure swirl atomizer (Simplex) and dual orifice atomizer, examines the effects of varying fuel type and makes a clear comparison between the two types. Using five types of fuel (JP-5, JA1, JP-4, Diesel and Bio-Diesel) as a case study, reveal the effect of changing fuel type and its properties on atomizers design and spray characteristics. Which effect on combustion process parameters; Sauter Mean Diameter (SMD), spray cone angle and sheet thickness with varying the discharge coefficient from 0.27 to 0.35 during takeoff for high bypass turbofan engines. The spray atomizer performance of the pressure swirl fuel injector was compared to the dual orifice fuel injector at the same differential pressure and discharge coefficient using Excel. The results are analyzed and handled to form the final reliability results for fuel injectors in high bypass turbofan engines. The results show that the Sauter Mean Diameter (SMD) in dual orifice atomizer is larger than Sauter Mean Diameter (SMD) in pressure swirl atomizer, the film thickness (h) in dual orifice atomizer is less than the film thickness (h) in pressure swirl atomizer. The Spray Cone Angle (α) in pressure swirl atomizer is larger than Spray Cone Angle (α) in dual orifice atomizer.

Keywords: gas turbine engines, atomization process, Sauter mean diameter, JP-5

Procedia PDF Downloads 165
7178 Risk Assessment of Trace Metals in the Soil Surface of an Abandoned Mine, El-Abed Northwestern Algeria

Authors: Farida Mellah, Abdelhak Boutaleb, Bachir Henni, Dalila Berdous, Abdelhamid Mellah

Abstract:

Context/Purpose: One of the largest mining operations for lead and zinc deposits in northwestern Algeria in more than thirty years, El Abed is now the abandoned mine that has been inactive since 2004, leaving large amounts of accumulated mining waste under the influence of Wind, erosion, rain, and near agricultural lands. Materials & Methods: This study aims to verify the concentrations and sources of heavy metals for surface samples containing randomly taken soil. Chemical analyses were performed using iCAP 7000 Series ICP-optical emission spectrometer, using a set of environmental quality indicators by calculating the enrichment factor using iron and aluminum references, geographic accumulation index and geographic information system (GIS). On the basis of the spatial distribution. Results: The results indicated that the average metal concentration was: (As = 30,82),(Pb = 1219,27), (Zn = 2855,94), (Cu = 5,3), mg/Kg,based on these results, all metals except Cu passed by GBV in the Earth's crust. Environmental quality indicators were calculated based on the concentrations of trace metals such as lead, arsenic, zinc, copper, iron and aluminum. Interpretation: This study investigated the concentrations and sources of trace metals, and by using quality indicators and statistical methods, lead, zinc, and arsenic were determined from human sources, while copper was a natural source. And based on the spatial analysis on the basis of GIS, many hot spots were identified in the El-Abed region. Conclusion: These results could help in the development of future treatment strategies aimed primarily at eliminating materials from mining waste.

Keywords: soil contamination, trace metals, geochemical indices, El Abed mine, Algeria

Procedia PDF Downloads 71
7177 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances

Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm

Abstract:

ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.

Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances

Procedia PDF Downloads 375
7176 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation

Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau

Abstract:

In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.

Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa

Procedia PDF Downloads 156
7175 Using the Semantic Web Technologies to Bring Adaptability in E-Learning Systems

Authors: Fatima Faiza Ahmed, Syed Farrukh Hussain

Abstract:

The last few decades have seen a large proportion of our population bending towards e-learning technologies, starting from learning tools used in primary and elementary schools to competency based e-learning systems specifically designed for applications like finance and marketing. The huge diversity in this crowd brings about a large number of challenges for the designers of these e-learning systems, one of which is the adaptability of such systems. This paper focuses on adaptability in the learning material in an e-learning course and how artificial intelligence and the semantic web can be used as an effective tool for this purpose. The study proved that the semantic web, still a hot topic in the area of computer science can prove to be a powerful tool in designing and implementing adaptable e-learning systems.

Keywords: adaptable e-learning, HTMLParser, information extraction, semantic web

Procedia PDF Downloads 339
7174 Exploring the Sources of Innovation in Food Processing SMEs of Kerala

Authors: Bhumika Gupta, Jeayaram Subramanian, Hardik Vachhrajani, Avinash Shivdas

Abstract:

Indian food processing industry is one of the largest in the world in terms of production, consumption, exports and growth opportunities. SMEs play a crucial role within this. Large manufacturing firms largely dominate innovation studies in India. Innovation sources used by SMEs are often different from that of large firms. This paper focuses on exploring various sources of innovation adopted by food processing SMEs in Kerala, South India. Outcome suggests that SMEs use various sources like suppliers, competitors, employees, government/research institutions and customers to get new ideas.

Keywords: food processing, innovation, SMEs, sources of innovation

Procedia PDF Downloads 416
7173 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 176
7172 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 177
7171 Quality Characteristics of Road Runoff in Coastal Zones: A Case Study in A25 Highway, Portugal

Authors: Pedro B. Antunes, Paulo J. Ramísio

Abstract:

Road runoff is a linear source of diffuse pollution that can cause significant environmental impacts. During rainfall events, pollutants from both stationary and mobile sources, which have accumulated on the road surface, are dragged through the superficial runoff. Road runoff in coastal zones may present high levels of salinity and chlorides due to the proximity of the sea and transported marine aerosols. Appearing to be correlated to this process, organic matter concentration may also be significant. This study assesses this phenomenon with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included thirty rainfall events, in different weather, traffic and salt deposition conditions in a three years period. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological and traffic parameters were continuously measured. The salt deposition rates (SDR) were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The SDR, variable throughout the year, appears to show a high correlation with wind speed and direction, but mostly with wave propagation, so that it is lower in the summer, in spite of the favorable wind direction in the case study. The distance to the sea, topography, ground obstacles and the platform altitude seems to be also relevant. It was confirmed the high salinity in the runoff, increasing the concentration of the water quality parameters analyzed, with significant amounts of seawater features. In order to estimate the correlations and patterns of different water quality parameters and variables related to weather, road section and salt deposition, the study included exploratory data analysis using different techniques (e.g. Pearson correlation coefficients, Cluster Analysis and Principal Component Analysis), confirming some specific features of the investigated road runoff. Significant correlations among pollutants were observed. Organic matter was highlighted as very dependent of salinity. Indeed, data analysis showed that some important water quality parameters could be divided into two major clusters based on their correlations to salinity (including organic matter associated parameters) and total suspended solids (including some heavy metals). Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed. Based on the results of a monitoring case study, in a coastal zone, it was proven that SDR, associated with the hydrological characteristics of road runoff, can contribute for a better knowledge of the runoff characteristics, and help to estimate the specific nature of the runoff and related water quality parameters.

Keywords: coastal zones, monitoring, road runoff pollution, salt deposition

Procedia PDF Downloads 239
7170 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: steepest descent, line search, iteration, running time, unconstrained optimization, convergence

Procedia PDF Downloads 540
7169 Innovative Power Engineering in a Selected Rural Commune

Authors: Pawel Sowa, Joachim Bargiel

Abstract:

This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.

Keywords: energy security, mini energy centres , power engineering, power supply reliability

Procedia PDF Downloads 300
7168 Factors Influencing Milk Yield, Quality, and Revenue of Dairy Farms in Southern Vietnam

Authors: Ngoc-Hieu Vu

Abstract:

Dairy production in Vietnam is a relatively new agricultural activity and milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to determine factors influencing milk yield and quality (milk fat, total solids, solids-not-fat, total number of bacteria, and somatic cell count) and revenue of dairy farms in Southern Vietnam. The collection of data was at the farm level; individual animal records were unavailable. The 539 studied farms were located in the provinces Lam Dong (N=111 farms), Binh Duong (N=69 farms), Long An (N=174 farms), and Ho Chi Minh city (N=185 farms). The dataset included 9221 monthly test-day records of the farms from January 2013 to May 2015. Seasons were defined as rainy and dry. Farms sizes were classified as small (< 10 milking cows), medium (10 to 19 milking cows) and large (≥ 20 milking cows). The model for each trait contained year-season and farm region-farm size as subclass fixed effects, and individual farm and residual as random effects. Results showed that year-season, region, and farm size were determining sources of variation affecting all studied traits. Milk yield was higher in dry than in rainy seasons (P < 0.05), while it tended to increase from years 2013 to 2015. Large farms had higher yields (445.6 kg/cow) than small (396.7 kg/cow) and medium (428.0 kg/cow) farms (P < 0.05). Small farms, in contrast, were superior to large farms in terms of milk fat, total solids, solids-not-fat, total number of bacteria, and somatic cell count than large farms (P < 0.05). Revenue per cow was higher in large compared with medium and small farms. In conclusion, large farms achieved higher milk yields and revenues per cow, while small farms were superior in milk quality. Overall, milk yields were low and better training, financial support and marketing opportunities for farmers are needed to improve dairy production and increase farm revenues in Southern Vietnam.

Keywords: farm size, milk yield and quality, season, Southern Vietnam

Procedia PDF Downloads 361
7167 An Analysis of Privacy and Security for Internet of Things Applications

Authors: Dhananjay Singh, M. Abdullah-Al-Wadud

Abstract:

The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.

Keywords: Internet of Things (IoT), message authentication, privacy, security

Procedia PDF Downloads 382