Search results for: green renovation
1230 Heat Stress Adaptive Urban Design Intervention for Planned Residential Areas of Khulna City: Case Study of Sonadanga
Authors: Tanjil Sowgat, Shamim Kobir
Abstract:
World is now experiencing the consequences of climate change such as increased heat stress due to high temperature rise. In the context of changing climate, this study intends to find out the planning interventions necessary to adapt to the current heat stress in the planned residential areas of Khulna city. To carry out the study Sonadanga residential area (phase I) of Khulna city has been taken as the study site. This residential neighbourhood covering an area of 30 acres has 206 residential plots. The study area comprises twelve access roads, one park, one playfield, one water body and two street furniture’s. This study conducts visual analysis covering green, open space, water body, footpath, drainage and street trees and furniture and questionnaire survey deals with socio-economic, housing tenancy, experience of heat stress and urban design interventions. It finds that the current state that accelerates the heat stress condition such as lack of street trees and inadequate shading, maximum uses are not within ten minutes walking distance, no footpath for the pedestrians and lack of well-maintained street furniture. It proposes that to adapt to the heat stress pedestrian facilities, buffer sidewalk with landscaping, street trees and open spaces, soft scape, natural and man-made water bodies, green roofing could be effective urban design interventions. There are evidences of limited number of heat stress adaptive planned residential area. Since current sub-division planning practice focuses on rigid land use allocation, it partly addresses the climatic concerns through creating open space and street trees. To better respond to adapt to the heat stress, urban design considerations in the context of sub-division practice would bring more benefits.Keywords: climate change, urban design, adaptation, heat stress, water-logging
Procedia PDF Downloads 2961229 A Post-Occupancy Evaluation of Urban Landscape Greenway– A Case Study of the Taiyuan Greenway in Taichung City
Authors: A. Yu-Chen Chien, B. Ying-Ju Su
Abstract:
Greenway is a type of linear park which links the planar parklands and connects the open spaces. In the urban environment, except for providing open spaces with recreational function as well as effectively improve the appearance of the surrounding environment, greenway and parkland also creates benefits to the social and psychological aspects of human. In 2014, the statistics of The Ministry of Home Affairs show that citizens in Taichung enjoy the green area at an average of 4.27 square kilometers per person. How to use the existing green space system effectively and enhance the quality of leisure life thus become the major issues today. The study here points out that greenway and parkland and other open spaces are closely related to the daily life of urban residents. Whether the operation could be executed in accordance with the design is our major concern. To explore the issue, we implemented the Post-Occupancy Evaluation of Taiyuan Greenway in Taichung City. In 1956, Taichung city carried out the urban plan according to Howard’s concept about “Garden City” and built the Taiyuan greenway to restrain the urban expansion. 50-year past, due to the population growth and new demands, the government started to reconstruct the program. It is a three stage modification project of “The Townspace Renaissance project in Taiwan” since 2009, of which the greenway construction is the main point. In this research, we mainly focus on the third stage of this program to investigate the user’s preference and degree of satisfaction based on the Post-Occupancy Evaluation about the finished, unfinished, and undergoing construction sectors as well as facilities. We collected and analyzed the data based on the questionnaires and explored the possible facts that might have affected the degree of satisfaction about the greenway modification project based on the chi-square test. We hope to inspect the purpose of the demonstration projects and provide reference to the Taichung government for the modification planning and the greenway design in the future.Keywords: greenway, landscape greenway, post-occupancy evaluation, Taichung city
Procedia PDF Downloads 3301228 New Insights into Ethylene and Auxin Interplay during Tomato Ripening
Authors: Bruna Lima Gomes, Vanessa Caroline De Barros Bonato, Luciano Freschi, Eduardo Purgatto
Abstract:
Plant hormones are long known to be tightly associated with fruit development and are involved in controlling various aspects of fruit ripening. For fleshy fruits, ripening is characterized for changes in texture, color, aroma and other parameters that markedly contribute to its quality. Ethylene is one of the major players regulating the ripening-related processes, but emerging evidences suggest that auxin is also part of this dynamic control. Thus, the aim of this study was providing new insights into the auxin role during ripening and the hormonal interplay between auxin and ethylene. For that, tomato fruits (Micro-Tom) were collected at mature green stage and separated in four groups: one for indole-3-acetic acid (IAA) treatment, one for ethylene, one for a combination of IAA and ethylene, and one for control. Hormone solution was injected through the stylar apex, while mock samples were injected with buffer only. For ethylene treatments, fruits were exposed to gaseous hormone. Then, fruits were left to ripen under standard conditions and to assess ripening development, hue angle was reported as color indicator and ethylene production was measured by gas chromatography. The transcript levels of three ripening-related ethylene receptors (LeETR3, LeETR4 and LeETR6) were evaluated by RT-qPCR. Results showed that ethylene treatment induced ripening, stimulated ethylene production, accelerated color changes and induced receptor expression, as expected. Nonetheless, auxin treatment showed the opposite effect once fruits remained green for longer time than control group and ethylene perception has changed, taking account the reduced levels of receptor transcripts. Further, treatment with both hormones revealed that auxin effect in delaying ripening was predominant, even with higher levels of ethylene. Altogether, the data suggest that auxin modulates several aspects of the tomato fruit ripening modifying the ethylene perception. The knowledge about hormonal control of fruit development will help design new strategies for effective manipulation of ripening regarding fruit quality and brings a new level of complexity on fruit ripening regulation.Keywords: ethylene, auxin, fruit ripening, hormonal crosstalk
Procedia PDF Downloads 4611227 Evaluating the Performance of Organic, Inorganic and Liquid Sheep Manure on Growth, Yield and Nutritive Value of Hybrid Napier CO-3
Authors: F. A. M. Safwan, H. N. N. Dilrukshi, P. U. S. Peiris
Abstract:
Less availability of high quality green forages leads to low productivity of national dairy herd of Sri Lanka. Growing grass and fodder to suit the production system is an efficient and economical solution for this problem. CO-3 is placed in a higher category, especially on tillering capacity, green forage yield, regeneration capacity, leaf to stem ratio, high crude protein content, resistance to pests and diseases and free from adverse factors along with other fodder varieties grown within the country. An experiment was designed to determine the effect of organic sheep manure, inorganic fertilizers and liquid sheep manure on growth, yield and nutritive value of CO-3. The study was consisted with three treatments; sheep manure (T1), recommended inorganic fertilizers (T2) and liquid sheep manure (T3) which was prepared using bucket fermentation method and each treatment was consisted with three replicates and those were assigned randomly. First harvest was obtained after 40 days of plant establishment and number of leaves (NL), leaf area (LA), tillering capacity (TC), fresh weight (FW) and dry weight (DW) were recorded and second harvest was obtained after 30 days of first harvest and same set of data were recorded. SPSS 16 software was used for data analysis. For proximate analysis AOAC, 2000 standard methods were used. Results revealed that the plants treated with T1 recorded highest NL, LA, TC, FW and DW and were statistically significant at first and second harvest of CO-3 (p˂ 0.05) and it was found that T1 was statistically significant from T2 and T3. Although T3 was recorded higher than the T2 in almost all growth parameters; it was not statistically significant (p ˃0.05). In addition, the crude protein content was recorded highest in T1 with the value of 18.33±1.61 and was lowest in T2 with the value of 10.82±1.14 and was statistically significant (p˂ 0.05). Apart from this, other proximate composition crude fiber, crude fat, ash, moisture content and dry matter were not statistically significant between treatments (p ˃0.05). In accordance with the results, it was found that the organic fertilizer is the best fertilizer for CO-3 in terms of growth parameters and crude protein content.Keywords: fertilizer, growth parameters, Hybrid Napier CO-3, proximate composition
Procedia PDF Downloads 2911226 Operational Measures for Greenhouse Gas Reduction from Ships
Authors: Gorana Jelic Mrcelic
Abstract:
In order to reduce greenhouse gas emissions from ships, technical and operational measures can be used. Operational measures are easier and cheaper compared to technical measures, so are well recommended. One of the most cost-effective operational measure is fuel consumption. Fuel consumption can be reduced by various options but it sometimes needs investments in new equipment, new procedures and crew education. In order to implement operational measures in everyday procedures and routines on board, good understanding of the mechanisms by which these measures work is essential for the seamen.Keywords: green shipping, gas emission reduction, operational measures, seamen
Procedia PDF Downloads 5161225 Facile Surfactant-Assisted Green Synthesis of Stable Biogenic Gold Nanoparticles with Potential Antibacterial Activity
Authors: Sneha Singh, Abhimanyu Dev, Vinod Nigam
Abstract:
The major issue which decides the impending use of gold nanoparticles (AuNPs) in nanobiotechnological applications is their particle size and stability. Often the AuNPs obtained biomimetically are considered useless owing to their instability in the aqueous medium and thereby limiting the widespread acceptance of this facile green synthesis procedure. So, the use of nontoxic surfactants is warranted to stabilize the biogenic nanoparticles (NPs). But does the surfactant only play a role in stabilizing by being adsorbed to the NPs surface or can it have any other significant contribution in synthesis process and controlling their size as well as shape? Keeping this idea in mind, AuNPs were synthesized by using surfactant treated (lechate) and untreated (cell lysate supernatant) Bacillus licheniformis cell extract. The cell extracts mediated reduction of chloroauric acid (HAuCl 4) in the presence of non-ionic surfactant, Tween 20 (TW20), and its effect on the AuNPs stability was studied. Interestingly, the surfactant used in the study served as potential alternative to harvest cellular enzymes involved in bioreduction process in a hassle free condition. The surfactants ability to solubilize/leach membrane proteins and simultaneously stabilizing the AuNPs could have advantage from process point of view as it will reduce the time and economics involve in the nanofabrication of biogenic NPs. The synthesis was substantiated with UV-Vis spectroscopy, Dynamic light scattering study, FTIR spectroscopy, and Transmission electron microscopy. The Zeta potential of AuNPs solutions was measured routinely to corroborate the stability observations recorded visually. Highly stable, ultra-small AuNPs of 2.6 nm size were obtained from the study. Further, the biological efficacy of the obtained AuNPs as potential antibacterial agent was evaluated against Bacilllus subtilis, Pseudomonas aeruginosa, and Escherichia coli by observing the zone of inhibition. This potential of AuNPs of size < 3 nm as antibacterial agent could pave way for development of new antimicrobials and overcoming the problems of antibiotics resistanceKeywords: antibacterial, bioreduction, nanoparticles, surfactant
Procedia PDF Downloads 2361224 Renovating Language Laboratories for Pedagogical and Technological Advancements in the New Era
Authors: Paul Lam, Chi Him Chan, Alan Tse
Abstract:
Language laboratories have been widely used in language learning, starting in the middle of the last century as one of the earliest forms of educational technology. They are designed to assist students’ language learning with technological innovations. Traditional language laboratories provide individual workstations that allow students to access multimedia language resources. In this type of facility, students can train their listening and speaking abilities, and teachers can also assess the performance of an individual student. Although such a setting promotes a student-centered pedagogy by encouraging students to work at their own pace and according to their own needs, it still favours a traditional, behaviourist language learning pedagogy which focuses on repetitive drilling. The change of pedagogies poses challenges to both the teachers and the facilities. The peer-learning pedagogy advocates that language learning should focus on the social aspect, which emphasizes the importance of everyday communication in language learning. The self-access, individual workstation language laboratories may not be able to provide the flexibility for interaction in the new pedagogies. Modern advancement in technology is another factor that drove our language laboratory renovation. In particular, mobile and wireless technology enabled the use of smaller and more flexible devices, making possible much clever use of space. The Chinese University of Hong Kong (CUHK) renovated nine existing language laboratories to provide lighter and more advanced equipment, movable tables, and round desks. These facilities allow more flexibility and encourage students’ interaction. It is believed that the renovated language laboratories can serve different peer learning activities and thus support peer-learning pedagogies in language teaching and learning. A survey has been conducted to collect comments from the teachers who have used the renovated language laboratories and received forty-four response. The teachers’ comments reveal that they experienced different challenges in using the renovated language laboratories, and there is a need to provide guidance to teachers during the technological and pedagogical transition. For example, teachers need instruction on using the newly installed devices such as touch-monitor and visualizer. They also need advice on planning new teaching and learning activities. Nevertheless, teachers appreciated that the renovated language laboratories are flexible and provide more spaces for different learning activities.Keywords: language laboratories, language learning, peer-learning, student interaction
Procedia PDF Downloads 1071223 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities
Authors: Abdelghani Qadem
Abstract:
Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development
Procedia PDF Downloads 571222 Prioritizing Biodiversity Conservation Areas based on the Vulnerability and the Irreplaceability Framework in Mexico
Authors: Alma Mendoza-Ponce, Rogelio Corona-Núñez, Florian Kraxner
Abstract:
Mexico is a megadiverse country and it has nearly halved its natural vegetation in the last century due to agricultural and livestock expansion. Impacts of land use cover change and climate change are unevenly distributed and spatial prioritization to minimize the affectations on biodiversity is crucial. Global and national efforts for prioritizing biodiversity conservation show that ~33% to 45% of Mexico should be protected. The width of these targets makes difficult to lead resources. We use a framework based on vulnerability and irreplaceability to prioritize conservation efforts in Mexico. Vulnerability considered exposure, sensitivity and adaptive capacity under two scenarios (business as usual, BAU based, on the SSP2 and RCP 4.5 and a Green scenario, based on the SSP1 and the RCP 2.6). Exposure to land use is the magnitude of change from natural vegetation to anthropogenic covers while exposure to climate change is the difference between current and future values for both scenarios. Sensitivity was considered as the number of endemic species of terrestrial vertebrates which are critically endangered and endangered. Adaptive capacity is used as the ration between the percentage of converted area (natural to anthropogenic) and the percentage of protected area at municipality level. The results suggest that by 2050, between 11.6 and 13.9% of Mexico show vulnerability ≥ 50%, and by 2070, between 12.0 and 14.8%, in the Green and BAU scenario, respectively. From an ecosystem perspective cloud forests, followed by tropical dry forests, natural grasslands and temperate forests will be the most vulnerable (≥ 50%). Amphibians are the most threatened vertebrates; 62% of the endemic amphibians are critically endangered or endangered while 39%, 12% and 9% of the mammals, birds, and reptiles, respectively. However, the distribution of these amphibians counts for only 3.3% of the country, while mammals, birds, and reptiles in these categories represent 10%, 16% and 29% of Mexico. There are 5 municipalities out of the 2,457 that Mexico has that represent 31% of the most vulnerable areas (70%).These municipalities account for 0.05% of Mexico. This multiscale approach can be used to address resources to conservation targets as ecosystems, municipalities or species considering land use cover change, climate change and biodiversity uniqueness.Keywords: biodiversity, climate change, land use change, Mexico, vulnerability
Procedia PDF Downloads 1671221 Modelling Asymmetric Magnetic Recording Heads with an Underlayer Using Superposition
Authors: Ammar Edress Mohamed, Mustafa Aziz, David Wright
Abstract:
This paper analyses and calculates the head fields of asymmetrical 2D magnetic recording heads when the soft-underlayer is present using the appropriate Green's function to derive the surface potential/field by utilising the surface potential for asymmetrical head without underlayer. The results follow closely the corners, while the gap region shows a linear behaviour for d/g < 0.5 compared with the calculated fields from finite-element.Keywords: magnetic recording, finite elements, asymmetrical magnetic heads, superposition, Laplace's equation
Procedia PDF Downloads 3911220 Sponge Urbanism as a Resilient City Design to Overcome Urban Flood Risk, for the Case of Aluva, Kerala, India
Authors: Gayathri Pramod, Sheeja K. P.
Abstract:
Urban flooding has been seen rising in cities for the past few years. This rise in urban flooding is the result of increasing urbanization and increasing climate change. A resilient city design focuses on 'living with water'. This means that the city is capable of accommodating the floodwaters without having to risk any loss of lives or properties. The resilient city design incorporates green infrastructure, river edge treatment, open space design, etc. to form a city that functions as a whole for resilience. Sponge urbanism is a recent method for building resilient cities and is founded by China in 2014. Sponge urbanism is the apt method for resilience building for a tropical town like Aluva of Kerala. Aluva is a tropical town that experiences rainfall of about 783 mm per month during the rainy season. Aluva is an urbanized town which faces the risk of urban flooding and riverine every year due to the presence of Periyar River in the town. Impervious surfaces and hard construction and developments contribute towards flood risk by posing as interference for a natural flow and natural filtration of water into the ground. This type of development is seen in Aluva also. Aluva is designed in this research as a town that have resilient strategies of sponge city and which focusses on natural methods of construction. The flood susceptibility of Aluva is taken into account to design the spaces for sponge urbanism and in turn, reduce the flood susceptibility for the town. Aluva is analyzed, and high-risk zones for development are identified through studies. These zones are designed to withstand the risk of flooding. Various catchment areas are identified according to the natural flow of water, and then these catchment areas are designed to act as a public open space and as detention ponds in case of heavy rainfall. Various development guidelines, according to land use, is also prescribed, which help in increasing the green cover of the town. Aluva is then designed to be a completely flood-adapted city or sponge city according to the guidelines and interventions.Keywords: climate change, flooding, resilient city, sponge city, sponge urbanism, urbanization
Procedia PDF Downloads 1551219 Wt1 and FoxL2 Genes Expression Pattern in Mesonephros-Gonad Complexes of Green Sea Turtle (Chelonia mydas) Embryos Incubated in Feminization and Masculinization Temperature
Authors: Fitria D. Ayuningtyas, Anggraini Barlian
Abstract:
Green turtle (Chelonia mydas) is one of TSD (Temperature-dependent Sex Determination, TSD) animals which sex is determined by the egg’s incubation temperature. GSD (Genotypic Sex Determination) homologous genes such as Wilms’ Tumor (Wt1) and Forkhead Box L2 (FoxL2) play a role in TSD animal sex determination process. Wt1 plays a role in both male pathway, as a transcription factor for Sf1 gene and in female pathway, as a transcription factor for Dax1. FoxL2 plays a role specifically in female sex determination, and known as transcriptional factor for Aromatase gene. Until now, research on the pattern of Wt1 and FoxL2 genes expression in C.mydas has not been conducted yet. The aim of this research is to know the pattern of Wt1 and FoxL2 genes expression in Mesonephros-Gonad (MG) complexes of Chelonia mydas embryos incubated in masculinizing temperature (MT) and feminizing temperature (FT). Eggs of C.mydas incubated in 3 different stage of TSP (Thermosensitive Period) at masculinizing temperature (26±10C, MT) and feminizing temperature (31±10C FT). Mesonefros-gonad complexes were isolated at Pre-TSP stage (FT at days 14th, MT at days 24th), TSP stage (FT at days 24th, MT at days 36th) and differentiated stage (FT at days 40th, MT at days 58th). RNA from mesonephros-gonad (MG) complexes were converted into cDNA by RT-PCR process, and the pattern of Wt1 and FoxL2 genes expression is analyzed by quantitative Real Time PCR (qPCR) method, β-actin gene is used as an internal control. The pattern of Wt1 gene expression in Pre-TSP stage was almost the same between MG complexes incubated at MT or FT, while TSP and differentiation stage, the pattern of Wt1 gene expression in MG complexes incubated at MT or FT was increased. Wt1 gene expression of MG complexes that incubated at FT was higher than at MT. There was a difference pattern between Wt1 gene expression in this research compared to the previous research in protein level. It could be assumed that the difference caused by post-transcriptional regulation mechanisms before mRNA of Wt1 gene translated into protein structure. The pattern of FoxL2 gene expression in Pre-TSP stage was almost the same between MG complexes that incubated at MT and FT, and increased in both TSP and differentiated stage. The FoxL2 gene expression in MG complexes that incubated in FT is higher than MT on TSP and differentiated stage. Based on the results of this research, it can be assumed that Wt1 and FoxL2 gene were expressed in MG complexes that incubated both at MT and FT since Pre-TSP stage. The pattern of Wt1 gene expression was increased in every stage of gonadal development, and so do the pattern of FoxL2 gene expression. Wt1 and FoxL2 gene expressions were higher in MG complexes incubated at FT than MT.Keywords: chelonia mydas, FoxL2, gene expression, TSD, Wt1
Procedia PDF Downloads 4071218 Modern Methods of Construction (MMC): The Potentials and Challenges of Using Prefabrication Technology for Building Modern Houses in Afghanistan
Authors: Latif Karimi, Yasuhide Mochida
Abstract:
The purpose of this paper is to study Modern Methods of Construction (MMC); specifically, the prefabrication technology and check the applicability, suitability, and benefits of this construction technique over conventional methods for building new houses in Afghanistan. Construction industry and house building sector are a key contributor to Afghanistan’s economy. However, this sector is challenged with lack of innovation and severe impacts that it has on the environment due to huge amount of construction waste from building, demolition and or renovation activities. This paper studies the prefabrication technology, a popular MMC that is becoming more common, improving in quality and being available in a variety of budgets. Several feasibility studies worldwide have revealed that this method is the way forward in improving construction industry performance as it has been proven to reduce construction time, construction wastes and improve the environmental performance of the construction processes. In addition, this study emphasizes on 'sustainability' in-house building, since it is a common challenge in housing construction projects on a global scale. This challenge becomes more severe in the case of under-developed countries, like Afghanistan. Because, most of the houses are being built in the absence of a serious quality control mechanism and dismissive to basic requirements of sustainable houses; well-being, cost-effectiveness, minimization - prevention of wastes production during construction and use, and severe environmental impacts in view of a life cycle assessment. Methodology: A literature review and study of the conventional practices of building houses in urban areas of Afghanistan. A survey is also being completed to study the potentials and challenges of using prefabrication technology for building modern houses in the cities across the country. A residential housing project is selected for case study to determine the drawbacks of current construction methods vs. prefabrication technique for building a new house. Originality: There are little previous research available about MMC considering its specific impacts on sustainability related to house building practices. This study will be specifically of interest to a broad range of people, including planners, construction managers, builders, and house owners.Keywords: modern methods of construction (MMC), prefabrication, prefab houses, sustainable construction, modern houses
Procedia PDF Downloads 2431217 The Restrictions of the Householder’s ‘Double Two-Thirds Principles’ in Decision-Making for Elevators Addition to Existing Condominium
Authors: Haifeng Shi, Kun Song, Yili Zhao
Abstract:
In China, with the extensive promotion of the ‘aging in place’ pension policy as the background, most of the elders will choose to remain in their current homes and communities, finding out of preference or necessity that they will need to remodel their homes to fit their changing needs. This generation elder born in the 1960s to 1970s almost live in the same form of housing-condominium built from 1982 to 2012. Based on the survey of existing multi-family housing, especially in Tianjin, it is found that the current ‘double two-thirds principles’ is becoming the threshold for modification to existing house, particularly in the project of elevators addition to existing condominium (built from 1982 to 2016 without elevators below 6 floors according to the previous building code). Firstly, this article concludes the local policies of elevator addition nationwide, most of which has determined the importance and necessity of the community-based self-organization principle in the operation of the elevator addition. Secondly, by comparing the three existing community management systems (owners' congress, property management system and community committee) in instances, find that the community-based ‘two-thirds’ principle is not conducive to implement for multi-owned property renovation in the community or common accessibility modification in the building. However, analysis the property and other community management related laws, pointing out the shortcomings of the existing community-based ‘two-thirds’ decision-making norms. The analyzation showed that the unit-based and ‘100% principle’ method is more capable of common accessibility in the condominium in China. Differing from existing laws, the unit-based principle will be effective for the process of decision-making and ‘100% principle’ will protect closely profit-related householders for condominium modification in the multi-owned area. These three aspects of the analysis suggest that the establishment of the unit-based self-organization mechanism is a preferred and inevitable method to solve the problem of elevators addition to the existing condominium in China.Keywords: aging in place, condominium, modification, multi own
Procedia PDF Downloads 1481216 Determination of the Walkability Comfort for Urban Green Space Using Geographical Information System
Authors: Muge Unal, Cengiz Uslu, Mehmet Faruk Altunkasa
Abstract:
Walkability relates to the ability of the places to connect people with varied destinations within a reasonable amount of time and effort, and to offer visual interest in journeys throughout the network. So, the good quality of the physical environment and arrangement of walkway and sidewalk appear to be more crucial in influencing the pedestrian route choice. Also, proximity, connectivity, and accessibility are significant factor for walkability in terms of an equal opportunity for using public spaces. As a result, there are two important points for walkability. Firstly, the place should have a well-planned street network for accessible and secondly facilitate the pedestrian need for comfort. In this respect, this study aims to examine the both physical and bioclimatic comfort levels of the current condition of pedestrian route with reference to design criteria of a street to access the urban green spaces. These aspects have been identified as the main indicators for walkable streets such as continuity, materials, slope, bioclimatic condition, walkway width, greenery, and surface. Additionally, the aim was to identify the factors that need to be considered in future guidelines and policies for planning and design in urban spaces especially streets. Adana city was chosen as a study area. Adana is a province of Turkey located in south-central Anatolia. This study workflow can be summarized in four stages: (1) environmental and physical data were collected by referred to literature and used in a weighted criteria method to determine the importance level of these data , (2) environmental characteristics of pedestrian routes gained from survey studies are evaluated to hierarchies these criteria of the collected information, (3) and then each pedestrian routes will have a score that provides comfortable access to the park, (4) finally, the comfortable routes to park will be mapped using GIS. It is hoped that this study will provide an insight into future development planning and design to create a friendly and more comfort street environment for the users.Keywords: comfort level, geographical information system (GIS), walkability, weighted criteria method
Procedia PDF Downloads 3111215 Microplastics in Urban Environment – Coimbra City Case Study
Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen
Abstract:
Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.Keywords: microplastics, cities, sources, pathways, vegetation
Procedia PDF Downloads 591214 Optically Active Material Based on Bi₂O₃@Yb³⁺, Nd³⁺ with High Intensity of Upconversion Luminescence in Red and Green Region
Authors: D. Artamonov, A. Tsibulnikova, I. Samusev, V. Bryukhanov, A. Kozhevnikov
Abstract:
The synthesis and luminescent properties of Yb₂O₃, Nd₂O₃@Bi₂O₃ complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode.Keywords: lasers, luminescence, upconversion photonics, rare earth metals
Procedia PDF Downloads 821213 Glycerol-Based Bio-Solvents for Organic Synthesis
Authors: Dorith Tavor, Adi Wolfson
Abstract:
In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.Keywords: glycerol, green chemistry, sustainability, catalysis
Procedia PDF Downloads 6241212 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity
Authors: Manana Chumburidze, David Lekveishvili
Abstract:
We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.Keywords: the couple-stress thermoelasticity, boundary value problems, dynamic problems, approximate solution
Procedia PDF Downloads 5061211 A Factor-Analytical Approach on Identities in Environmentally Significant Behavior
Authors: Alina M. Udall, Judith de Groot, Simon de Jong, Avi Shankar
Abstract:
There are many ways in which environmentally significant behavior can be explained. Dominant psychological theories, namely, the theory of planned behavior, the norm-activation theory, its extension, the value-belief-norm theory, and the theory of habit do not explain large parts of environmentally significant behaviors. A new and rapidly growing approach is to focus on how consumer’s identities predict environmentally significant behavior. Identity may be relevant because consumers have many identities that are assumed to guide their behavior. Therefore, we assume that many identities will guide environmentally significant behavior. Many identities can be relevant for environmentally significant behavior. In reviewing the literature, over 200 identities have been studied making it difficult to establish the key identities for explaining environmentally significant behavior. Therefore, this paper first aims to establish the key identities previously used for explaining environmentally significant behavior. Second, the aim is to test which key identities explain environmentally significant behavior. To address the aims, an online survey study (n = 578) is conducted. First, the exploratory factor analysis reveals 15 identity factors. The identity factors are namely, environmentally concerned identity, anti-environmental self-identity, environmental place identity, connectedness with nature identity, green space visitor identity, active ethical identity, carbon off-setter identity, thoughtful self-identity, close community identity, anti-carbon off-setter identity, environmental group member identity, national identity, identification with developed countries, cyclist identity, and thoughtful organisation identity. Furthermore, to help researchers understand and operationalize the identities, the article provides theoretical definitions for each of the identities, in line with identity theory, social identity theory, and place identity theory. Second, the hierarchical regression shows only 10 factors significantly uniquely explain the variance in environmentally significant behavior. In order of predictive power the identities are namely, environmentally concerned identity, anti-environmental self-identity, thoughtful self-identity, environmental group member identity, anti-carbon off-setter identity, carbon off-setter identity, connectedness with nature identity, national identity, and green space visitor identity. The identities explain over 60% of the variance in environmentally significant behavior, a large effect size. Based on this finding, the article reveals a new, theoretical framework showing the key identities explaining environmentally significant behavior, to help improve and align the field.Keywords: environmentally significant behavior, factor analysis, place identity, social identity
Procedia PDF Downloads 4511210 Recovering Copper From Tailing and E-Waste to Create Copper Nanoparticles with Antimicrobial Properties
Authors: Erico R. Carmona, Lucas Hernandez-Saravia, Aliro Villacorta, Felipe Carevic
Abstract:
Tailings and electronic waste (e-waste) are an important source of global contamination. Chile is one of Organisation for Economic Co-operation and Development (OECD) member countries that least recycled this kind of industrial waste, reaching only 3% of the total. Tailings and e-waste recycling offers a valuable tool to minimize the increasing accumulation of waste, supplement the scarcity of some raw materials and to obtain economic benefits through the commercialization of these. It should be noted that this type of industrial waste is an important source of valuable metals, such as copper, which allow generating new business and added value through its transformation into new materials with advanced physical and biological properties. In this sense, the development of nanotechnology has led to the creation of nanomaterials with multiple applications given their unique physicochemical properties. Among others, copper nanoparticles (CuNPs) have gained great interest due to their optical, catalytic, conductive properties, and particularly because of their broad-spectrum antimicrobial activity. There are different synthesis methods of copper nanoparticles; however, green synthesis is one of the most promising methodologies, since it is simple, low-cost, ecological, and generates stable nanoparticles, which makes it a promising methodology for scaling up. Currently, there are few initiatives that involve the development of methods for the recovery and transformation of copper from waste to produce nanoparticles with new properties and better technological benefits. Thus, the objective of this work is to show preliminary data about the develop a sustainable transformation process of tailings and e-waste that allows obtaining a copper-based nanotechnological product with potential antimicrobial applications. For this, samples of tailings and e-waste collected from Tarapacá and Antofagasta region of northern Chile were used to recover copper through efficient, ecological, and low-cost alkaline hydrometallurgical treatments, which to allow obtaining copper with a high degree of purity. On the other hand, the transformation process from recycled copper to a nanomaterial was carried out through a green synthesis approach by using vegetal organic residue extracts that allows obtaining CuNPs following methodologies previously reported by authors. Initial physical characterization with UV-Vis, FTIR, AFM, and TEM methodologies will be reported for CuNPs synthesized.Keywords: nanomaterials, industrial waste, chile, recycling
Procedia PDF Downloads 961209 Tourism Industry in Pakistan: Challenges Faced and Future Prospects
Authors: Misbah Shaheen, Anam Qureshi
Abstract:
In this work we will discuss the challenges faced by tourism industry in Pakistan. Tourism plays vital role in the socio-economic growth of a country. The countries of world, with less tourism opportunities are lagging behind from other nations of the world. Pakistan is one of those countries which rich in historical places, natural beauty, and uniqueness in handmade items and also of green forests. Present study will discuss the challenges being faced by tourism industry with special focus on hotel industry and law and order situation.Keywords: Pakistan, tourism, handmade items, hotel industry
Procedia PDF Downloads 3931208 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape
Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin
Abstract:
It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR( photosynthetic active radiation), the relative DLI( daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.Keywords: daily light integral, plant design, urban open space
Procedia PDF Downloads 5111207 Investigating the Use of Seaweed Extracts as Biopesticides
Authors: Emma O’ Keeffe, Helen Hughes, Peter McLoughlin, Shiau Pin Tan, Nick McCarthy
Abstract:
Biosecurity is emerging as one of the most important issues facing the agricultural and forestry community. This is as a result of increased invasion from new pests and diseases with the main protocol for dealing with these species being the use of synthetic pesticides. However, these chemicals have been shown to exhibit negative effects on the environment. Seaweeds represent a vast untapped resource of bio-molecules with a broad range of biological activities including pesticidal. This project investigated both the antifungal and antibacterial activity of seaweed species against two problematic root rot fungi, Armillaria mellea and Heterobasidion annosum and ten quarantine bacterial plant pathogens including Xanthomonas arboricola, Xanthomonas fragariae, and Erwinia amylovora. Four seaweed species were harvested from the South-East coast of Ireland including brown, red and green varieties. The powdered seaweeds were extracted using four different solvents by liquid extraction. The poisoned food technique was employed to establish the antifungal efficacy, and the standard disc diffusion assay was used to assess the antibacterial properties of the seaweed extracts. It was found that extracts of the green seaweed exhibited antifungal activity against H. annosum, with approximately 50% inhibition compared to the negative control. The protectant activities of the active extracts were evaluated on disks of Picea sitchensis, a plant species sensitive to infection from H. annosum and compared to the standard chemical control product urea. The crude extracts exhibited very similar activity to the 10% and 20% w/v concentrations of urea, demonstrating the ability of seaweed extracts to compete with commercially available products. Antibacterial activity was exhibited by a number of seaweed extracts with the red seaweed illustrating the strongest activity, with a zone of inhibition of 15.83 ± 0.41 mm exhibited against X. arboricola whilst the positive control (10 μg/disk of chloramphenicol) had a zone of 26.5 ± 0.71 mm. These results highlight the potential application of seaweed extracts in the forestry and agricultural industries for use as biopesticides. Further work is now required to identify the bioactive molecules that are responsible for this antifungal and antibacterial activity in the seaweed extracts, including toxicity studies to ensure the extracts are non-toxic to plants and humans.Keywords: antibacterial, antifungal, biopesticides, seaweeds
Procedia PDF Downloads 1721206 Active Power Filters and their Smart Grid Integration - Applications for Smart Cities
Authors: Pedro Esteban
Abstract:
Most installations nowadays are exposed to many power quality problems, and they also face numerous challenges to comply with grid code and energy efficiency requirements. The reason behind this is that they are not designed to support nonlinear, non-balanced, and variable loads and generators that make up a large percentage of modern electric power systems. These problems and challenges become especially critical when designing green buildings and smart cities. These problems and challenges are caused by equipment that can be typically found in these installations like variable speed drives (VSD), transformers, lighting, battery chargers, double-conversion UPS (uninterruptible power supply) systems, highly dynamic loads, single-phase loads, fossil fuel generators and renewable generation sources, to name a few. Moreover, events like capacitor switching (from existing capacitor banks or passive harmonic filters), auto-reclose operations of transmission and distribution lines, or the starting of large motors also contribute to these problems and challenges. Active power filters (APF) are one of the fastest-growing power electronics technologies for solving power quality problems and meeting grid code and energy efficiency requirements for a wide range of segments and applications. They are a high performance, flexible, compact, modular, and cost-effective type of power electronics solutions that provide an instantaneous and effective response in low or high voltage electric power systems. They enable longer equipment lifetime, higher process reliability, improved power system capacity and stability, and reduced energy losses, complying with most demanding power quality and energy efficiency standards and grid codes. There can be found several types of active power filters, including active harmonic filters (AHF), static var generators (SVG), active load balancers (ALB), hybrid var compensators (HVC), and low harmonic drives (LHD) nowadays. All these devices can be used in applications in Smart Cities bringing several technical and economic benefits.Keywords: power quality improvement, energy efficiency, grid code compliance, green buildings, smart cities
Procedia PDF Downloads 1121205 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites
Authors: A. Atli, K. Candelier, J. Alteyrac
Abstract:
Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.Keywords: biodegradability, color measurements, durability, mechanical properties, melt flow index, MFI, structural properties, thermal properties, wood-plastic composites, WPCs
Procedia PDF Downloads 1371204 Research on Audiovisual Perception in Stairway Spaces of Mountain City Parks Based on Real-Scene EEG Monitoring
Authors: Yang Xinyu, Gong Cong, Hu Changjuan
Abstract:
Stairway spaces are a crucial component of the pathway systems and vertical transportation networks in mountain city parks. These spaces are closely integrated with the undulating terrain of mountain environments, resulting in continuously changing spatial conditions that can significantly influence participants' behavioral characteristics, thereby affecting their perception. EEG signals, which have been proven to reflect various non-attentive physiological activities in the brain, are widely used in studies related to stress recovery effects and emotional perception. Existing research predominantly examines the impact of spatial characteristics and landscape elements of trails and greenways in plain cities on participants' perception, utilizing EEG signals in laboratory-simulated environments. These studies have preliminarily revealed the relationship between spatial environments and perception preferences. However, on-site ergonomics research in mountain environments remains relatively underdeveloped. To address this gap, the Stairway spaces in Pipashan Park, Chongqing, were selected as the research object. Wearable hydrogel EEG devices were employed to monitor participants' EEG data in real environments, and a Generalized Linear Mixed Model (GLMM) was constructed to explore differences in participants' perception under different paths and modes of movement, as well as the impact of visual and auditory environmental elements within each path on their perception. The model analysis results indicate significant differences in EEG data across different paths and movement modes. Additionally, typical mountainous spatial characteristics, such as openness, green view index, and elevation difference, are identified as key factors influencing participants' EEG data. Higher levels of natural sound and green view index were shown to effectively alleviate participants' stress perception in mountain stairway spaces. The findings reveal the intrinsic connections between environment, behavior, and perception in stairway spaces of mountain city parks, providing a theoretical basis for optimizing the design of stairway spaces in mountain cities.Keywords: audio-visual perception, EEG monitoring, mountain city park, real environment, stairway space
Procedia PDF Downloads 171203 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors
Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu
Abstract:
The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.Keywords: construction contractors, health and well-being, environmental quality, risk management
Procedia PDF Downloads 1321202 Nonlinear Modelling of Sloshing Waves and Solitary Waves in Shallow Basins
Authors: Mohammad R. Jalali, Mohammad M. Jalali
Abstract:
The earliest theories of sloshing waves and solitary waves based on potential theory idealisations and irrotational flow have been extended to be applicable to more realistic domains. To this end, the computational fluid dynamics (CFD) methods are widely used. Three-dimensional CFD methods such as Navier-Stokes solvers with volume of fluid treatment of the free surface and Navier-Stokes solvers with mappings of the free surface inherently impose high computational expense; therefore, considerable effort has gone into developing depth-averaged approaches. Examples of such approaches include Green–Naghdi (GN) equations. In Cartesian system, GN velocity profile depends on horizontal directions, x-direction and y-direction. The effect of vertical direction (z-direction) is also taken into consideration by applying weighting function in approximation. GN theory considers the effect of vertical acceleration and the consequent non-hydrostatic pressure. Moreover, in GN theory, the flow is rotational. The present study illustrates the application of GN equations to propagation of sloshing waves and solitary waves. For this purpose, GN equations solver is verified for the benchmark tests of Gaussian hump sloshing and solitary wave propagation in shallow basins. Analysis of the free surface sloshing of even harmonic components of an initial Gaussian hump demonstrates that the GN model gives predictions in satisfactory agreement with the linear analytical solutions. Discrepancies between the GN predictions and the linear analytical solutions arise from the effect of wave nonlinearities arising from the wave amplitude itself and wave-wave interactions. Numerically predicted solitary wave propagation indicates that the GN model produces simulations in good agreement with the analytical solution of the linearised wave theory. Comparison between the GN model numerical prediction and the result from perturbation analysis confirms that nonlinear interaction between solitary wave and a solid wall is satisfactorilly modelled. Moreover, solitary wave propagation at an angle to the x-axis and the interaction of solitary waves with each other are conducted to validate the developed model.Keywords: Green–Naghdi equations, nonlinearity, numerical prediction, sloshing waves, solitary waves
Procedia PDF Downloads 2851201 Rehabilitation of Dilapidated Buildings in Morocco: Turning Urban Challenges into Opportunities
Authors: Derradji A., Ben El Mamoun M., Zakaria E., Charadi I. Anrur
Abstract:
The issue of dilapidated buildings represents a significant opportunity for constructive and beneficial interventions in Morocco. Faced with challenges associated with aging constructions and rapid urbanization, the country is committed to developing innovative strategies aimed at revitalizing urban areas and enhancing the sustainability of infrastructure, thereby ensuring citizens' safety. Through targeted investments in the renovation and modernization of existing buildings, Morocco aims to stimulate job creation, boost the local economy, and improve the quality of life for residents. Additionally, the integration of sustainable construction standards and the strengthening of regulations will promote resilient and environmentally friendly urban development. In this proactive perspective, LABOTEST has been commissioned by the National Agency for Urban Renewal (ANRUR) to conduct an in-depth study. This study focuses on the technical expertise of 1800 buildings identified as dilapidated in the prefectures of Rabat and Skhirat-Témara following an initial clearance operation. The primary objective of this initiative is to conduct a comprehensive diagnosis of these buildings and define the necessary interventions to eliminate potential risks while ensuring appropriate treatment. The article presents the adopted intervention methodology, taking into account the social dimensions involved, as well as the results of the technical expertise. These results include the classification of buildings according to their degree of urgency and recommendations for appropriate conservatory measures. Additionally, different pathologies are identified and accompanied by specific treatment proposals for each type of building. Since this study, the adopted approach has been generalized to the entire territory of Morocco. LABOTEST has been solicited by other cities such as Casablanca, Chefchaouen, Ouazzane, Azilal, Bejaad, and Demnate. This extension of the initiative demonstrates Morocco's commitment to addressing urban challenges in a proactive and inclusive manner. These efforts also illustrate the endeavors undertaken to transform urban challenges into opportunities for sustainable development and socio-economic progress for the entire population.Keywords: building, dilapidated, rehabilitation, Morocco
Procedia PDF Downloads 64