Search results for: functional textiles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3125

Search results for: functional textiles

2105 Assessment of the Quality of a Mixture of Vegetable Oils from Kazakhstan Origin

Authors: Almas Mukhametov, Dina Dautkanova, Moldir Yerbulekova, Gulim Tuyakova, Raziya Zhakudaeva, Makpal Seisenaly, Asemay Kazhymurat

Abstract:

The composition of samples of mixtures of vegetable oils of Kazakhstan origin, consisting of sunflower, safflower and linseed oils, has been experimentally substantiated. With an approximate optimal ratio of w-6:w-3 fatty acids in 80:15:05 triacylglycerols, providing its therapeutic and prophylactic properties. The resulting mixture can be used in the development of functional products. The result was also identified and evaluated by physical and chemical quality indicators, the content of vitamin E, and the concentration of ions of copper (Cu), iron (Fe), cadmium (Cd), lead (Pb), arsenic (As), nickel (Ni), as well as mercury (Hg).

Keywords: vegetable oil, sunflower, safflower, linseed, mixture, fatty acid composition, heavy metals

Procedia PDF Downloads 189
2104 Functional Neurocognitive Imaging (fNCI): A Diagnostic Tool for Assessing Concussion Neuromarker Abnormalities and Treating Post-Concussion Syndrome in Mild Traumatic Brain Injury Patients

Authors: Parker Murray, Marci Johnson, Tyson S. Burnham, Alina K. Fong, Mark D. Allen, Bruce McIff

Abstract:

Purpose: Pathological dysregulation of Neurovascular Coupling (NVC) caused by mild traumatic brain injury (mTBI) is the predominant source of chronic post-concussion syndrome (PCS) symptomology. fNCI has the ability to localize dysregulation in NVC by measuring blood-oxygen-level-dependent (BOLD) signaling during the performance of fMRI-adapted neuropsychological evaluations. With fNCI, 57 brain areas consistently affected by concussion were identified as PCS neural markers, which were validated on large samples of concussion patients and healthy controls. These neuromarkers provide the basis for a computation of PCS severity which is referred to as the Severity Index Score (SIS). The SIS has proven valuable in making pre-treatment decisions, monitoring treatment efficiency, and assessing long-term stability of outcomes. Methods and Materials: After being scanned while performing various cognitive tasks, 476 concussed patients received an SIS score based on the neural dysregulation of the 57 previously identified brain regions. These scans provide an objective measurement of attentional, subcortical, visual processing, language processing, and executive functioning abilities, which were used as biomarkers for post-concussive neural dysregulation. Initial SIS scores were used to develop individualized therapy incorporating cognitive, occupational, and neuromuscular modalities. These scores were also used to establish pre-treatment benchmarks and measure post-treatment improvement. Results: Changes in SIS were calculated in percent change from pre- to post-treatment. Patients showed a mean improvement of 76.5 percent (σ= 23.3), and 75.7 percent of patients showed at least 60 percent improvement. Longitudinal reassessment of 24 of the patients, measured an average of 7.6 months post-treatment, shows that SIS improvement is maintained and improved, with an average of 90.6 percent improvement from their original scan. Conclusions: fNCI provides a reliable measurement of NVC allowing for identification of concussion pathology. Additionally, fNCI derived SIS scores direct tailored therapy to restore NVC, subsequently resolving chronic PCS resulting from mTBI.

Keywords: concussion, functional magnetic resonance imaging (fMRI), neurovascular coupling (NVC), post-concussion syndrome (PCS)

Procedia PDF Downloads 360
2103 A Quantitative Study on the “Unbalanced Phenomenon” of Mixed-Use Development in the Central Area of Nanjing Inner City Based on the Meta-Dimensional Model

Authors: Yang Chen, Lili Fu

Abstract:

Promoting urban regeneration in existing areas has been elevated to a national strategy in China. In this context, because of the multidimensional sustainable effect through the intensive use of land, mixed-use development has become an important objective for high-quality urban regeneration in the inner city. However, in the long period of time since China's reform and opening up, the "unbalanced phenomenon" of mixed-use development in China's inner cities has been very serious. On the one hand, the excessive focus on certain individual spaces has led to an increase in the level of mixed-use development in some areas, substantially ahead of others, resulting in a growing gap between different parts of the inner city; On the other hand, the excessive focus on a one-dimensional element of the spatial organization of mixed-use development, such as the enhancement of functional mix or spatial capacity, has led to a lagging phenomenon or neglect in the construction of other dimensional elements, such as pedestrian permeability, green environmental quality, social inclusion, etc. This phenomenon is particularly evident in the central area of the inner city, and it clearly runs counter to the need for sustainable development in China's new era. Therefore, a rational qualitative and quantitative analysis of the "unbalanced phenomenon" will help to identify the problem and provide a basis for the formulation of relevant optimization plans in the future. This paper builds a dynamic evaluation method of mixed-use development based on a meta-dimensional model and then uses spatial evolution analysis and spatial consistency analysis with ArcGIS software to reveal the "unbalanced phenomenon " in over the past 40 years of the central city area in Nanjing, a China’s typical city facing regeneration. This study result finds that, compared to the increase in functional mix and capacity, the dimensions of residential space mix, public service facility mix, pedestrian permeability, and greenness in Nanjing's city central area showed different degrees of lagging improvement, and the unbalanced development problems in each part of the city center are different, so the governance and planning plan for future mixed-use development needs to fully address these problems. The research methodology of this paper provides a tool for comprehensive dynamic identification of mixed-use development level’s change, and the results deepen the knowledge of the evolution of mixed-use development patterns in China’s inner cities and provide a reference basis for future regeneration practices.

Keywords: mixed-use development, unbalanced phenomenon, the meta-dimensional model, over the past 40 years of Nanjing, China

Procedia PDF Downloads 106
2102 C4H6 Adsorption on the Surface of A BN Nanotube: A DFT Studies

Authors: Maziar Noei

Abstract:

Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about -24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors.

Keywords: sensor, nanotube, DFT, ethylacetylene

Procedia PDF Downloads 249
2101 Development of a Vegetation Searching System

Authors: Rattanathip Rattanachai, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Vegetation Searching System based on Web Application in case of Suan Sunandha Rajabhat University. The model was developed by PHP, JavaScript, and MySQL database system and it was designed to support searching endemic and rare species of tree on web site. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 4.3 and 4.5, and standard deviation for experts and users were 0.61 and 0.73 respectively. Further analysis showed that the quality of plant searching web site was also at a good level as well.

Keywords: endemic species, vegetation, web-based system, black box testing, Thailand

Procedia PDF Downloads 310
2100 Network Analysis to Reveal Microbial Community Dynamics in the Coral Reef Ocean

Authors: Keigo Ide, Toru Maruyama, Michihiro Ito, Hiroyuki Fujimura, Yoshikatu Nakano, Shoichiro Suda, Sachiyo Aburatani, Haruko Takeyama

Abstract:

Understanding environmental system is one of the important tasks. In recent years, conservation of coral environments has been focused for biodiversity issues. The damage of coral reef under environmental impacts has been observed worldwide. However, the casual relationship between damage of coral and environmental impacts has not been clearly understood. On the other hand, structure/diversity of marine bacterial community may be relatively robust under the certain strength of environmental impact. To evaluate the coral environment conditions, it is necessary to investigate relationship between marine bacterial composition in coral reef and environmental factors. In this study, the Time Scale Network Analysis was developed and applied to analyze the marine environmental data for investigating the relationship among coral, bacterial community compositions and environmental factors. Seawater samples were collected fifteen times from November 2014 to May 2016 at two locations, Ishikawabaru and South of Sesoko in Sesoko Island, Okinawa. The physicochemical factors such as temperature, photosynthetic active radiation, dissolved oxygen, turbidity, pH, salinity, chlorophyll, dissolved organic matter and depth were measured at the coral reef area. Metagenome and metatranscriptome in seawater of coral reef were analyzed as the biological factors. Metagenome data was used to clarify marine bacterial community composition. In addition, functional gene composition was estimated from metatranscriptome. For speculating the relationships between physicochemical and biological factors, cross-correlation analysis was applied to time scale data. Even though cross-correlation coefficients usually include the time precedence information, it also included indirect interactions between the variables. To elucidate the direct regulations between both factors, partial correlation coefficients were combined with cross correlation. This analysis was performed against all parameters such as the bacterial composition, the functional gene composition and the physicochemical factors. As the results, time scale network analysis revealed the direct regulation of seawater temperature by photosynthetic active radiation. In addition, concentration of dissolved oxygen regulated the value of chlorophyll. Some reasonable regulatory relationships between environmental factors indicate some part of mechanisms in coral reef area.

Keywords: coral environment, marine microbiology, network analysis, omics data analysis

Procedia PDF Downloads 254
2099 Ab-Initio Study of Native Defects in SnO Under Strain

Authors: A. Albar, D. B. Granato, U. Schwingenschlogl

Abstract:

Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor.

Keywords: native defects, ab-initio, point defect, tension, compression, semiconductor

Procedia PDF Downloads 396
2098 Development of a Pain Detector Using Microwave Radiometry Method

Authors: Nanditha Rajamani, Anirudhaa R. Rao, Divya Sriram

Abstract:

One of the greatest difficulties in treating patients with pain is the highly subjective nature of pain sensation. The measurement of pain intensity is primarily dependent on the patient’s report, often with little physical evidence to provide objective corroboration. This is also complicated by the fact that there are only few and expensive existing technologies (Functional Magnetic Resonance Imaging-fMRI). The need is thus clear and urgent for a reliable, non-invasive, non-painful, objective, readily adoptable, and coefficient diagnostic platform that provides additional diagnostic information to supplement its current regime with more information to assist doctors in diagnosing these patients. Thus, our idea of developing a pain detector was conceived to take a step further the detection and diagnosis of chronic and acute pain.

Keywords: pain sensor, microwave radiometery, pain sensation, fMRI

Procedia PDF Downloads 457
2097 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 276
2096 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry

Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka

Abstract:

The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.

Keywords: Antioxidant, free radicals, herbs, phenolic, spices

Procedia PDF Downloads 256
2095 Factorial Design Analysis for Quality of Video on MANET

Authors: Hyoup-Sang Yoon

Abstract:

The quality of video transmitted by mobile ad hoc networks (MANETs) can be influenced by several factors, including protocol layers; parameter settings of each protocol. In this paper, we are concerned with understanding the functional relationship between these influential factors and objective video quality in MANETs. We illustrate a systematic statistical design of experiments (DOE) strategy can be used to analyse MANET parameters and performance. Using a 2k factorial design, we quantify the main and interactive effects of 7 factors on a response metric (i.e., mean opinion score (MOS) calculated by PSNR with Evalvid package) we then develop a first-order linear regression model between the influential factors and the performance metric.

Keywords: evalvid, full factorial design, mobile ad hoc networks, ns-2

Procedia PDF Downloads 415
2094 Avian Esophagus: A Comparative Microscopic Study In Birds With Different Feeding Habits

Authors: M. P. S. Tomar, Himanshu R. Joshi, P. Jagapathi Ramayya, Rakhi Vaish, A. B. Shrivastav

Abstract:

The morphology of an organ system varies according to the feeding habit, habitat and nature of their life-style. This phenomenon is called adaptation. During evolution these morphological changes make the system species specific so the study on the differential characteristics of them makes the understanding regarding the morpho-physiological adaptation easier. Hence the present study was conducted on esophagus of pariah kite, median egret, goshawk, dove and duck. Esophagus in all birds was comprised of four layers viz. Tunica mucosa, Tunica submucosa, Tunica muscularis and Tunica adventitia. The mucosa of esophagus showed longitudinal folds thus the lumen was irregular. The epithelium was stratified squamous in all birds but in Median egret the cells were large and vacuolated. Among these species very thick epithelium was observed in goshawk and duck but keratinization was highest in dove. The stratum spongiosum was 7-8 layers thick in both Pariah kite and Goshawk. In all birds, the glands were alveolar mucous secreting type. In Median egret and Pariah kite, these were round or oval in shape and with or without lumen depending upon the functional status whereas in Goshawk the shape of the glands varied from spherical / oval to triangular with openings towards the lumen according to the functional activity and in dove these glands were oval in shape. The glands were numerous in number in egret while one or two in each fold in goshawk and less numerous in other three species. The core of the mucosal folds was occupied by the lamina propria and showed large number of collagen fibers and cellular infiltration in pariah kite, egret and dove where as in goshawk and duck, collagen and reticular fibers were fewer and cellular infiltration was lesser. Lamina muscularis was very thick in all species and it was comprised of longitudinally arranged smooth muscle fibers. In Median egret, it was in wavy pattern. Tunica submucosa was very thin in all species. Tunica muscularis was mostly comprised of circular smooth muscle bundles in all species but the longitudinal bundles were very few in number and not continuous. The tunica adventitia was comprised of loose connective tissue fibers containing collagen and elastic fibers with numerous small blood vessels in all species. Further, it was observed that the structure of esophagus in birds varies according to their feeding habits.

Keywords: dove, duck, egret, esophagus, goshawk, kite

Procedia PDF Downloads 441
2093 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 295
2092 Development of a Hamster Knowledge System Based on Android Application

Authors: Satien Janpla, Thanawan Boonpuck, Pattarapan Roonrakwit

Abstract:

In this paper, we present a hamster knowledge system based on android application. The objective of this system is to advice user to upkeep and feed hamsters based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on knowledge based of hamster experts. The results were divided by the research purposes into 2 parts: developing the mobile application for advice users and testing and evaluating the system. Black box technique was used to evaluate application performances and questionnaires were applied to measure user satisfaction with system usability by specialists and users.

Keywords: hamster knowledge, Android application, black box, questionnaires

Procedia PDF Downloads 342
2091 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 561
2090 Morphostructural Characterization of Zinc and Manganese Nano-Oxides

Authors: Adriana-Gabriela Plaiasu, Catalin Marian Ducu

Abstract:

The interest in the unique properties associated with materials having structures on a nanometer scale has been increasing at an exponential rate in last decade. Among the functional mineral compounds such as perovskite (CaTiO3), rutile (TiO2), CaF2, spinel (MgAl2O4), wurtzite (ZnS), zincite (ZnO) and the cupric oxide (CuO) has been used in numerous applications such as catalysis, semiconductors, batteries, gas sensors, biosensors, field transistors and medicine. The Solar Physical Vapor Deposition (SPVD) presented in the paper as elaboration method is an original process to prepare nanopowders working under concentrated sunlight in 2kW solar furnaces. The influence of the synthesis parameters on the chemical and microstructural characteristics of zinc and manganese oxides synthesized nanophases has been systematically studied using XRD, TEM and SEM.

Keywords: characterization, morphological, nano-oxides, structural

Procedia PDF Downloads 281
2089 Grape Seed Extract in Prevention and Treatment of Liver Toxic Cirrhosis in Rats

Authors: S. Buloyan, V. Mamikonyan, H. Hakobyan, H. Harutyunyan, H. Gasparyan

Abstract:

The liver is the strongest regenerating organ of the organism, and even with 2/3 surgically removed, it can regenerate completely. Hence, liver cirrhosis may only develop when the regenerating system is off. We present the results of a comparative study of structural and functional characteristics of rat liver tissue under the conditions of toxic liver cirrhosis development, induced by carbon tetrachloride, and its prevention/treatment by natural compounds with antioxidant and immune stimulating action. Studies were made on Wister rats, weighing 120~140 g. Grape seeds extracts, separately and in combination with well known anticirrhotic drug ursodeoxycholic acid (ursodiol) have demonstrated effectiveness in prevention of liver cirrhosis development and its treatment.

Keywords: carbon tetrachloride, GSE, liver cirrhosis, prevention, treatment

Procedia PDF Downloads 486
2088 Additive Manufacturing of Microstructured Optical Waveguides Using Two-Photon Polymerization

Authors: Leonnel Mhuka

Abstract:

Background: The field of photonics has witnessed substantial growth, with an increasing demand for miniaturized and high-performance optical components. Microstructured optical waveguides have gained significant attention due to their ability to confine and manipulate light at the subwavelength scale. Conventional fabrication methods, however, face limitations in achieving intricate and customizable waveguide structures. Two-photon polymerization (TPP) emerges as a promising additive manufacturing technique, enabling the fabrication of complex 3D microstructures with submicron resolution. Objectives: This experiment aimed to utilize two-photon polymerization to fabricate microstructured optical waveguides with precise control over geometry and dimensions. The objective was to demonstrate the feasibility of TPP as an additive manufacturing method for producing functional waveguide devices with enhanced performance. Methods: A femtosecond laser system operating at a wavelength of 800 nm was employed for two-photon polymerization. A custom-designed CAD model of the microstructured waveguide was converted into G-code, which guided the laser focus through a photosensitive polymer material. The waveguide structures were fabricated using a layer-by-layer approach, with each layer formed by localized polymerization induced by non-linear absorption of the laser light. Characterization of the fabricated waveguides included optical microscopy, scanning electron microscopy, and optical transmission measurements. The optical properties, such as mode confinement and propagation losses, were evaluated to assess the performance of the additive manufactured waveguides. Conclusion: The experiment successfully demonstrated the additive manufacturing of microstructured optical waveguides using two-photon polymerization. Optical microscopy and scanning electron microscopy revealed the intricate 3D structures with submicron resolution. The measured optical transmission indicated efficient light propagation through the fabricated waveguides. The waveguides exhibited well-defined mode confinement and relatively low propagation losses, showcasing the potential of TPP-based additive manufacturing for photonics applications. The experiment highlighted the advantages of TPP in achieving high-resolution, customized, and functional microstructured optical waveguides. Conclusion: his experiment substantiates the viability of two-photon polymerization as an innovative additive manufacturing technique for producing complex microstructured optical waveguides. The successful fabrication and characterization of these waveguides open doors to further advancements in the field of photonics, enabling the development of high-performance integrated optical devices for various applications

Keywords: Additive Manufacturing, Microstructured Optical Waveguides, Two-Photon Polymerization, Photonics Applications

Procedia PDF Downloads 101
2087 Case Study of Mechanised Shea Butter Production in South-Western Nigeria Using the LCA Approach from Gate-to-Gate

Authors: Temitayo Abayomi Ewemoje, Oluwamayowa Oluwafemi Oluwaniyi

Abstract:

Agriculture and food processing, industry are among the largest industrial sectors that uses large amount of energy. Thus, a larger amount of gases from their fuel combustion technologies is being released into the environment. The choice of input energy supply not only directly having affects the environment, but also poses a threat to human health. The study was therefore designed to assess each unit production processes in order to identify hotspots using life cycle assessments (LCA) approach in South-western Nigeria. Data such as machine power rating, operation duration, inputs and outputs of shea butter materials for unit processes obtained at site were used to modelled Life Cycle Impact Analysis on GaBi6 (Holistic Balancing) software. Four scenarios were drawn for the impact assessments. Material sourcing from Kaiama, Scenarios 1, 3 and Minna Scenarios 2, 4 but different heat supply sources (Liquefied Petroleum Gas ‘LPG’ Scenarios 1, 2 and 10.8 kW Diesel Heater, scenarios 3, 4). Modelling of shea butter production on GaBi6 was for 1kg functional unit of shea butter produced and the Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) midpoint assessment was tool used to was analyse the life cycle inventories of the four scenarios. Eight categories in all four Scenarios were observed out of which three impact categories; Global Warming Potential (GWP) (0.613, 0.751, 0.661, 0.799) kg CO2¬-Equiv., Acidification Potential (AP) (0.112, 0.132, 0.129, 0.149) kg H+ moles-Equiv., and Smog (0.044, 0.059, 0.049, 0.063) kg O3-Equiv., categories had the greater impacts on the environment in Scenarios 1-4 respectively. Impacts from transportation activities was also seen to contribute more to these environmental impact categories due to large volume of petrol combusted leading to releases of gases such as CO2, CH4, N2O, SO2, and NOx into the environment during the transportation of raw shea kernel purchased. The ratio of transportation distance from Minna and Kaiama to production site was approximately 3.5. Shea butter unit processes with greater impacts in all categories was the packaging, milling and with the churning processes in ascending order of magnitude was identified as hotspots that may require attention. From the 1kg shea butter functional unit, it was inferred that locating production site at the shortest travelling distance to raw material sourcing and combustion of LPG for heating would reduce all the impact categories assessed on the environment.

Keywords: GaBi6, Life cycle assessment, shea butter production, TRACI

Procedia PDF Downloads 327
2086 A Study on the Water and Oil Repellency Characteristics of Plasma-Treated Pet and Pet/Elastane Fabrics

Authors: Mehtap Çalışkan, Nilüfer Yıldız Varan, Volkan Kaplan

Abstract:

New orientations have emerged in the textile sector as a result of increasing global competition and environmental problems. Under the scope of new understandings, it is required to bring forward multi-functional, simple and environmentally friendly methods that will meet tight economic and ecological demands of today. Plasma technology has become a significant alternative in this sense. This technology may provide great advantages in case it is developed, however, it does not receive adequate consideration. In this study, plasma treatment was applied by using glow discharge plasma system to 100% polyethylene terephthalate (PET) and 95% PET/5% elastane fabrics and then the effects of plasma polymerization on fabric surface was tested and analyzed using water and oil repellent finishes.

Keywords: plasma, polyester, elastane, water repellency, oil repellency

Procedia PDF Downloads 325
2085 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO

Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez

Abstract:

We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the NaCl (rock-salt) and WZ (wurtzite) phases. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT). Our calculations predict that for Bi concentrations greater than ~70%, the WZ structure is more favorable than the NaCl one and that for x = 0 (pure MgO), x = 0.25 and x = 0.50 of Bi concentration the NaCl structure is more favorable than the WZ one. For x = 0.75 of Bi, a transition from wurtzite towards NaCl is possible, when the pressure is about 22 GPa. Also It has been observed the crystal lattice constant closely follows Vegard’s law, that the bulk modulus and the cohesion energy decrease with the concentration x of Bi.

Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt, wurtzite

Procedia PDF Downloads 526
2084 Chloride Ion Channels Play a Role in Mediating Immune Response during Pseudomonas aeruginosa Infection

Authors: Hani M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

Cystic fibrosis (CF) is a disease that affects respiratory function and in EU it affects about 1 in 2,500 live births with an average 40-year life expectancy. This disease caused by mutations within the gene encoding the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) chloride channel leading to dysregulation of epithelial fluid transport and chronic lung inflammation, suggesting functional alterations of immune cells. In airways, CFTR been found to form a functional complex with S100A10 and AnxA2 in a cAMP/PKA dependent manner. The multiprotein complex of AnxA2-S100A10 and CFTR is also regulated by calcineurin. The aim of this study was i) to investigate whether chloride ion (Cl−) channels are activated by Pseudomonas aeruginosa lipopolysaccharide (LPS from PA), ii) if this activation is regulated by cAMP/PKA/calcineurin pathway and iii) to investigate the role of LPS-activated Cl− channels in the release of pro-inflammatory cytokines by immune cells. Human peripheral blood monocytes were used in the study. Whole-cell patch records showed that LPS from PA can activate Cl− channels, including CFTR and outwardly-rectifying Cl− channel (ORCC). This activation appears to require an intact PKA/calcineurin signalling pathway. The Gout in the presence of LPS was significantly inhibited by diisothiocyanatostilbene-disulfonic acid (DIDS), an ORCC blocker (p<0.001). The Gout was further suppressed by CFTR(inh)-172, a specific inhibitor for CFTR channels (p<0.001). Monocytes pre-incubated with PKA inhibitor or calcineurin inhibitor before stimulated with LPS from PA that were resulted in DIDS and CFTR(inh)-172 insensitive currents. Activation of both ORCC and CFTR was however, observed in response to monocytes exposure to LPS. Additionally, ELISA showed that the CFTR and ORCC play a role in mediating the release of pro-inflammatory cytokines such as IL-1β upon exposure of monocytes to LPS. However, this secretion was significantly inhibited due to CFTR and ORCC inhibition. However, Cl− may play a role in IL-1β release independent of cAMP/PKA/calcineurin signalling due to the enhancement of IL-1β secretion even when cAMP/PKA/calcineurin pathway was inhibited. In conclusion, our data confirmed that LPS from PA activates Cl− channels in human peripheral blood monocytes. Our data also confirmed that Cl− channels were involved in IL-1β release in monocytes upon exposure to LPS. However, it has been found that PKA and calcineurin does not seem to influence the Cl− dependent cytokine release.

Keywords: cystic fibrosis, CFTR, Annexin A2, S100A10, PP2B, PKA, outwardly-rectifying Cl− channel, Pseudomonas aeruginosa

Procedia PDF Downloads 178
2083 Combining the Production of Radiopharmaceuticals with the Department of Radionuclide Diagnostics

Authors: Umedov Mekhroz, Griaznova Svetlana

Abstract:

In connection with the growth of oncological diseases, the design of centers for diagnostics and the production of radiopharmaceuticals is the most relevant area of healthcare facilities. The design of new nuclear medicine centers should be carried out from the standpoint of solving the following tasks: the availability of medical care, functionality, environmental friendliness, sustainable development, improving the safety of drugs, the use of which requires special care, reducing the rate of environmental pollution, ensuring comfortable conditions for the internal microclimate, adaptability. The purpose of this article is to substantiate architectural and planning solutions, formulate recommendations and principles for the design of nuclear medicine centers and determine the connections between the production and medical functions of a building. The advantages of combining the production of radiopharmaceuticals and the department of medical care: less radiation activity is accumulated, the cost of the final product is lower, and there is no need to hire a transport company with a special license for transportation. A medical imaging department is a structural unit of a medical institution in which diagnostic procedures are carried out in order to gain an idea of the internal structure of various organs of the body for clinical analysis. Depending on the needs of a particular institution, the department may include various rooms that provide medical imaging using radiography, ultrasound diagnostics, and the phenomenon of nuclear magnetic resonance. The production of radiopharmaceuticals is an object intended for the production of a pharmaceutical substance containing a radionuclide and intended for introduction into the human body or laboratory animal for the purpose of diagnosis, evaluation of the effectiveness of treatment, or for biomedical research. The research methodology includes the following subjects: study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research; An integrated approach to the study of existing international experience of PET / CT scan centers and the production of radiopharmaceuticals; Elaboration of graphical analysis and diagrams based on the system analysis of the processed information; Identification of methods and principles of functional zoning of nuclear medicine centers. The result of the research is the identification of the design principles of nuclear medicine centers with the functions of the production of radiopharmaceuticals and the department of medical imaging. This research will be applied to the design and construction of healthcare facilities in the field of nuclear medicine.

Keywords: architectural planning solutions, functional zoning, nuclear medicine, PET/CT scan, production of radiopharmaceuticals, radiotherapy

Procedia PDF Downloads 89
2082 Theoretical Investigation of Electronic, Structural and Thermoelectric Properties of Mg₂SiSn (110) Surface

Authors: M. Ramesh, Manish K. Niranjan

Abstract:

The electronic, structural and thermoelectric properties of Mg₂SiSn (110) surface are investigated within the framework of first principle density functional theory and semi classical Boltzmann approach. In particular, directional dependent thermoelectric properties such as electrical conductivity, thermal conductivity, Seebeck coefficient and figure of merit are explored. The (110)-oriented Mg₂SiSn surface exhibits narrow indirect band gap of ~0.17 eV. The thermoelectric properties are found to be significant along the y-axis at 300 K and along x-axis at 500 K. The figure of merit (ZT) for hole carrier concentration is found to be significantly large having magnitude 0.83 (along x-axis) at 500 K and 0.26 (y-axis) at 300 K. Our results suggest that Mg₂SiSn (110) surface is promising for various thermoelectric applications due to its overall good thermoelectric properties.

Keywords: thermoelectric, surface science, semiconducting silicide, first principles calculations

Procedia PDF Downloads 226
2081 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data

Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding

Abstract:

The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.

Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)

Procedia PDF Downloads 151
2080 Fe-Doped Graphene Nanoparticles for Gas Sensing Applications

Authors: Shivani A. Singh, Pravin S. More

Abstract:

In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.

Keywords: chemical doping, graphene, gas sensing, sensing

Procedia PDF Downloads 218
2079 Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application

Authors: Er-Yuan Chuang

Abstract:

Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies.

Keywords: protein based, in vitro study, in vivo study, biomaterials

Procedia PDF Downloads 189
2078 Adsorption Studies of Lead from Aqueos Solutions on Cocount Shell Activated Carbon

Authors: G. E. Sharaf El-Deen, S. E. A. Sharaf El-Deen

Abstract:

Activated carbon was prepared from coconut shell (ACS); a discarded agricultural waste was used to produce bioadsorbent through easy and environmental friendly processes. This activated carbon based biosorbent was evaluated for adsorptive removal of lead from water. The characterisation results showed this biosorbent had very high specific surface area and functional groups. The adsorption equilibrium data was well described by Langmuir, whilst kinetics data by pseudo-first order, pseudo-second order and Intraparticle diffusion models. The adsorption process could be described by the pseudo-second order kinetic.

Keywords: coconut shell, activated carbon, adsorption isotherm and kinetics, lead removal

Procedia PDF Downloads 309
2077 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection

Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary

Abstract:

We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.

Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning

Procedia PDF Downloads 238
2076 Classifications of Neuroscientific-Radiological Findings on “Practicing” in Mathematics Learning

Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke

Abstract:

Many people know ‘Mathematics needs practice!’ statement or similar ones from their mathematics lessons. It seems important to practice when learning mathematics. At the same time, it also seems important to practice how to learn mathematics. This paper places neuroscientific-radiological findings on “practicing” while learning mathematics in a context of mathematics education. To accomplish this, we use a literature-based discussion of our case study on practice. We want to describe neuroscientific-radiological findings in the context of mathematics education and point out stimulating connections between both perspectives. From a connective perspective we expect incentives that lead discussions in future research in the field of mathematics education.

Keywords: functional magnetic resonance imaging, fMRI, education, mathematics learning, practicing

Procedia PDF Downloads 341