Search results for: exergy analysis in heat pumps
28973 Evaluation of Heat of Hydration and Strength Development in Natural Pozzolan-Incorporated Cement from the Gulf Region
Authors: S. Al-Fadala, J. Chakkamalayath, S. Al-Bahar, A. Al-Aibani, S. Ahmed
Abstract:
Globally, the use of pozzolan in blended cement is gaining great interest due to the desirable effect of pozzolan from the environmental and energy conservation standpoint and the technical benefits they provide to the performance of cement. The deterioration of concrete structures in the marine environment and extreme climates demand the use of pozzolana cement in concrete construction in the Gulf region. Also, natural sources of cement clinker materials are limited in the Gulf region, and cement industry imports the raw materials for the production of Portland cement, resulting in an increase in the greenhouse gas effect due to the CO₂ emissions generated from transportation. Even though the Gulf region has vast deposits of natural pozzolana, it is not explored properly for the production of high performance concrete. Hence, an optimum use of regionally available natural pozzolana for the production of blended cement can result in sustainable construction. This paper investigates the effect of incorporating natural pozzolan sourced from the Gulf region on the performance of blended cement in terms of heat evolution and strength development. For this purpose, a locally produced Ordinary Portland Cement (OPC) and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (volcanic ash) were prepared on laboratory scale. The strength development and heat evolution were measured and quantified. Promising results of strength development were obtained for blends with the percentages of Volcanic Ash (VA) replacement varying from 10 to 30%. Results showed that the heat of hydration decreased with increase in percentage of replacement of OPC with VA, indicating increased retardation in hydration due to the addition of VA. This property could be used in mass concreting in which a reduction in heat of hydration is required to reduce cracking in concrete, especially in hot weather concreting.Keywords: blended cement, hot weather, hydration, volcanic ash
Procedia PDF Downloads 32528972 Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel
Authors: Roman Kalvin, Anam Nadeem, Saba Arif
Abstract:
Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted.Keywords: turbocharger, turbine blades, structural steel, ANSYS
Procedia PDF Downloads 24428971 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets
Authors: K. R. Sultana, K. Pope, Y. S. Muzychka
Abstract:
In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.Keywords: droplets, CFD, thermos-physical properties, solidification
Procedia PDF Downloads 24328970 Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid
Authors: M. Alipanah, A. Ranjbar, E. Farnad, F. Alipanah
Abstract:
Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.Keywords: entropy generation, natural convection, bejan number, nuselt number, nanofluid
Procedia PDF Downloads 49828969 Failure Analysis of Windshield Glass of Automobiles
Authors: Bhupinder Kaur, O. P. Pandey
Abstract:
An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present.Keywords: failure, windshield, thermal mismatch, carbon
Procedia PDF Downloads 24728968 Heat Waves Effect on Stock Return and Volatility: Evidence from Stock Market and Selected Industries in Pakistan
Authors: Sayed Kifayat Shah, Tang Zhongjun, Arfa Tanveer
Abstract:
This study explores the significant heatwave effect on stock return and volatility. Using an ARCH/GARCH approach, it examines the relationship between the heatwave of Karachi, Islamabad, and Lahore on the KSE-100 index. It also explores the impact of heatwave on returns of the pharmaceutical and electronics industries. The empirical results confirm that that stock return is positively related to the heat waves of Karachi, negatively related to that of Islamabad, and is not affected by the heatwave of Lahore. Similarly, pharmaceutical and electronics indices are also positively related to heatwaves. These differences in results can be ascribed to the change in the behavior of the residents of that city. The outcomes are useful for understanding an investor's behavior reacting to weather and fluxes in stock price related to heatwave severity levels. The results can support investors in fixing biases in behavior.Keywords: ARCH/GARCH model, heat wave, KSE-100 index, stock market return
Procedia PDF Downloads 15628967 Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics
Authors: Peter Krupa, Svetozár Malinarič
Abstract:
Transient plane source method has been used to measure the thermal diffusivity and thermal conductivity of a compact isostatic electro-ceramics at room temperature. The samples were fired at temperatures from 100 up to 1320 degrees Celsius in steps of 50. Bulk density and specific heat capacity were also measured with their corresponding standard uncertainties. The results were compared with further thermal analysis (dilatometry and thermogravimetry). Structural processes during firing were discussed.Keywords: TPS method, thermal conductivity, thermal diffusivity, thermal analysis, electro-ceramics, firing
Procedia PDF Downloads 48928966 Effect of Supplementation of Rough Lemon Juice, Amla Juice and Aloe Vera Gel on Physio-biochemical and Hematological Parameters of Broiler Chicken During Summer Season
Authors: Suraj Amrutkar, R. Gowri, Asma Khan, Nazam Khan, Vikas Mahajan, Manpreet Kour And Bharti Deshmukh
Abstract:
Herbal additives are rich in vitamin C, A and other biological active compounds and may act as surrogate source to subdue heat stress in chicken. Among various herbal additives such as rough lemon (Citrus Jambhiri Lush) juice, amla (Emblica officinalis) juice and aloe vera (Aloe barbadensis miller) gel are easily available during summer (stress period) and also cost less as comparison to synthetic feed additives in market. In order to analyze the performance by supplementation of rough lemon juice, amla juice and aloe vera gel in broiler under heat stress conditions. Study was carried out with a random distribution of day old straight run chicks (240 No.) in to four treatment group (n=60) was done. All the groups were given basal diet (Maize-Soya based; T0) was same for all the groups with supplementation of rough lemon juice (T1), amla juice (T2) and aloe vera (T3) @ 2% in drinking water. Experiment trial lasted for 42 days during heat stress period (June-July) with minimum THI (78.2) and Maximum THI (88.02). Feed and water were offered ad-libitum throughout the trial. Results revealed significantly higher (P<0.05) body weight in T3 and T2, followed by T1 and least in T0 at 42 days of age. The overall mean of Feed conversion ratio of various treatment T0, T1, T2 andT3 were 2.16, 1.98, 1.89 and 1.82, respectively. The mortality percentage in various treatment, T0, T1, T2 and T3, were 6.67, 3.33, 0.0 and 1.67, respectively. pH value, PCV (%), Sodium (mmol/L) and Potassium (mmol/L) was higher in T3 than rest of the groups. HL ratio is significantly lower (P<0.05) in T3, T2 followed by T1 than T0 at 42 days of age. It may be inferred that amongst these phyto-additives, aloe vera leads in alleviating heat stress in broiler in an economical way, followed by amla and rough lemon.Keywords: rough lemon, amla, aloe vera, heat stress, broiler
Procedia PDF Downloads 9328965 Numerical Method for Fin Profile Optimization
Authors: Beghdadi Lotfi
Abstract:
In the present work a numerical method is proposed in order to optimize the thermal performance of finned surfaces. The bidimensional temperature distribution on the longitudinal section of the fin is calculated by restoring to the finite volumes method. The heat flux dissipated by a generic profile fin is compared with the heat flux removed by the rectangular profile fin with the same length and volume. In this study, it is shown that a finite volume method for quadrilaterals unstructured mesh is developed to predict the two dimensional steady-state solutions of conduction equation, in order to determine the sinusoidal parameter values which optimize the fin effectiveness. In this scheme, based on the integration around the polygonal control volume, the derivatives of conduction equation must be converted into closed line integrals using same formulation of the Stokes theorem. The numerical results show good agreement with analytical results. To demonstrate the accuracy of the method, the absolute and root-mean square errors versus the grid size are examined quantitatively.Keywords: Stokes theorem, unstructured grid, heat transfer, complex geometry, effectiveness
Procedia PDF Downloads 26828964 Comparative Rumen Degradable and Rumen Undegradable Fractions in Untreated, Formaldehyde and Heat Treated Vegetable Protein Sources of Pakistan
Authors: Illahi Bakhsh Marghazani, Nasrullah, Masood Ul Haq Kakar, Abdul Hameed Baloch, Ahmad Nawaz Khoso, Behram Chacher
Abstract:
Protein sources are the major part of ration fed to dairy buffaloes in Pakistan however, the limited availability and lack of judicious use of protein resources are further aggravating the conditions to enhance milk and meat production. In order to gain maximum production from limited protein source availability, it is necessary to balance feed for rumen degradable and rumen undegradable protein fractions. This study planned to know the rumen degradable and rumen undegradable fractions in all vegetable protein sources with (formaldehyde and heat treatment) and without treatments. Samples of soybean meal, corn gluten meal 60%, maize gluten feed, guar meal, sunflower meal, rapeseed meal, rapeseed cake, canola meal, cottonseed cake, cottonseed meal, coconut cake, coconut meal, palm kernel cake, almond cake and sesame cake were collected from ten different geographical locations of Pakistan. These samples were also subjected to formaldehyde (1% /100g CP of test feed) and heat treatments (1 hr at 15 lb psi/100 g CP of test feed). In situ technique was used to know the ruminal degradability characteristics. Data obtained were fitted to Orskove equation. Results showed that both treatments significantly (P < 0.05) decreased ruminal degradability in all vegetable protein sources than untreated vegetable protein sources, however, of both treatments, heat treatment was more effective than formaldehyde treatment in decreasing ruminal degradability in most of the studied vegetable protein sources.Keywords: formaldehyde and heat treatments, in situ technique, rumen degradable and rumen undegradable fractions, vegetable protein sources
Procedia PDF Downloads 33428963 Urban Road Network Connectivity and Accessibility Analysis Using RS and GIS: A Case Study of Chandannagar City
Authors: Joy Ghosh, Debasmita Biswas
Abstract:
The road network of any area is the most important indicator of regional planning. For proper utilization of urban road networks, the structural parameters such as connectivity and accessibility should be analyzed and evaluated. This paper aims to explain the application of GIS on urban road network connectivity and accessibility analysis with a case study of Chandannagar City. This paper has been made to analyze the road network connectivity through various connectivity measurements like the total number of nodes and links, Cyclomatic Number, Alpha Index, Beta Index, Gamma index, Eta index, Pi index, Theta Index, and Aggregated Transport Score, Road Density based on existing road network in Chandannagar city in India. Accessibility is measured through the shortest Path Matrix, associate Number, and Shimbel Index. Various urban services, such as schools, banks, Hospitals, petrol pumps, ATMs, police stations, theatres, parks, etc., are considered for the accessibility analysis for each ward. This paper also highlights the relationship between urban land use/ land cover (LULC) and urban road network and population density using various spatial and statistical measurements. The datasets were collected through a field survey of 33 wards of the Chandannagar Municipal Corporation area, and the secondary data were collected through an open street map and satellite image of LANDSAT8 OLI & TIRS from USGS. Chandannagar was actually once a French colony, and at that time, various sort of planning was applied, but now Chandannagar city continues to grow haphazardly because that city is facing some problems; the knowledge gained from this paper helps to create a more efficient and accessible road network. Therefore, it would be suggested that some wards need to improve their connectivity and accessibility for the future growth and development of Chandannagar.Keywords: accessibility, connectivity, transport, road network
Procedia PDF Downloads 7328962 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux
Authors: D Bhargavi, J. Sharath Kumar Reddy
Abstract:
The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.Keywords: porous material, channel partially filled with a porous material, axial conduction, viscous dissipation
Procedia PDF Downloads 15928961 Effects of Specific Essential Oil Compounds on, Feed Intake, Milk Production, and Ruminal Environment in Dairy Cows during Heat Exposure
Authors: Kamran Reza-Yazdi, Mohammad Fallah, Mahdi Khodaparast, Farshad Kateb, Morteza Hosseini-Ghaffari
Abstract:
The objective of this study was to determine effect of dietary essential oil (EO) compounds, which contained cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass, and an organic carrier on feed intake, milk composition, and rumen fermentation of dairy cows during heat exposure. Thirty-two Holstein cows (days in milk= 60 ± 5) were assigned to one of two treatment groups: a Control and EO fed. The experiment lasted 28 days. Dry matter intake (DMI) was measured daily while and milk production was measured weekly. Our result showed that DMI and milk yield was decreased (P < 0.01) in control cows relative to EO cows. Furthermore, supplementation with EO was associated with a decrease in the molar proportion of propionate (P < 0.05) and increase (P < 0.05) in acetate to propionate ratio. In conclusion, EO supplementations in diets can be useful nutritional modification to alleviate for the decrease DMI and milk production during heat exposure in lactating dairy cows.Keywords: dairy cow, feed additive, plant extract, eugenol
Procedia PDF Downloads 79328960 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures
Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse
Abstract:
A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling
Procedia PDF Downloads 13428959 Prediction of Springback in U-bending of W-Temper AA6082 Aluminum Alloy
Authors: Jemal Ebrahim Dessie, Lukács Zsolt
Abstract:
High-strength aluminum alloys have drawn a lot of attention because of the expanding demand for lightweight vehicle design in the automotive sector. Due to poor formability at room temperature, warm and hot forming have been advised. However, warm and hot forming methods need more steps in the production process and an advanced tooling system. In contrast, since ordinary tools can be used, forming sheets at room temperature in the W temper condition is advantageous. However, springback of supersaturated sheets and their thinning are critical challenges and must be resolved during the use of this technique. In this study, AA6082-T6 aluminum alloy was solution heat treated at different oven temperatures and times using a specially designed and developed furnace in order to optimize the W-temper heat treatment temperature. A U-shaped bending test was carried out at different time periods between W-temper heat treatment and forming operation. Finite element analysis (FEA) of U-bending was conducted using AutoForm aiming to validate the experimental result. The uniaxial tensile and unload test was performed in order to determine the kinematic hardening behavior of the material and has been optimized in the Finite element code using systematic process improvement (SPI). In the simulation, the effect of friction coefficient & blank holder force was considered. Springback parameters were evaluated by the geometry adopted from the NUMISHEET ’93 benchmark problem. It is noted that the change of shape was higher at the more extended time periods between W-temper heat treatment and forming operation. Die radius was the most influential parameter at the flange springback. However, the change of shape shows an overall increasing tendency on the sidewall as the increase of radius of the punch than the radius of the die. The springback angles on the flange and sidewall seem to be highly influenced by the coefficient of friction than blank holding force, and the effect becomes increases as increasing the blank holding force.Keywords: aluminum alloy, FEA, springback, SPI, U-bending, W-temper
Procedia PDF Downloads 10028958 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments
Authors: A. Kampker, K. Kreisköther, C. Reinders
Abstract:
Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.Keywords: additive manufacturing, design of experiments, mold making, PolyJet, 3D-Printing
Procedia PDF Downloads 25528957 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on
Authors: Mahesh Kumar Jat, Manisha Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: remote sensing, GIS, object based, classification
Procedia PDF Downloads 13028956 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center
Authors: Ira Irawati, Muhammad Rangga Sururi
Abstract:
The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation
Procedia PDF Downloads 25928955 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel
Authors: Huei Chu Weng
Abstract:
This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.Keywords: microfluidics, forced convection, thermal creep, second-order boundary conditions
Procedia PDF Downloads 31428954 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units
Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov
Abstract:
The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis
Procedia PDF Downloads 27328953 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations
Authors: M. Chaichanyut, S. Tungjitkusolmun
Abstract:
This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm³ and 5.64 cm³.Keywords: liver cancer, Helix antenna, finite element, microwave ablation
Procedia PDF Downloads 30928952 Numerical Investigation of a Supersonic Ejector for Refrigeration System
Authors: Karima Megdouli, Bourhan Taschtouch
Abstract:
Supersonic ejectors have many applications in refrigeration systems. And improving ejector performance is the key to improve the efficiency of these systems. One of the main advantages of the ejector is its geometric simplicity and the absence of moving parts. This paper presents a theoretical model for evaluating the performance of a new supersonic ejector configuration for refrigeration system applications. The relationship between the flow field and the key parameters of the new configuration has been illustrated by analyzing the Mach number and flow velocity contours. The method of characteristics (MOC) is used to design the supersonic nozzle of the ejector. The results obtained are compared with those obtained by CFD. The ejector is optimized by minimizing exergy destruction due to irreversibility and shock waves. The optimization converges to an efficient optimum solution, ensuring improved and stable performance over the whole considered range of uncertain operating conditions.Keywords: supersonic ejector, theoretical model, CFD, optimization, performance
Procedia PDF Downloads 7628951 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications
Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana
Abstract:
A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons
Procedia PDF Downloads 24628950 Effect of Quenching Medium on the Hardness of Dual Phase Steel Heat Treated at a High Temperature
Authors: Tebogo Mabotsa, Tamba Jamiru, David Ibrahim
Abstract:
Dual phase(DP) steel consists essentially of fine grained equiaxial ferrite and a dispersion of martensite. Martensite is the primary precipitate in DP steels, it is the main resistance to dislocation motion within the material. The objective of this paper is to present a relation between the intercritical annealing holding time and the hardness of a dual phase steel. The initial heat treatment involved heating the specimens to 1000oC and holding the sample at that temperature for 30 minutes. After the initial heat treatment, the samples were heated to 770oC and held for a varying amount of time at constant temperature. The samples were held at 30, 60, and 90 minutes respectively. After heating and holding the samples at the austenite-ferrite phase field, the samples were quenched in water, brine, and oil for each holding time. The experimental results proved that an equation for predicting the hardness of a dual phase steel as a function of the intercritical holding time is possible. The relation between intercritical annealing holding time and hardness of a dual phase steel heat treated at high temperatures is parabolic in nature. Theoretically, the model isdependent on the cooling rate because the model differs for each quenching medium; therefore, a universal hardness equation can be derived where the cooling rate is a variable factor.Keywords: quenching medium, annealing temperature, dual phase steel, martensite
Procedia PDF Downloads 8228949 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification
Authors: Wenxue Xu
Abstract:
Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer
Procedia PDF Downloads 14428948 Heat Transfer Enhancement of Structural Concretes Made of Macro-Encapsulated Phase Change Materials
Authors: Ehsan Mohseni, Waiching Tang, Shanyong Wang
Abstract:
Low thermal conductivity of phase change materials (PCMs) affects the thermal performance and energy storage efficiency of latent heat thermal energy storage systems. In the current research, a structural lightweight concrete with function of indoor temperature control was developed using thermal energy storage aggregates (TESA) and nano-titanium (NT). The macro-encapsulated technique was served to incorporate the PCM into the lightweight aggregate through vacuum impregnation. The compressive strength was measured, and the thermal performance of concrete panel was evaluated by using a self-designed environmental chamber. The impact of NT on microstructure was also assessed via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests. The test results indicated that NT was able to increase the compressive strength by filling the micro pores and making the microstructure denser and more homogeneous. In addition, the environmental chamber experiment showed that introduction of NT into TESA improved the heat transfer of composites noticeably. The changes were illustrated by the reduction in peak temperatures in the centre, outside and inside surfaces of concrete panels by the inclusion of NT. It can be concluded that NT particles had the capability to decrease the energy consumption and obtain higher energy storage efficiency by the reduction of indoor temperature.Keywords: heat transfer, macro-encapsulation, microstructure properties, nanoparticles, phase change material
Procedia PDF Downloads 10528947 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application
Authors: Li Maksym, Prabhakar M. N., Jung-Il Song
Abstract:
In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism
Procedia PDF Downloads 9228946 Economic Analysis of a Carbon Abatement Technology
Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah
Abstract:
Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.Keywords: gas turbine, global warming, green house gas, fossil fuel power plants
Procedia PDF Downloads 39728945 Energy Efficiency Approach to Reduce Costs of Ownership of Air Jet Weaving
Authors: Corrado Grassi, Achim Schröter, Yves Gloy, Thomas Gries
Abstract:
Air jet weaving is the most productive, but also the most energy consuming weaving method. Increasing energy costs and environmental impact are constantly a challenge for the manufacturers of weaving machines. Current technological developments concern with low energy costs, low environmental impact, high productivity, and constant product quality. The high degree of energy consumption of the method can be ascribed to the high need of compressed air. An energy efficiency method is applied to the air jet weaving technology. Such method identifies and classifies the main relevant energy consumers and processes from the exergy point of view and it leads to the identification of energy efficiency potentials during the weft insertion process. Starting from the design phase, energy efficiency is considered as the central requirement to be satisfied. The initial phase of the method consists of an analysis of the state of the art of the main weft insertion components in order to point out a prioritization of the high demanding energy components and processes. The identified major components are investigated to reduce the high demand of energy of the weft insertion process. During the interaction of the flow field coming from the relay nozzles within the profiled reed, only a minor part of the stream is really accelerating the weft yarn, hence resulting in large energy inefficiency. Different tools such as FEM analysis, CFD simulation models and experimental analysis are used in order to design a more energy efficient design of the involved components in the filling insertion. A different concept for the metal strip of the profiled reed is developed. The developed metal strip allows a reduction of the machine energy consumption. Based on a parametric and aerodynamic study, the designed reed transmits higher values of the flow power to the filling yarn. The innovative reed fulfills both the requirement of raising energy efficiency and the compliance with the weaving constraints.Keywords: air jet weaving, aerodynamic simulation, energy efficiency, experimental validation, weft insertion
Procedia PDF Downloads 19728944 Magnetohydrodynamics (MHD) Boundary Layer Flow Past A Stretching Plate with Heat Transfer and Viscous Dissipation
Authors: Jiya Mohammed, Tsadu Shuaib, Yusuf Abdulhakeem
Abstract:
The research work focuses on the cases of MHD boundary layer flow past a stretching plate with heat transfer and viscous dissipation. The non-linear of momentum and energy equation are transform into ordinary differential equation by using similarity transformation, the resulting equation are solved using Adomian Decomposition Method (ADM). An attempt has been made to show the potentials and wide range application of the Adomian decomposition method in the comparison with the previous one in solving heat transfer problems. The Pade approximates value (η= 11[11, 11]) is use on the difficulty at infinity. The results are compared by numerical technique method. A vivid conclusion can be drawn from the results that ADM provides highly precise numerical solution for non-linear differential equations. The result where accurate especially for η ≤ 4, a general equating terms of Eckert number (Ec), Prandtl number (Pr) and magnetic parameter ( ) is derived which was used to investigate velocity and temperature profiles in boundary layer.Keywords: MHD, Adomian decomposition, boundary layer, viscous dissipation
Procedia PDF Downloads 551