Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Abstract

Authors: M. Chaichanyut, S. Tungjitkusolmun Abstract : This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz . A $1 \frac{1}{2}$ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control ($10 \mathrm{~W}, 300 \mathrm{~s}$). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds $50^{\circ} \mathrm{C}$ the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85 ; the complete destructions were respectively $4.18 \mathrm{~cm}^{3}$ and $5.64 \mathrm{~cm}^{3}$.

Keywords : liver cancer, Helix antenna, finite element, microwave ablation
Conference Title : ICSRD 2020 : International Conference on Scientific Research and Development
Conference Location : Chicago, United States
Conference Dates : December 12-13, 2020

