Search results for: emotional intelligence
2057 Representation of Pashtuns in the Context of Terrorism: A Comparative Study of Bollywood and Lollywood Movies After 9/11
Authors: Aamir Ayub, Yasir Shehzad, Shakeel Ahmad
Abstract:
This research paper aims to understand how the Pashtuns have been represented in relationship to terrorism in post-9/11 Bollywood and Lollywood movies. It focuses particularly on ‘Torbaaz’ from Bollywood and ‘Waar’ from Lollywood in order to define the nature of Pashtun characterization, the functioning of intelligence agencies, as well as the socio-political side of the represented narratives. In this research, the analytical approach developed is applied to contemplate how these films represent or fail to represent Pashtun identity, taking into consideration the cultural, historical and social dimensions. The study also aims to examine the effects of the media, particularly on the different ethnic groups’ perceptions of terrorism. In this case, it covers how the movie relates actual events in society – specifically, socio-political – to the messages in the film regarding the Pashtun people and their portrayal. Such elements may constitute the portrayal of intelligence agencies and their fight against terrorism, state-security dynamics, and the Pashtun society. In conclusion, this research paper focuses on the representation of Pashtuns in films after 9/11 and addresses the issue concerning the representation of ethnic groups in the method of the theme of terrorism. It provides ideas about the role of media in influencing the mind of the society and their attitude towards certain communities after geopolitics upheavals.Keywords: pashtun representation, terrorism, 9/11 attacks, socio-political implications, ethnic representation in media
Procedia PDF Downloads 242056 Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System
Authors: Corinne Zurmuehle, Andreas Christoph Weber
Abstract:
In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision.Keywords: data visualization, business intelligence, Swiss elite sports system, strategic decision-making
Procedia PDF Downloads 902055 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 812054 A Typology System to Diagnose and Evaluate Environmental Affordances
Authors: Falntina Ahmad Alata, Natheer Abu Obeid
Abstract:
This paper is a research report of an experimental study on a proposed typology system to diagnose and evaluate the affordances of varying architectural environments. The study focused on architectural environments which have been developed with a shift in their use of adaptive reuse. The novelty in the newly developed environments was tested in terms of human responsiveness and interaction using a variety of selected cases. The study is a follow-up on previous research by the same authors, in which a typology of 16 categories of environmental affordances was developed and introduced. The current study introduced other new categories, which together with the previous ones establish what could be considered a basic language of affordance typology. The experiment was conducted on ten architectural environments while adopting two processes: 1. Diagnostic process, in which the environments were interpreted in terms of their affordances using the previously developed affordance typology, 2. The evaluation process, in which the diagnosed environments were evaluated using measures of emotional experience and architectural evaluation criteria of beauty, economy and function. The experimental study demonstrated that the typology system was capable of diagnosing different environments in terms of their affordances. It also introduced new categories of human interaction: “multiple affordances,” “conflict affordances,” and “mix affordances.” The different possible combinations and mixtures of categories demonstrated to be capable of producing huge numbers of other newly developed categories. This research is an attempt to draw a roadmap for designers to diagnose and evaluate the affordances within different architectural environments. It is hoped to provide future guidance for developing the best possible adaptive reuse according to the best affordance category within their proposed designs.Keywords: affordance theory, affordance categories, architectural environments, architectural evaluation criteria, adaptive reuse environment, emotional experience, shift in use environment
Procedia PDF Downloads 1952053 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation
Authors: Abdal-Hafeez Alhussein
Abstract:
Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.Keywords: artificial intelligence, information technology, automation, scalability
Procedia PDF Downloads 182052 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks
Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka
Abstract:
Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management
Procedia PDF Downloads 682051 An Analysis of a Relational Frame Skills Training Intervention to Increase General Intelligence in Early Childhood
Authors: Ian M. Grey, Bryan Roche, Anna Dillon, Justin Thomas, Sarah Cassidy, Dylan Colbert, Ian Stewart
Abstract:
This paper presents findings from a study conducted in two schools in Abu Dhabi. The hypothesis is that teaching young children to derive various relations between stimuli leads to increases in full-scale IQ scores of typically developing children. In the experimental group, sixteen 6-7-year-old children were exposed over six weeks to an intensive training intervention designed specifically for their age group. This training intervention, presented on a tablet, aimed to improve their understanding of the relations Same, Opposite, Different, contextual control over the concept of Sameness and Difference, and purely arbitrary derived relational responding for Sameness and Difference. In the control group, sixteen 6-7-year-old children interacted with KIBO robotics over six weeks. KIBO purports to improve cognitive skills through engagement with STEAM activities. Increases in full-scale IQ were recorded for most children in the experimental group, while no increases in full-scale IQ were recorded for the control group. These findings support the hypothesis that relational skills underlie many aspects of general cognitive ability.Keywords: early childhood, derived relational responding, intelligence, relational frame theory, relational skills
Procedia PDF Downloads 1862050 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 2392049 The Moderating Roles of Bedtime Activities and Anxiety and Depression in the Relationship between Attention-Deficit/Hyperactivity Disorder and Sleep Problems in Children
Authors: Lian Tong, Yan Ye, Qiong Yan
Abstract:
Background: Children with attention-deficit/hyperactivity disorder (ADHD) often experience sleep problems, but the comorbidity mechanism has not been sufficiently studied. This study aimed to determine the comorbidity of ADHD and sleep problems as well as the moderating effects of bedtime activities and depression/anxiety symptoms on the relationship between ADHD and sleep problems. Methods: We recruited 934 primary students from third to fifth grade and their parents by stratified random sampling from three primary schools in Shanghai, China. This study used parent-reported versions of the ADHD Rating Scale-IV, Children’s Sleep Habits Questionnaire, and Achenbach Child Behavior Checklist. We used hierarchical linear regression analysis to clarify the moderating effects of bedtime activities and depression/anxiety symptoms. Results: We found that children with more ADHD symptoms had shorter sleep durations and more sleep problems on weekdays. Screen time before bedtime strengthened the relationship between ADHD and sleep-disordered breathing. Children with more screen time were more likely to have sleep onset delay, while those with less screen time had more sleep onset problems with increasing ADHD symptoms. The high bedtime eating group experienced more night waking with increasing ADHD symptoms compared with the low bedtime eating group. Anxiety/depression exacerbated total sleep problems and further interacted with ADHD symptoms to predict sleep length and sleep duration problems. Conclusions: Bedtime activities and emotional problems had important moderating effects on the relationship between ADHD and sleep problems. These findings indicate that appropriate bedtime management and emotional management may reduce sleep problems and improve sleep duration for children with ADHD symptoms.Keywords: ADHD, sleep problems, anxiety/depression, bedtime activities, children
Procedia PDF Downloads 2052048 The Academic-Practitioner Nexus in Countering Terrorism in New Zealand
Authors: John Battersby, Rhys Ball
Abstract:
After the 15 March 2019 Mosque attacks in Christchurch, the New Zealand security sector has had to address its training and preparedness levels for dealing with contemporary terrorist threats as well as potential future manifestations of terrorism. From time to time, members of the academic community from Australia and New Zealand have been asked to assist agencies in this endeavour. In the course of 2018, New Zealand security sector professionals working in the counter-terrorism area were interviewed about how they regarded academic contributions to understanding terrorism and counter-terrorism. Responses were mixed, ranging from anti-intellectualism, a belief that the inability to access classified material rendered academic work practically useless - to some genuine interest and desire for broad based academic studies on issues practitioners did not have the time to look at. Twelve months later, researchers have revisited those spoken to prior to the Brenton Tarrant 15 March shooting to establish if there has been a change in the way academic research is perceived, viewed and valued, and what key factors have contributed to this shift in thinking. This paper takes this data, combined with a consideration of the literature on higher education within professional police and intelligence forces, and on the general perception of academics by practitioners, to present a series of findings that will contribute to a more proactive and effective set of engagements, between two distinct but important security sectors, that reflect more closely with international practice.Keywords: academic, counter terrorism, intelligence, practitioner, research, security
Procedia PDF Downloads 1082047 Sociodemographic Approach to Juveniles Directed to Delinquent Behaviour in Zonguldak
Authors: Riza Yilmaz, Samet Kiyak, Sezin Nur Yilmaz, Yasemin Yilmaz
Abstract:
Child delinquency has been increasing in our country as well as in many countries of the world. Child intelligence, abilities, family's social environment and life conditions are the factors which affect the child delinquency. The reports of 73 cases ages of 12-15 which were sent to the University of Bulent Ecevit, School of Medicine, Forensic Medicine Department between January 2011-September 2015, in order to evaluate medically, children pushed to crime by the judicial authorities are examined in terms of age, gender, educational background, place of residence, reasons for being sent, whether it’s a repeating crime or not, type of intelligence test, results revealed by forensic medicine and department of mental and neurological disorders. When children pushed to crime examined in terms of their crimes, the most common type of crime was identified as theft (n = 24). The crimes with 19 physical attacks and 12 sexual abuse were seen. Following that other 12 crimes were determined as damage to property, hemp crop, insult, incitement to crime, forgery of private documents, illegal excavation, threatening, involuntary manslaughter. The alleged crimes in 6 cases were more than one. The children pushed to crime are one of the major social problems of many countries. In this sense, it is not only the responsibility of government agencies to protect children pushed to crime, also, the civil society organizations should take place in this struggle.Keywords: delinquent behaviour, forensic medicine, crime, punishment
Procedia PDF Downloads 4382046 The Impact of Artificial Intelligence in the Development of Textile and Fashion Industry
Authors: Basem Kamal Abasakhiroun Farag
Abstract:
Fashion, like many other areas of design, has undergone numerous developments over the centuries. The aim of the article is to recognize and evaluate the importance of advanced technologies in fashion design and to examine how they are transforming the role of contemporary fashion designers by transforming the creative process. It also discusses how contemporary culture is involved in such developments and how it influences fashion design in terms of conceptualization and production. The methodology used is based on examining various examples of the use of technology in fashion design and drawing parallels between what was feasible then and what is feasible today. Comparison of case studies, examples of existing fashion designs and experiences with craft methods; We therefore observe patterns that help us predict the direction of future developments in this area. Discussing the technological elements in fashion design helps us understand the driving force behind the trend. The research presented in the article shows that there is a trend towards significantly increasing interest and progress in the field of fashion technology, leading to the emergence of hybrid artisanal methods. In summary, as fashion technologies advance, their role in clothing production is becoming increasingly important, extending far beyond the humble sewing machine.Keywords: fashion, identity, such, textiles ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology bio textiles, fashion trends, nano textiles, new materials, smart textiles, techno textiles fashion design, functional aesthetics, 3D printing.
Procedia PDF Downloads 682045 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 942044 Leveraging Artificial Intelligence to Analyze the Interplay between Social Vulnerability Index and Mobility Dynamics in Pandemics
Authors: Joshua Harrell, Gideon Osei Bonsu, Susan Garza, Clarence Conner, Da’Neisha Harris, Emma Bukoswki, Zohreh Safari
Abstract:
The Social Vulnerability Index (SVI) stands as a pivotal tool for gauging community resilience amidst diverse stressors, including pandemics like COVID-19. This paper synthesizes recent research and underscores the significance of SVI in elucidating the differential impacts of crises on communities. Drawing on studies by Fox et al. (2023) and Mah et al. (2023), we delve into the application of SVI alongside emerging data sources to uncover nuanced insights into community vulnerability. Specifically, we explore the utilization of SVI in conjunction with mobility data from platforms like SafeGraph to probe the intricate relationship between social vulnerability and mobility dynamics during the COVID-19 pandemic. By leveraging 16 community variables derived from the American Community Survey, including socioeconomic status and demographic characteristics, SVI offers actionable intelligence for guiding targeted interventions and resource allocation. Building upon recent advancements, this paper contributes to the discourse on harnessing AI techniques to mitigate health disparities and fortify public health resilience in the face of pandemics and other crises.Keywords: social vulnerability index, mobility dynamics, data analytics, health equity, pandemic preparedness, targeted interventions, data integration
Procedia PDF Downloads 652043 Unraveling the Complexity of Postpartum Distress: Examining the Influence of Alexithymia, Social Support, Partners' Support, and Birth Satisfaction on Postpartum Distress among Bulgarian Mothers
Authors: Stela Doncheva
Abstract:
Postpartum distress, encompassing depressive symptoms, obsessions, and anxiety, remains a subject of significant scientific interest due to its prevalence among individuals giving birth. This critical and transformative period presents a multitude of factors that impact women's health. On the one hand, variables such as social support, satisfaction in romantic relationships, shared newborn care, and birth satisfaction directly affect the mental well-being of new mothers. On the other hand, the interplay of hormonal changes, personality characteristics, emotional difficulties, and the profound life adjustments experienced by mothers can profoundly influence their self-esteem and overall physical and emotional well-being. This paper extensively explores the factors of alexithymia, social support, partners' support, and birth satisfaction to gain deeper insights into their impact on postpartum distress. Utilizing a qualitative survey consisting of six self-reflective questionnaires, this study collects valuable data regarding the individual postpartum experiences of Bulgarian mothers. The primary objective is to enrich our understanding of the complex factors involved in the development of postpartum distress during this crucial period. The results shed light on the intricate nature of the problem and highlight the significant influence of bio-psycho-social elements. By contributing to the existing knowledge in the field, this research provides valuable implications for the development of interventions and support systems tailored to the unique needs of mothers in the postpartum period. Ultimately, this study aims to improve the overall well-being of new mothers and promote optimal maternal health during the postpartum journey.Keywords: maternal mental health, postpartum distress, postpartum depression, postnatal mothers
Procedia PDF Downloads 642042 The Effect of Psychosocial, Behavioral and Disease Specific Characteristics on Health-Related Quality of Life after Primary Surgery for Colorectal Cancer: A Cross Sectional Study of a Regional Australian Population
Authors: Lakmali Anthony, Madeline Gillies
Abstract:
Background: Colorectal cancer (CRC) is usually managed with surgical resection. Many of the outcomes traditionally used to define successful operative management, such as resection margin, do not adequately reflect patients’ experience. Patient-reported outcomes (PRO), such as Health-Related Quality of life (HRQoL), provide a means by which the impact of surgery for cancer can be reported in a patient-centered way. HRQoL has previously been shown to be impacted by psychosocial, behavioral and disease-specific characteristics. This exploratory cross-sectional study aims to; (1) describe postoperative HRQoL in patients who underwent primary resection in a regional Australian hospital; (2) describe the prevalence of anxiety, depression and clinically significant fear of cancer recurrence (FCR) in this population; and (3) identify demographic, psychosocial, disease and treatment factors associated with poorer self-reported HRQoL. Methods: Consecutive patients who had resection of colorectal cancer in a single regional Australian hospital between 2015 and 2022 were eligible. Participants were asked to complete a survey instrument designed to assess HRQoL, as well as validated instruments that assess several other psychosocial PROs hypothesized to be associated with HRQoL; emotional distress, fear of cancer recurrence, social support, dispositional optimism, body image and spirituality. Demographic and disease-specific data were also collected via medical record review. Results: Forty-six patients completed the survey. Clinically significant levels of fear of recurrence as well as emotional distress, were present in this group. Many domains of HRQoL were significantly worse than an Australian reference population for CRC. Demographic and disease factors associated with poor HRQoL included smoking and ongoing adjuvant systemic therapy. The primary operation was not associated with HRQoL; however, the operative approach (laparoscopic vs. open) was associated with HRQoL for these patients. All psychosocial factors measured were associated with HRQoL, including cancer worry, emotional distress, body image and dispositional optimism. Conclusion: HRQoL is an important outcome in surgery for both research and clinical practice. This study provides an overview of the quality of life in a regional Australian population of postoperative colorectal cancer patients and the factors that affect it. Understanding HRQoL and awareness of patients particularly vulnerable to poor outcomes should be used to aid the informed consent and shared decision-making process between surgeon and patient.Keywords: surgery, colorectal, cancer, PRO, HRQoL
Procedia PDF Downloads 702041 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains
Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh
Abstract:
The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.Keywords: machine vision, fuzzy logic, rice, quality
Procedia PDF Downloads 4202040 Reimagining Landscapes: Psychological Responses and Behavioral Shifts in the Aftermath of the Lytton Creek Fire
Authors: Tugba Altin
Abstract:
In an era where the impacts of climate change resonate more pronouncedly than ever, communities globally grapple with events bearing both tangible and intangible ramifications. Situating this within the evolving landscapes of Psychological and Behavioral Sciences, this research probes the profound psychological and behavioral responses evoked by such events. The Lytton Creek Fire of 2021 epitomizes these challenges. While tangible destruction is immediate and evident, the intangible repercussions—emotional distress, disintegration of cultural landscapes, and disruptions in place attachment (PA)—require meticulous exploration. PA, emblematic of the emotional and cognitive affiliations individuals nurture with their environments, emerges as a cornerstone for comprehending how environmental cataclysms influence cultural identity and bonds to land. This study, harmonizing the core tenets of an interpretive phenomenological approach with a hermeneutic framework, underscores the pivotal nature of this attachment. It delves deep into the realm of individuals' experiences post the Lytton Creek Fire, unraveling the intricate dynamics of PA amidst such calamity. The study's methodology deviates from conventional paradigms. Instead of traditional interview techniques, it employs walking audio sessions and photo elicitation methods, granting participants the agency to immerse, re-experience, and vocalize their sentiments in real-time. Such techniques shed light on spatial narratives post-trauma and capture the otherwise elusive emotional nuances, offering a visually rich representation of place-based experiences. Central to this research is the voice of the affected populace, whose lived experiences and testimonies form the nucleus of the inquiry. As they renegotiate their bonds with transformed environments, their narratives reveal the indispensable role of cultural landscapes in forging place-based identities. Such revelations accentuate the necessity of integrating both tangible and intangible trauma facets into community recovery strategies, ensuring they resonate more profoundly with affected individuals. Bridging the domains of environmental psychology and behavioral sciences, this research accentuates the intertwined nature of tangible restoration with the imperative of emotional and cultural recuperation post-environmental disasters. It advocates for adaptation initiatives that are rooted in the lived realities of the affected, emphasizing a holistic approach that recognizes the profundity of human connections to landscapes. This research advocates the interdisciplinary exchange of ideas and strategies in addressing post-disaster community recovery strategies. It not only enriches the climate change discourse by emphasizing the human facets of disasters but also reiterates the significance of an interdisciplinary approach, encompassing psychological and behavioral nuances, for fostering a comprehensive understanding of climate-induced traumas. Such a perspective is indispensable for shaping more informed, empathetic, and effective adaptation strategies.Keywords: place attachment, community recovery, disaster response, restorative landscapes, sensory response, visual methodologies
Procedia PDF Downloads 602039 Resilience and Mindfulness as Individual Resources Building Communication Skills for Physicians
Authors: Malgorzata Sekulowicz, Krystyna Boron-Krupinska, Paulina Morga, Blazej Cieslik
Abstract:
Burnout is highly prevalent in health care employees, especially in physicians. It significantly reduces the efficiency of these employees, which can have negative consequences for both physicians and patients. Resilience and mindfulness enhancing positive emotions, leading to sustainable development and personal commitment, can have a significant impact on burnout. Therefore, the aim of this study was to determine the relationship between burnout symptoms and mindfulness and resilience among physicians. The authors conducted a cross-sectional survey study among seventy-four polish physicians. Participants filled out the following psychometric tools: the Maslach Burnout Inventory - Human Services Survey (MBI-HSS), Five Facet Mindfulness Questionnaire (FFMQ), Areas of Work-Life Survey (AWS), International Personality Item Pool (IPIP), the Resilience Assessment Scale (SPP-25) and the Mini-COPE Inventory. The relationship between burnout and resilience and mindfulness was assessed with path analysis. Analyzing the relationship between MBI-HSS components and mindfulness, a significant negative correlation of the FFMQ score with emotional exhaustion (-0.50, p < 0.05) and depersonalization (-0.43, p < 0.05) and a positive correlation with personal accomplishment (0.50, p < 0.05) was demonstrated. Analyzing resilience, a statistically significant relationship of SPP-25 with all tested components of MBI-HSS was demonstrated: emotional exhaustion (-0.54, p < 0.05), depersonalization (-0.31, p < 0.05) and personal accomplishment (0.35, p < 0.05). In the group of medical doctors, the higher the level of mindfulness and resilience, the lower the risk of burnout. Furthermore, the more frequently used active coping strategies (planning, acceptance), the lower the risk of burnout, while the use of passive, evasive strategies increases the risk of burnout. It may be worth considering implementing mindfulness intervention to effectively manage burnout symptoms in this group.Keywords: burnout, medical doctors, mindfulness, physicians, resilience
Procedia PDF Downloads 1062038 Motherhood and Its Essence among Zimbabwean Migrant Women in Australia
Authors: Pranee Liamputtong
Abstract:
Childlessness in non-Western societies has wide-ranging social implications and profoundly affects the gender identity and well-being of women. The aspirations of women in these societies are shaped by various sociocultural expectations, encompassing social norms and their own social standing. Currently, there is limited knowledge regarding the perceptions and experiences of Zimbabwean migrant women living in Australia regarding childlessness and motherhood. This paper explores the cultural perspective on children in Zimbabwean society and investigates the personal and social consequences of infertility, as well as the cultural expectations of motherhood among Zimbabwean migrant women residing in Australia. The perceptions and experiences of this migrant community are of utmost importance in order to prevent misunderstandings about the core essence of motherhood among Zimbabwean women. Ultimately, this will lead to the provision of sensitive and culturally appropriate healthcare and social support for migrants in Australia's multicultural society. The study adopts a constructivist paradigm and employs qualitative methods, including in-depth interviews, drawings, and photo elicitation, involving 15 Zimbabwean women. Thematic analysis was employed to analyze the data. In Zimbabwean culture, the ability to bear a child holds significant meaning for women. Children not only ensure the continuity of society but also provide social security, as parents rely on their children for care in old age. Childlessness jeopardizes a woman's social status and carries social repercussions that have a profound impact on their gender identity and well-being. Cultural expectations of motherhood place the sole responsibility for the emotional and physical care of children on the mother. Despite residing in Australia, the procreative value has not diminished for Zimbabwean women. Raising awareness of the procreative needs of Zimbabwean women in a culturally sensitive manner would enhance the emotional well-being of these women.Keywords: motherhood, culture, migrant women, Zimbabwe, Australia
Procedia PDF Downloads 882037 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 1392036 Self-Esteem in Troubled Gifted and Non-Gifted Children and Adolescents: Comparison within a French Population
Authors: Macarena-Paz Celume, Sylvie Tordjman
Abstract:
There is still no consensus regarding the differences between gifted and non-gifted students in relationship to their self-esteem and the impact that this might have on behavioral and emotional troubles. In fact, some studies present no difference between both groups or present gifted population having higher scores in self-esteem, while others indicate all the opposite, presenting lower self-esteem in gifted population, suggesting that self-esteem issues are probably due to the fact that gifted children who present low self-esteem might not consider their high Intellectual Quotient (IQ) as a positive characteristic, thus leading to behavioral or emotional troubles. According to the author's knowledge, there is poor evidence trying to understand self-esteem issues in troubled gifted and non-gifted students in France, also finding an important lack regarding the possible moderators that might influence self-esteem. This study aimed to validate the results of these samples, looking for age and sex moderators in order to present recent evidence for the study of self-esteem in troubled gifted students in France. This study analysed the data gathered in the past 12 years for troubled students attending to the National Centre for Assistance to High Potential of Children and Adolescents (CNAHP) in France comparing the results of gifted versus non-gifted population. Primary results showed no significant differences between the groups in global self-esteem (t=1,15 p < .25), consistent with correlation analysis that found no correlation between global self-esteem and total IQ for each of the groups (rgifted=.04, rnon-gifted=.-08). Nevertheless, an ANOVA analysis showed an important effect of giftedness over academic self-esteem even though no significant differences were found (t=1,8 p < .06). No significant differences between sex regarding global self-esteem in any of the groups were found. Nevertheless, non-gifted population showed a significant difference in physical self-esteem, being higher for boys than for girls (t=2.65 p < .01). Sex and age moderator analyses for self-esteem will be presented and discussed.Keywords: children and adolescents, giftedness, self-esteem, troubled children and adolescents
Procedia PDF Downloads 1372035 Ethical Considerations of Disagreements Between Clinicians and Artificial Intelligence Recommendations: A Scoping Review
Authors: Adiba Matin, Daniel Cabrera, Javiera Bellolio, Jasmine Stewart, Dana Gerberi (librarian), Nathan Cummins, Fernanda Bellolio
Abstract:
OBJECTIVES: Artificial intelligence (AI) tools are becoming more prevalent in healthcare settings, particularly for diagnostic and therapeutic recommendations, with an expected surge in the incoming years. The bedside use of this technology for clinicians opens the possibility of disagreements between the recommendations from AI algorithms and clinicians’ judgment. There is a paucity in the literature analyzing nature and possible outcomes of these potential conflicts, particularly related to ethical considerations. The goal of this scoping review is to identify, analyze and classify current themes and potential strategies addressing ethical conflicts originating from the conflict between AI and human recommendations. METHODS: A protocol was written prior to the initiation of the study. Relevant literature was searched by a medical librarian for the terms of artificial intelligence, healthcare and liability, ethics, or conflict. Search was run in 2021 in Ovid Cochrane Central Register of Controlled Trials, Embase, Medline, IEEE Xplore, Scopus, and Web of Science Core Collection. Articles describing the role of AI in healthcare that mentioned conflict between humans and AI were included in the primary search. Two investigators working independently and in duplicate screened titles and abstracts and reviewed full-text of potentially eligible studies. Data was abstracted into tables and reported by themes. We followed methodological guidelines for Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). RESULTS: Of 6846 titles and abstracts, 225 full texts were selected, and 48 articles included in this review. 23 articles were included as original research and review papers. 25 were included as editorials and commentaries with similar themes. There was a lack of consensus in the included articles on who would be held liable for mistakes incurred by following AI recommendations. It appears that there is a dichotomy of the perceived ethical consequences depending on if the negative outcome is a result of a human versus AI conflict or secondary to a deviation from standard of care. Themes identified included transparency versus opacity of recommendations, data bias, liability of outcomes, regulatory framework, and the overall scope of artificial intelligence in healthcare. A relevant issue identified was the concern by clinicians of the “black box” nature of these recommendations and the ability to judge appropriateness of AI guidance. CONCLUSION AI clinical tools are being rapidly developed and adopted, and the use of this technology will create conflicts between AI algorithms and healthcare workers with various outcomes. In turn, these conflicts may have legal, and ethical considerations. There is limited consensus about the focus of ethical and liability for outcomes originated from disagreements. This scoping review identified the importance of framing the problem in terms of conflict between standard of care or not, and informed by the themes of transparency/opacity, data bias, legal liability, absent regulatory frameworks and understanding of the technology. Finally, limited recommendations to mitigate ethical conflicts between AI and humans have been identified. Further work is necessary in this field.Keywords: ethics, artificial intelligence, emergency medicine, review
Procedia PDF Downloads 952034 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 292033 Generative Pre-Trained Transformers (GPT-3) and Their Impact on Higher Education
Authors: Sheelagh Heugh, Michael Upton, Kriya Kalidas, Stephen Breen
Abstract:
This article aims to create awareness of the opportunities and issues the artificial intelligence (AI) tool GPT-3 (Generative Pre-trained Transformer-3) brings to higher education. Technological disruptors have featured in higher education (HE) since Konrad Klaus developed the first functional programmable automatic digital computer. The flurry of technological advances, such as personal computers, smartphones, the world wide web, search engines, and artificial intelligence (AI), have regularly caused disruption and discourse across the educational landscape around harnessing the change for the good. Accepting AI influences are inevitable; we took mixed methods through participatory action research and evaluation approach. Joining HE communities, reviewing the literature, and conducting our own research around Chat GPT-3, we reviewed our institutional approach to changing our current practices and developing policy linked to assessments and the use of Chat GPT-3. We review the impact of GPT-3, a high-powered natural language processing (NLP) system first seen in 2020 on HE. Historically HE has flexed and adapted with each technological advancement, and the latest debates for educationalists are focusing on the issues around this version of AI which creates natural human language text from prompts and other forms that can generate code and images. This paper explores how Chat GPT-3 affects the current educational landscape: we debate current views around plagiarism, research misconduct, and the credibility of assessment and determine the tool's value in developing skills for the workplace and enhancing critical analysis skills. These questions led us to review our institutional policy and explore the effects on our current assessments and the development of new assessments. Conclusions: After exploring the pros and cons of Chat GTP-3, it is evident that this form of AI cannot be un-invented. Technology needs to be harnessed for positive outcomes in higher education. We have observed that materials developed through AI and potential effects on our development of future assessments and teaching methods. Materials developed through Chat GPT-3 can still aid student learning but lead to redeveloping our institutional policy around plagiarism and academic integrity.Keywords: artificial intelligence, Chat GPT-3, intellectual property, plagiarism, research misconduct
Procedia PDF Downloads 892032 The Role of Artificial Intelligence in Creating Personalized Health Content for Elderly People: A Systematic Review Study
Authors: Mahnaz Khalafehnilsaz, Rozina Rahnama
Abstract:
Introduction: The elderly population is growing rapidly, and with this growth comes an increased demand for healthcare services. Artificial intelligence (AI) has the potential to revolutionize the delivery of healthcare services to the elderly population. In this study, the various ways in which AI is used to create health content for elderly people and its transformative impact on the healthcare industry will be explored. Method: A systematic review of the literature was conducted to identify studies that have investigated the role of AI in creating health content specifically for elderly people. Several databases, including PubMed, Scopus, and Web of Science, were searched for relevant articles published between 2000 and 2022. The search strategy employed a combination of keywords related to AI, personalized health content, and the elderly. Studies that utilized AI to create health content for elderly individuals were included, while those that did not meet the inclusion criteria were excluded. A total of 20 articles that met the inclusion criteria were identified. Finding: The findings of this review highlight the diverse applications of AI in creating health content for elderly people. One significant application is the use of natural language processing (NLP), which involves the creation of chatbots and virtual assistants capable of providing personalized health information and advice to elderly patients. AI is also utilized in the field of medical imaging, where algorithms analyze medical images such as X-rays, CT scans, and MRIs to detect diseases and abnormalities. Additionally, AI enables the development of personalized health content for elderly patients by analyzing large amounts of patient data to identify patterns and trends that can inform healthcare providers in developing tailored treatment plans. Conclusion: AI is transforming the healthcare industry by providing a wide range of applications that can improve patient outcomes and reduce healthcare costs. From creating chatbots and virtual assistants to analyzing medical images and developing personalized treatment plans, AI is revolutionizing the way healthcare is delivered to elderly patients. Continued investment in this field is essential to ensure that elderly patients receive the best possible care.Keywords: artificial intelligence, health content, older adult, healthcare
Procedia PDF Downloads 712031 Accountability of Artificial Intelligence: An Analysis Using Edgar Morin’s Complex Thought
Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan
Abstract:
Artificial intelligence (AI) can be held accountable for its detrimental impacts. This question gains heightened relevance given AI's pervasive reach across various domains, magnifying its power and potential. The expanding influence of AI raises fundamental ethical inquiries, primarily centering on biases, responsibility, and transparency. This encompasses discriminatory biases arising from algorithmic criteria or data, accidents attributed to autonomous vehicles or other systems, and the imperative of transparent decision-making. This article aims to stimulate reflection on AI accountability, denoting the necessity to elucidate the effects it generates. Accountability comprises two integral aspects: adherence to legal and ethical standards and the imperative to elucidate the underlying operational rationale. The objective is to initiate a reflection on the obstacles to this "accountability," facing the challenges of the complexity of artificial intelligence's system and its effects. Then, this article proposes to mobilize Edgar Morin's complex thought to encompass and face the challenges of this complexity. The first contribution is to point out the challenges posed by the complexity of A.I., with fractional accountability between a myriad of human and non-human actors, such as software and equipment, which ultimately contribute to the decisions taken and are multiplied in the case of AI. Accountability faces three challenges resulting from the complexity of the ethical issues combined with the complexity of AI. The challenge of the non-neutrality of algorithmic systems as fully ethically non-neutral actors is put forward by a revealing ethics approach that calls for assigning responsibilities to these systems. The challenge of the dilution of responsibility is induced by the multiplicity and distancing between the actors. Thus, a dilution of responsibility is induced by a split in decision-making between developers, who feel they fulfill their duty by strictly respecting the requests they receive, and management, which does not consider itself responsible for technology-related flaws. Accountability is confronted with the challenge of transparency of complex and scalable algorithmic systems, non-human actors self-learning via big data. A second contribution involves leveraging E. Morin's principles, providing a framework to grasp the multifaceted ethical dilemmas and subsequently paving the way for establishing accountability in AI. When addressing the ethical challenge of biases, the "hologrammatic" principle underscores the imperative of acknowledging the non-ethical neutrality of algorithmic systems inherently imbued with the values and biases of their creators and society. The "dialogic" principle advocates for the responsible consideration of ethical dilemmas, encouraging the integration of complementary and contradictory elements in solutions from the very inception of the design phase. Aligning with the principle of organizing recursiveness, akin to the "transparency" of the system, it promotes a systemic analysis to account for the induced effects and guides the incorporation of modifications into the system to rectify deviations and reintroduce modifications into the system to rectify its drifts. In conclusion, this contribution serves as an inception for contemplating the accountability of "artificial intelligence" systems despite the evident ethical implications and potential deviations. Edgar Morin's principles, providing a lens to contemplate this complexity, offer valuable perspectives to address these challenges concerning accountability.Keywords: accountability, artificial intelligence, complexity, ethics, explainability, transparency, Edgar Morin
Procedia PDF Downloads 632030 Time-Dependent Modulation on Depressive Responses and Circadian Rhythms of Corticosterone in Models of Melatonin Deficit
Authors: Jana Tchekalarova, Milena Atanasova, Katerina Georgieva
Abstract:
Melatonin deficit can cause a disturbance in emotional status and circadian rhythms of the endocrine system in the body. Both pharmacological and alternative approaches are applied for correction of dysfunctions driven by changes in circadian dynamics of many physiological indicators. In the present study, we tested and compare the beneficial effect of agomelatine (40 mg/kg, i.p. for 3 weeks) and endurance training on depressive behavior in two models of melatonin deficit in rat. The role of disturbed circadian rhythms of plasma melatonin and corticosterone secretion in the mechanism of these treatments was also explored. The continuous exercise program attenuated depressive responses associated with disrupted diurnal rhythm of home-cage motor activity, anhedonia in the sucrose preference test, and despair-like behavior in the forced swimming test were attenuated by agomelatine exposed to chronic constant light (CCL) and long-term exercise in pinealectomized rats. Parallel to the observed positive effect on the emotional status, agomelatine restored CCL-induced impairment of circadian patterns of plasma melatonin but not that of corticosterone. In opposite, exercise training diminished total plasma corticosterone levels and corrected its flattened pattern while it was unable to correct melatonin deficit in pinealectomy. These results suggest that the antidepressant-like effect of pharmacological and alternative approach might be mediated via two different mechanism, correction of the disturbed circadian rhythm of melatonin and corticosterone, respectively. Therefore, these treatment approaches might have a potential therapeutic application in different subpopulations of people characterized by a melatonin deficiency. This work was supported by the National Science Fund of Bulgaria (research grant # № DN 03/10; DN# 12/6).Keywords: agomelatine, exercise training, melatonin deficit, corticosterone
Procedia PDF Downloads 1322029 Analyzing the Construction of Collective Memories by History Movies/TV Programs: Case Study of Masters in the Forbidden City
Authors: Lulu Wang, Yongjun Xu, Xiaoyang Qiao
Abstract:
The Forbidden City is well known for being full of Chinese cultural and historical relics. However, the Masters in the Forbidden City, a documentary film, doesn’t just dwell on the stories of the past. Instead, it focuses on ordinary people—the restorers of the relics and antiquities, which has caught the sight of Chinese audiences. From this popular documentary film, a new way can be considered, that is to show the relics, antiquities and painting with a character of modern humanities by films and TV programs. Of course, it can’t just like a simple explanation from tour guides in museums. It should be a perfect combination of scenes, heritages, stories, storytellers and background music. All we want to do is trying to dig up the humanity behind the heritages and then create a virtual scene for the audience to have emotional resonance from the humanity. It is believed that there are two problems. One is that compared with the entertainment shows, why people prefer to see the boring restoration work. The other is that what the interaction is between those history documentary films, the heritages, the audiences and collective memory. This paper mainly used the methods of text analysis and data analysis. The audiences’ comment texts were collected from all kinds of popular video sites. Through analyzing those texts, there was a word cloud chart about people preferring to use what kind of words to comment the film. Then the usage rate of all comments words was calculated. After that, there was a Radar Chart to show the rank results. Eventually, each of them was given an emotional value classification according their comment tone and content. Based on the above analysis results, an interaction model among the audience, history films/TV programs and the collective memory can be summarized. According to the word cloud chart, people prefer to use such words to comment, including moving, history, love, family, celebrity, tone... From those emotional words, we can see Chinese audience felt so proud and shared the sense of Collective Identity, so they leave such comments: To our great motherland! Chinese traditional culture is really profound! It is found that in the construction of collective memory symbology, the films formed an imaginary system by organizing a ‘personalized audience’. The audience is not just a recipient of information, but a participant of the documentary films and a cooperator of collective memory. At the same time, it is believed that the traditional background music, the spectacular present scenes and the tone of the storytellers/hosts are also important, so it is suggested that the museums could try to cooperate with the producers of movie and TV program to create a vivid scene for the people. Maybe it’s a more artistic way for heritages to be open to all the world.Keywords: audience, heritages, history movies, TV programs
Procedia PDF Downloads 1642028 Digital Transformation and Digitalization of Public Administration
Authors: Govind Kumar
Abstract:
The concept of ‘e-governance’ that was brought about by the new wave of reforms, namely ‘LPG’ in the early 1990s, has been enabling governments across the globe to digitally transform themselves. Digital transformation is leading the governments with qualitative decisions, optimization in rational use of resources, facilitation of cost-benefit analyses, and elimination of redundancy and corruption with the help of ICT-based applications interface. ICT-based applications/technologies have enormous potential for impacting positive change in the social lives of the global citizenry. Supercomputers test and analyze millions of drug molecules for developing candidate vaccines to combat the global pandemic. Further, e-commerce portals help distribute and supply household items and medicines, while videoconferencing tools provide a visual interface between the clients and hosts. Besides, crop yields are being maximized with the help of drones and machine learning, whereas satellite data, artificial intelligence, and cloud computing help governments with the detection of illegal mining, tackling deforestation, and managing freshwater resources. Such e-applications have the potential to take governance an extra mile by achieving 5 Es (effective, efficient, easy, empower, and equity) of e-governance and six Rs (reduce, reuse, recycle, recover, redesign and remanufacture) of sustainable development. If such digital transformation gains traction within the government framework, it will replace the traditional administration with the digitalization of public administration. On the other hand, it has brought in a new set of challenges, like the digital divide, e-illiteracy, technological divide, etc., and problems like handling e-waste, technological obsolescence, cyber terrorism, e-fraud, hacking, phishing, etc. before the governments. Therefore, it would be essential to bring in a rightful mixture of technological and humanistic interventions for addressing the above issues. This is on account of the reason that technology lacks an emotional quotient, and the administration does not work like technology. Both are self-effacing unless a blend of technology and a humane face are brought in into the administration. The paper will empirically analyze the significance of the technological framework of digital transformation within the government set up for the digitalization of public administration on the basis of the synthesis of two case studies undertaken from two diverse fields of administration and present a future framework of the study.Keywords: digital transformation, electronic governance, public administration, knowledge framework
Procedia PDF Downloads 101