Search results for: void volume
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2750

Search results for: void volume

1760 Low-Cost Fog Edge Computing for Smart Power Management and Home Automation

Authors: Belkacem Benadda, Adil Benabdellah, Boutheyna Souna

Abstract:

The Internet of Things (IoT) is an unprecedented creation. Electronics objects are now able to interact, share, respond and adapt to their environment on a much larger basis. Actual spread of these modern means of connectivity and solutions with high data volume exchange are affecting our ways of life. Accommodation is becoming an intelligent living space, not only suited to the people circumstances and desires, but also to systems constraints to make daily life simpler, cheaper, increase possibilities and achieve a higher level of services and luxury. In this paper we are as Internet access, teleworking, consumption monitoring, information search, etc.). This paper addresses the design and integration of a smart home, it also purposes an IoT solution that allows smart power consumption based on measurements from power-grid and deep learning analysis.

Keywords: array sensors, IoT, power grid, FPGA, embedded

Procedia PDF Downloads 101
1759 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani

Abstract:

A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Keywords: composite membrane, electrospinning, fuel cell, nanofibers

Procedia PDF Downloads 250
1758 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint

Authors: Richard Colwell, Thomas Englert

Abstract:

In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.

Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface

Procedia PDF Downloads 196
1757 The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium

Authors: Harche Rima, Laoufi Nadia Aicha

Abstract:

The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV.

Keywords: corrosion and prevention, steel, copper, aluminum, corrosion inhibitor, anti-cooling

Procedia PDF Downloads 24
1756 Steady and Oscillatory States of Swirling Flows under an Axial Magnetic Field

Authors: Brahim Mahfoud, Rachid Bessaïh

Abstract:

In this paper, a numerical study of steady and oscillatory flows with heat transfer submitted to an axial magnetic field is studied. The governing Navier-Stokes, energy, and potential equations along with appropriate boundary conditions are solved by using the finite-volume method. The flow and temperature fields are presented by stream function and isotherms, respectively. The flow between counter-rotating end disks is very unstable and reveals a great richness of structures. The results are presented for various values of the Hartmann number, Ha=5, 10, 20, and 30, and Richardson numbers , Ri=0, 0.5, 1, 2, and 4, in order to see their effects on the value of the critical Reynolds number, Recr. Stability diagrams are established according to the numerical results of this investigation. These diagrams put in evidence the dependence of Recr with the increase of Ha for various values of Ri.

Keywords: swirling, counter-rotating end disks, magnetic field, oscillatory, cylinder

Procedia PDF Downloads 311
1755 Phase Equilibria in the Ln-Sr-Co-O Systems

Authors: Anastasiia Maklakova

Abstract:

The perovskite type oxides formed in the Ln-Me-Me/-O systems (where Ln – rare-earth, Me – alkaline earth metal, Me/ - 3-d metal) have potential applications as gas sensors, catalysts or cathode materials for IT-SOFCs due to the high values of mixed electronic -ionic conductivity and high oxygen diffusivity. Complex oxides in the Sr-(Pr,Gd)-Co-O systems were prepared via the glycerol-nitrate technique The phase composition was determined using a Shimadzu XRD-7000 diffractometer at room temperature in air. Phase identification was performed using the ICDD database. The structure was refined by the full-profile Rietveld method using Fullprof 2008 software. Gradual substitution of strontium by Pr or Gd leads to the decrease of unit cell parameters and unit cell volume that can be explained by the size factor. An introduction of Pr or Gd into the strontium cobaltite increases the oxygen content in samples.

Keywords: phase equilibria, crystal structure, oxygen nonstoichiometry, solid oxide fuel cell

Procedia PDF Downloads 102
1754 Numerical Investigation of Flow Behaviour Across a Trapezoidal Bluff Body at Low Reynolds Number

Authors: Zaaraoui Abdelkader, Kerfah Rabeh, Noura Belkheir, Matene Elhacene

Abstract:

The trapezoidal bluff body is a typical configuration of vortex shedding bodies. The aim of this work is to study flow behaviour over a trapezoidal cylinder at low Reynolds number. The geometry was constructed from a prototype device for measuring the volumetric flow-rate by counting vortices. Simulations were run for this geometry under steady and unsteady flow conditions using finite volume discretization. Laminar flow was investigated in this model with rigid walls and homogeneous incompressible Newtonian fluid. Calculations were performed for Reynolds number range 5 ≤ Re ≤ 180 and several flow parameters were documented. The present computations are in good agreement with the experimental observations and the numerical calculations by several investigators.

Keywords: bluff body, confined flow, numerical calculations, steady and unsteady flow, vortex shedding flow meter

Procedia PDF Downloads 268
1753 Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells

Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar

Abstract:

In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT/PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive.

Keywords: n-dodecylthiol, congugated PSC, P3HT/PCBM, polymer solar cells

Procedia PDF Downloads 265
1752 Biotransformation of Monoterpenes by Whole Cells of Eleven Praxelis clematidea-Derived Endophytic Fungi

Authors: Daomao Yang, Qizhi Wang

Abstract:

Monoterpenoids are mainly found in plant essential oils and they are ideal substrates for biotransformation into oxygen-containing derivatives with important commercial value due to their low price and simple structure. In this paper, eleven strains of endophytic fungi from Praxelis clematidea were used as test strains to conduct the whole cell biotransformation of the monoterpenoids: (+)-limonene, (-)-limonene and myrcene. The fungi were inoculated in 50 ml Sabouraud medium and incubated at 30 ℃ with the agitation of 150 r/min for 6 d, and then 0.5% (v/v) substrates were added into the medium and biotransformed for further 3 d. Afterwards the cultures were filtered, and extracted using equal volume of ethyl acetate. The metabolites were analyzed by GC-MS technique with NIST database. The Total Ion Chromatogram of the extractions from the eleven strains showed that the main product of (+)- and (-)-limonene biotransformation was limonene-1,2-diol, while it is limonene and linalool oxide for biotransformation of myrcene. This work will help screen the microorganisms to biotransform the monoterpenes.

Keywords: endophytic fungi, (+)–limonene, (-)–limonene, myrcene

Procedia PDF Downloads 111
1751 Rationality and Evidence of Pre-Prepared Treatment Plan in Oesophageal HDR Brachytherapy

Authors: Jim S. Meng, Mammo H. Yewondwossen

Abstract:

As a part of routine oesophageal HDR brachytherapy procedure, treatment planning takes about 45 minutes while patients are under light sedation. Some patients may suffer gagging and/or spasms, and the treatment may need to be aborted. A pre-prepared plan generated before the patient’s sedation may reduce the brachytherapy procedure time by forty minutes. This paper reports the rationality and evidence of pre-prepared treatment plans. A retrospective study of 28 patients confirm that all of the pre-prepared plans would be acceptable. The rationality of pre-prepared HDR brachytherapy plans is further confirmed by a systemic study with a wide range of applicator curvature and treatment volume. Detailed comparison between CT based treatment plans and pre-prepared plans are discussed. This argument holds also for endobronchial HDR brachytherapy. With the above evidence, pre-prepared plans have been used for all oesophagus and bronchus HDR brachytherapy cases in our clinic.

Keywords: HDR brachytherapy, treatment planning, oesophageal carcinoma, pre-planning

Procedia PDF Downloads 380
1750 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites

Authors: M. Palizvan, M. T. Abadi, M. H. Sadr

Abstract:

Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.

Keywords: homogenization, cohesive zone model, fiber-matrix debonding, RVE

Procedia PDF Downloads 156
1749 Effect of Addition and Reduction of Sharia Index Constituents

Authors: Rosyidah, Permata Wulandari

Abstract:

We investigate the price effect of addition and deletions from the Indonesia Sharia Stock Index (ISSI) and Jakarta Islamic Index (JII). Using event study methodology, we measure abnormal returns for firms over the period June 2019 - to December 2021. Through the sample of 107 additions and 95 deletions, we find evidence to support the theory of Muslim country investment behavior. We find that additions to the Islamic index led to a significant positive stock market reaction and deletions to the Islamic index led to a negative stock market reaction on Jakarta Islamic Index (JII) and there is no significant reaction of addition and deletion on Indonesia Sharia Stock Index (ISSI).

Keywords: abnormal return, abnormal volume, event study, index changes, sharia index

Procedia PDF Downloads 115
1748 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 123
1747 Options Trading and Crash Risk

Authors: Cameron Truong, Mikhail Bhatia, Yangyang Chen, Viet Nga Cao

Abstract:

Using a sample of U.S. firms between 1996 and 2011, this paper documents a positive association between options trading volume and future stock price crash risk. This relation is evidently more pronounced among firms with higher information asymmetry, business uncertainty, and short-sale constraints. In a dichotomous cross-sectional setting, we also document that firms with options trading have higher future crash risk than firms without options trading. We further show in a difference-in-difference analysis that firms experience an increase in crash risk immediately after the listing of options. The results suggest that options traders are able of identifying bad news hoarding by management and choose to trade in a liquid options market in anticipation of future crashes.

Keywords: bad news hoarding, cross-sectional setting, options trading, stock price crash

Procedia PDF Downloads 434
1746 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: acoustic emission, dual phase steels, deformation, failure, fracture

Procedia PDF Downloads 383
1745 The Effect of TiO₂ Nanoparticles on Zebrafish Embryos

Authors: Elena Maria Scalisi

Abstract:

Currently, photodegradation by nanoparticles (NPs) is a common solution for wastewater treatment. Nanoparticles are efficient for removing organic and inorganic pollutants, heavy metals from wastewater and killing microorganisms through environmentally friendly. In this context, the major representative of photocatalytic technology for industrial wastewater treatment are TiO₂ nanoparticles (TiO₂-NPs). TiO₂-NPs have a strong catalytic activity that depends to their physicochemical properties. Thanks to their small size (between 1-100 nm), nanoparticles occupy less volume, then their surface area increases. The increase in the surface-to-volume ratio results in the increase of the particle surface energy, which improve their reactivity potential. However, these unique properties represent risks to the ecosystems and organisms when unintentionally TiO₂-NPs are release into the environment and absorbed by living organisms. Several studies confirm that there is a high level of interest concerning the safety of TiO₂-NPs in the aquatic environment, furthermore, ecotoxicological tools are useful to correctly evaluate their toxicity. In the current study, we aimed to characterize potential toxic effects of TiO₂-NP suspension to zebrafish during embryo-larval stages to evaluate parameters such as survival rates, malformation, hatching, the overall length of the larvae heartbeat, and biochemical biomarkers that reflect the acute toxicity and sublethal effects of TiO₂-NPs. Zebrafish embryos were exposed to titanium dioxide nanoparticles (TiO₂-NPs at 1mg/L, 2mg/L, and 4mg/L) from fertilization to the free swimming stage (144hpf). Every day, we recorded the toxicological endpoints, moreover, immunohistochemical analysis has been performed at the end of the exposure. In particular, we have evaluate the expression of the following biomarkers: Heat Shock Protein 70 (HSP70), Poly ADP-Ribose Polymerase-1 (PARP-1), Metallothioneins (MTs). Our results have shown that hatch ability, survival, and malformation rate were not affected by TiO₂ NPs at these exposure levels. However, TiO₂-NPs caused an increase of heartbeat and reduction of body length; at the same time, TiO₂-NPs have inducted the production of ROS and the expression of oxidative stress biomarkers HSP70 and PARP-1. Hight positivity for PARP-1 at all concentration tested was observed. As regards MT, positivity was found in the expression of this biomarker in the whole body of the embryo, with the exception of the end of the tail. Metallothioneins (MT) are biomarkers widely used in environmental monitoring programs for aquatic creatures. At the light of our results i.e. no death until the end of the experiment (144hpf), no malformation and expression of the biomarkers mentioned, it is evident that zebrafish larvae with their natural detoxification pathways are able to resist the presence of toxic substances and then they can tolerate the presence of metal concentrations. However, an excessive oxidative state can compromise cell function, therefore the uncontrolled release of nanoparticles into the environment is severe and must be constantly monitored.

Keywords: nanoparticles, embryo zebrafish, HSP70, PARP-1

Procedia PDF Downloads 126
1744 Cutting Tool-Life Test of Ceramic Insert for Engine Sleeve

Authors: Adam Janásek, Marek Pagáč

Abstract:

The article is looking for an experimental determination of tool life tests for ceramic cutting inserts. Mentioned experimental determination should provide an added information about cutting process. The mechanism of tool wear, cutting temperature in machining, quality machined surface and machining process itself is the information, which are important for whole manufacturing process. Mainly, the roughness plays very important role in determining how a real object will interact with its environment. The main aim was to determine the number of machined inserts, tool life and micro-geometry, as well. On the basis of previous tests the tool-wear was measured at constant cutting parameter which is more typical for high volume manufacturing processes.

Keywords: ceramic, insert, machining, surface roughness, tool-life, tool-wear

Procedia PDF Downloads 474
1743 Laser Keratoplasty in Human Eye Considering the Fluid Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this paper, conventional laser Keratoplasty surgeries in the human eye are studied. For this purpose, a validated 3D finite volume model of the human eye is introduced. In this model the fluid flow has also been considered. The discretized domain of the human eye incorporates a bio-heat transfer equation coupled with a Boussinesq equation. Both continuous and pulsed lasers have been modeled and the results are compared. Moreover, two different conventional surgical positions that are upright and recumbent are compared for these laser therapies. The simulation results show that in these conventional surgeries, the temperature rises above the critical values at the laser insertion areas. However, due to the short duration and the localized nature, the potential damages are restricted to very small regions and can be ignored. The conclusion is that the present day lasers are acceptably safe to the human eye.

Keywords: eye, heat-transfer, keratoplasty laser, surgery

Procedia PDF Downloads 257
1742 Tuning Cubic Equations of State for Supercritical Water Applications

Authors: Shyh Ming Chern

Abstract:

Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and, reasonable accuracy are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, They often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.

Keywords: equation of state, EoS, supercritical water, SCW

Procedia PDF Downloads 514
1741 Numerical Investigation of Slot Die Coating Based on VOF Method

Authors: Zhidi Lei, Xixi Cai, Jue Ding, Peifen Weng, Xiaowei Li

Abstract:

In the process of preparing thin films by chemical solution method, the uniformity of gel coating has a great influence on the subsequent film thickness. Based on a coating device, the research tracks the interface development of gas-liquid flow by volume of fluid method (VOF). The effects of fluid viscosity and wall wetting property for the shape and position of the coating window are discussed in the process of slot die coating. The result shows that downstream contact lines gets closer to the corner with the increase of fluid viscosity. When the viscosity increases from 0.2Pa∙s to 0.3Pa∙s, 18.2% of the vortex region area will be reduced. With the static contact angle of upper die head surface (θ_sd) increasing, X_u decreased gradually which cause the instability changes of upstream surface. Also, θ_sd increasing brings the reduction of vortex region.

Keywords: film growth, vortex, VOF, slot die coating

Procedia PDF Downloads 361
1740 Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd

Authors: Ji Sun Kim, Jae Ho Baek, Kyeong Ho Kim, Ji Hae Ha, Seong Soo Hong, Jung-Wook Park, Man Sig Lee

Abstract:

Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/.

Keywords: carbon, dispersion, Pd/C, specific are, support

Procedia PDF Downloads 342
1739 Stability in Slopes Related to Expansive Soils

Authors: Ivelise M. Strozberg, Lucas O. Vale, Maria V. V. Morais

Abstract:

Expansive soils are characterized by their significant volumetric variations, tending to suffer an increase of this volume when added water in their voids and a decrease of volume when this water is removed. The parameters of resistance (especially the angle of friction, cohesion and specific weight) of expansive or non-expansive soils of the same field present differences, as found in laboratory tests. What is expected is that, through this research, demonstrate that this variation directly affects the results of the calculation of factors of safety for slope stability. The expansibility due to specific clay minerals such as montmorillonites and vermiculites is the most common form of expansion of soils or rocks, causing expansion pressures. These pressures can become an aggravating problem in regions across the globe that, when not previously studied, may present high risks to the enterprise, such as cracks, fissures, movements in structures, breaking of retaining walls, drilling of wells, among others. The study provides results based on analyzes carried out in the Slide 2018 software belonging to the Rocsience group, where the software is a two-dimensional equilibrium slope stability program that calculates the factor of safety or probability of failure of certain surfaces composed of soils or rocks (or both, depending on the situation), - through the methods of: Bishop simplified, Fellenius and Janbu corrected. This research compares the factors of safety of a homogeneous earthfill dam geometry, analysed for operation and end-of-construction situations, having a height of approximately 35 meters, with a slope of 1.5: 1 in the slope downstream and 2: 1 on the upstream slope. As the water level is 32.73m high and the water table is drawn automatically by the Slide program using the finite element method for the operating situation, considering two hypotheses for the use of materials - the first with soils with characteristics of expansion and the second with soils without expansibility. For this purpose, soil samples were collected from the region of São Bento do Una - Pernambuco, Brazil and taken to the soil mechanics laboratory to characterize and determine the percentage of expansibility. There were found 2 types of soils in that area: 1 site of expansive soils (8%) and another with non- expansive ones. Based on the results found, the analysis of the values of factors of safety indicated, both upstream and downstream slopes, the highest values were obtained in the case where there is no presence of materials with expansibility resulting, for one of the situations, values of 1.353 (Fellenius), 1,295 (Janbu corrected) and 1,409 (Bishop simplified). There is a considerable drop in safety factors in cases where soils are potentially expansive, resulting in values for the same situation of 0.859 (Fellenius), 0.809 (Janbu corrected) and 0.842 (Bishop simplified), in the case of higher expansibility (8 %). This shows that the expansibility is a determinant factor in the fall of resistance of soil, determined by the factors of cohesion and angle of friction.

Keywords: dam. slope. software. swelling soil

Procedia PDF Downloads 102
1738 Performance of an Anaerobic Baffled Reactor (ABR) during Start-Up Period

Authors: D. M. Bassuney, W. A. Ibrahim, Medhat A. E. Moustafa

Abstract:

Appropriate start-up of an anaerobic baffled reactor (ABR) is considered to be the most delicate and important issue in the anaerobic process, and depends on several factors such as wastewater composition, reactor configuration, inoculum and operating conditions. In this work, the start-up performance of an ABR with working volume of 30 liters, fed continuously with synthetic food industrial wastewater along with semi-batch study to measure the methangenic activity by specific methanogenic activity (SMA) test were carried out at various organic loading rates (OLRs) to determine the best OLR used to start up the reactor. The comparison was based on COD removal efficiencies, start-up time, pH stability and methane production. An OLR of 1.8 Kg COD/m3d (5400 gCOD/m3 and 3 days HRT) showed best overall performance with COD removal efficiency of 94.44% after four days from the feeding and methane production of 3802 ml/L with an overall SMA of 0.36 gCH4-COD/gVS.d

Keywords: anaerobic baffled reactor, anaerobic reactor start-up, food industrial wastewater, specific methanogenic activity

Procedia PDF Downloads 375
1737 Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles

Authors: Dhuha Albusalih, David Weston, Simon Gill

Abstract:

Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate.

Keywords: nanocomposites, pulse reverse plating, tribological performance of cobalt nanocomposites

Procedia PDF Downloads 290
1736 Heat and Radiation Influence on Granite-Galena Concrete for Nuclear Shielding Applications

Authors: Mohamed A. Safan, Walid Khalil, Amro Fathalla

Abstract:

Advances in concrete technology and implementation of new materials made it possible to produce special types of concrete for different structural applications. In this research, granite and galena were incorporated in different concrete mixes to obtain high performance concrete for shielding against gamma radiations in nuclear facilities. Chemically prepared industrial galena was used to replace different volume fractions of the fine aggregate. The test specimens were exposed to different conditions of heating cycles and irradiation. The exposed specimens and counterpart unexposed specimens were tested to evaluate the density, the compressive strength and the attenuation coefficient. The proposed mixes incorporating galena showed better performance in terms of compressive strength and gamma attenuation capacity, especially after the exposure to different heating cycles.

Keywords: concrete, galena, shielding, attenuation, radiation

Procedia PDF Downloads 443
1735 Multivariate Simulations of the Process of Forming the Automotive Connector Forging from ZK60 Alloy

Authors: Anna Dziubinska

Abstract:

The article presents the results of numerical simulations of the new forging process of the automotive connector forging from cast preform. The high-strength ZK60 alloy (belonging to the Mg-Zn-Zr group of Mg alloys) was selected for numerical tests. Currently, this part of the industry is produced by multi-stage forging consisting of operations: bending, preforming, and finishing. The use of the cast preform would enable forging this component in one operation. However, obtaining specific mechanical properties requires inducing a certain level of strain within the forged part. Therefore, the design of the preform, its shape, and volume are of paramount importance. In work presented in this article, preforms of different shapes were designed and assessed using Finite Element (FE) analysis. The research was funded by the Polish National Agency for Academic Exchange within the framework of the Bekker programme.

Keywords: automotive connector, forging, magnesium alloy, numerical simulation, preform, ZK60

Procedia PDF Downloads 121
1734 Scaling-Down an Agricultural Waste Biogas Plant Fermenter

Authors: Matheus Pessoa, Matthias Kraume

Abstract:

Scale-Down rules in process engineering help us to improve and develop Industrial scale parameters into lab scale. Several scale-down rules available in the literature like Impeller Power Number, Agitation device Power Input, Substrate Tip Speed, Reynolds Number and Cavern Development were investigated in order to stipulate the rotational speed to operate an 11 L working volume lab-scale bioreactor within industrial process parameters. Herein, xanthan gum was used as a fluid with a representative viscosity of a hypothetical biogas plant, with H/D = 1 and central agitation, fermentation broth using sewage sludge and sugar beet pulp as substrate. The results showed that the cavern development strategy was the best method for establishing a rotational speed for the bioreactor operation, while the other rules presented values out of reality for this article proposes.

Keywords: anaerobic digestion, cavern development, scale down rules, xanthan gum

Procedia PDF Downloads 470
1733 Sloshing-Induced Overflow Assessment of the Seismically-Isolated Nuclear Tanks

Authors: Kihyon Kwon, Hyun T. Park, Gil Y. Chung, Sang-Hoon Lee

Abstract:

This paper focuses on assessing sloshing-induced overflow of the seismically-isolated nuclear tanks based on Fluid-Structure Interaction (FSI) analysis. Typically, fluid motion in the seismically-isolated nuclear tank systems may be rather amplified and even overflowed under earthquake. Sloshing-induced overflow in those structures has to be reliably assessed and predicted since it can often cause critical damages to humans and environments. FSI analysis is herein performed to compute the total cumulative overflowed water volume more accurately, by coupling ANSYS with CFX for structural and fluid analyses, respectively. The approach is illustrated on a nuclear liquid storage tank, Spent Fuel Pool (SFP), forgiven conditions under consideration: different liquid levels, Peak Ground Accelerations (PGAs), and post earthquakes.

Keywords: FSI analysis, seismically-isolated nuclear tank system, sloshing-induced overflow

Procedia PDF Downloads 458
1732 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: absorber plates, dual-phase-lag, non-Fourier, solar collector

Procedia PDF Downloads 373
1731 Bioactive Substances-Loaded Water-in-Oil/Oil-in-Water Emulsions for Dietary Supplementation in the Elderly

Authors: Agnieszka Markowska-Radomska, Ewa Dluska

Abstract:

Maintaining a bioactive substances dense diet is important for the elderly, especially to prevent diseases and to support healthy ageing. Adequate bioactive substances intake can reduce the risk of developing chronic diseases (e.g. cardiovascular, osteoporosis, neurodegenerative syndromes, diseases of the oral cavity, gastrointestinal (GI) disorders, diabetes, and cancer). This can be achieved by introducing a comprehensive supplementation of components necessary for the proper functioning of the ageing body. The paper proposes the multiple emulsions of the W1/O/W2 (water-in-oil-in-water) type as carriers for effective co-encapsulation and co-delivery of bioactive substances in supplementation of the elderly. Multiple emulsions are complex structured systems ("drops in drops"). The functional structure of the W1/O/W2 emulsion enables (i) incorporation of one or more bioactive components (lipophilic and hydrophilic); (ii) enhancement of stability and bioavailability of encapsulated substances; (iii) prevention of interactions between substances, as well as with the external environment, delivery to a specific location; and (iv) release in a controlled manner. The multiple emulsions were prepared by a one-step method in the Couette-Taylor flow (CTF) contactor in a continuous manner. In general, a two-step emulsification process is used to obtain multiple emulsions. The paper contains a proposal of emulsion functionalization by introducing pH-responsive biopolymer—carboxymethylcellulose sodium salt (CMC-Na) to the external phase, which made it possible to achieve a release of components controlled by the pH of the gastrointestinal environment. The membrane phase of emulsions was soybean oil. The W1/O/W2 emulsions were evaluated for their characteristics (drops size/drop size distribution, volume packing fraction), encapsulation efficiency and stability during storage (to 30 days) at 4ºC and 25ºC. Also, the in vitro multi-substance co-release process were investigated in a simulated gastrointestinal environment (different pH and composition of release medium). Three groups of stable multiple emulsions were obtained: emulsions I with co-encapsulated vitamins B12, B6 and resveratrol; emulsions II with vitamin A and β-carotene; and emulsions III with vitamins C, E and D3. The substances were encapsulated in the appropriate emulsion phases depending on the solubility. For all emulsions, high encapsulation efficience (over 95%) and high volume packing fraction of internal droplets (0.54-0.76) were reached. In addition, due to the presence of a polymer (CMC-Na) with adhesive properties, high encapsulation stability during emulsions storage were achieved. The co-release study of encapsulated bioactive substances confirmed the possibility to modify the release profiles. It was found that the releasing process can be controlled through the composition, structure, physicochemical parameters of emulsions and pH of the release medium. The results showed that the obtained multiple emulsions might be used as potential liquid complex carriers for controlled/modified/site-specific co-delivery of bioactive substances in dietary supplementation in the elderly.

Keywords: bioactive substance co-release, co-encapsulation, elderly supplementation, multiple emulsion

Procedia PDF Downloads 182