Search results for: scan chain
1302 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 2311301 A Spatial Approach to Model Mortality Rates
Authors: Yin-Yee Leong, Jack C. Yue, Hsin-Chung Wang
Abstract:
Human longevity has been experiencing its largest increase since the end of World War II, and modeling the mortality rates is therefore often the focus of many studies. Among all mortality models, the Lee–Carter model is the most popular approach since it is fairly easy to use and has good accuracy in predicting mortality rates (e.g., for Japan and the USA). However, empirical studies from several countries have shown that the age parameters of the Lee–Carter model are not constant in time. Many modifications of the Lee–Carter model have been proposed to deal with this problem, including adding an extra cohort effect and adding another period effect. In this study, we propose a spatial modification and use clusters to explain why the age parameters of the Lee–Carter model are not constant. In spatial analysis, clusters are areas with unusually high or low mortality rates than their neighbors, where the “location” of mortality rates is measured by age and time, that is, a 2-dimensional coordinate. We use a popular cluster detection method—Spatial scan statistics, a local statistical test based on the likelihood ratio test to evaluate where there are locations with mortality rates that cannot be described well by the Lee–Carter model. We first use computer simulation to demonstrate that the cluster effect is a possible source causing the problem of the age parameters not being constant. Next, we show that adding the cluster effect can solve the non-constant problem. We also apply the proposed approach to mortality data from Japan, France, the USA, and Taiwan. The empirical results show that our approach has better-fitting results and smaller mean absolute percentage errors than the Lee–Carter model.Keywords: mortality improvement, Lee–Carter model, spatial statistics, cluster detection
Procedia PDF Downloads 1721300 A Two Phase VNS Algorithm for the Combined Production Routing Problem
Authors: Nejah Ben Mabrouk, Bassem Jarboui, Habib Chabchoub
Abstract:
Production and distribution planning is the most important part in supply chain management. In this paper, a NP-hard production-distribution problem for one product over a multi-period horizon is investigated. The aim is to minimize the sum of costs of three items: production setups, inventories and distribution, while determining, for each period, the amount produced, the inventory levels and the delivery trips. To solve this difficult problem, we propose a bi-phase approach based on a Variable Neighbourhood Search (VNS). This heuristic is tested on 90 randomly generated instances from the literature, with 20 periods and 50, 100, 200 customers. Computational results show that our approach outperforms existing solution procedures available in the literatureKeywords: logistic, production, distribution, variable neighbourhood search
Procedia PDF Downloads 3381299 Neural Changes Associated with Successful Antidepressant Treatment in Adolescents with Major Depressive Disorder
Authors: Dung V. H. Pham, Kathryn Cullen
Abstract:
Introduction: 40% of adolescents with major depression (MDD) are unresponsive to 1st line antidepressant treatment. The neural mechanism underlying treatment-responsive and treatment-resistant depression in adolescent are unclear. Amygdala is important for emotion processing and has been implicated in mood disorders. Past research has shown abnormal amygdala connectivity in adolescents with MDD. This research study changes in amygdala resting-state functional connectivity to find neural correlates of successful antidepressant treatment. Methods: Thirteen adolescents aged 12-19 underwent rfMRI before and after 8-week antidepressant treatment and completed BDI-II at each scan. A whole-brain approach, using anatomically defined amygdala ROIs (1) identified brain regions that are highly synchronous with the amygdala, (2) correlated neural changes with changes in overall depression and specific symptom clusters within depression. Results: Some neural correlates were common across domains: (1) decreased amygdala RSFC with the default mode network (posterior cingulate, precuneus) is associated with improvement in overall depression and many symptom clusters, (2) increased amygdala RSFC with fusiform gyrus is associated with symptom improvement across many symptom clusters. We also found unique neural changes associated with symptom improvement in each symptom cluster. Conclusion: This is the first preliminary study that looks at neural correlates of antidepressant treatment response to overall depression as well as different clusters of symptoms of depression. The finding suggests both overlapping and distinct neural mechanisms underlying improvement in each symptom clusters within depression. Some brain regions found are also implicated in MDD among adults in previous literature.Keywords: depression, adolescents, fMRI, antidepressants
Procedia PDF Downloads 2531298 Exact and Approximate Controllability of Nuclear Dynamics Using Bilinear Controls
Authors: Ramdas Sonawane, Mahaveer Gadiya
Abstract:
The control problem associated with nuclear dynamics is represented by nonlinear integro-differential equation with additive controls. To control chain reaction, certain amount of neutrons is added into (or withdrawn out of) chamber as and when required. It is not realistic. So, we can think of controlling the reactor dynamics by bilinear control, which enters the system as coefficient of state. In this paper, we study the approximate and exact controllability of parabolic integro-differential equation controlled by bilinear control with non-homogeneous boundary conditions in bounded domain. We prove the existence of control and propose an explicit control strategy.Keywords: approximate control, exact control, bilinear control, nuclear dynamics, integro-differential equations
Procedia PDF Downloads 4441297 Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers
Authors: Natarajan Ramasamy, Gurulingamurthy Haralur, Ramesh Nivarthu, Nikhil Kumar Singha
Abstract:
Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied.Keywords: dynamic mechanical analysis, glass transition temperature, parts per hundred grams of rubber, crosslink density, number of networks per unit volume of elastomer
Procedia PDF Downloads 1661296 Port Governance in Santos, Brazil: A Qualitative Approach
Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto
Abstract:
Given the importance of ports as links in the global supply chains and because they are key elements to induce competitiveness in their hinterlands, the number of studies devoted to port governance, management and operations has increased in the last decades. Some of these studies address the port governance model as an element to improve coordination among the actors of the port logistics chain and to generate a better port performance. In this context, the present study analyzes the governance of Port of Santos through individual interviews with port managers, based on a conceptual model that considers the key dimensions associated with port governance. The results reinforce the usefulness of the applied model and highlight some existing improvement opportunities in the port studied.Keywords: port governance, model, Port of Santos, managers’ perception
Procedia PDF Downloads 5381295 Estimating Understory Species Diversity of West Timor Tropical Savanna, Indonesia: The Basis for Planning an Integrated Management of Agricultural and Environmental Weeds and Invasive Species
Authors: M. L. Gaol, I. W. Mudita
Abstract:
Indonesia is well known as a country covered by lush tropical rain forests, but in fact, the northeastern part of the country, within the areas geologically known as Lesser Sunda, the dominant vegetation is tropical savanna. Lesser Sunda is a chain of islands located closer to Australia than to islands in the other parts of the country. Among those of islands in the chain which is closes to Australia, and thereby most strongly affected by the hot and dry Australian climate, is the island of Timor, the western part of which belongs to Indonesia and the eastern part is a sovereign state East Timor. Regardless of being the most dominant vegetation cover, tropical savanna in West Timor, especially its understory, is rarely investigated. This research was therefore carried out to investigate the structure, composition and diversity of the understory of this tropical savanna as the basis for looking at the possibility of introducing other spesieis for various purposes. For this research, 14 terrestrial communities representing major types of the existing savannas in West Timor was selected with aid of the most recently available satellite imagery. At each community, one stand of the size of 50 m x 50 m most likely representing the community was as the site of observation for the type of savanna under investigation. At each of the 14 communities, 20 plots of 1 m x 1 m in size was placed at random to identify understory species and to count the total number of individuals and to estimate the cover of each species. Based on such counts and estimation, the important value of each species was later calculated. The results of this research indicated that the understory of savanna in West Timor consisted of 73 understory species. Of this number of species, 18 species are grasses and 55 are non-grasses. Although lower than non-grass species, grass species indeed dominated the savanna as indicated by their number of individuals (65.33 vs 34.67%), species cover (57.80 vs 42.20%), and important value (123.15 vs 76.85). Of the 14 communities, the lowest density of grass was 13.50/m2 and the highest was 417.50/m2. Of 18 grass species found, all were commonly found as agricultural weeds, whereas of 55 non-grass, 10 species were commonly found as agricultural weeds, environmental weeds, or invasive species. In terms of better managing the savanna in the region, these findings provided the basis for planning a more integrated approach in managing such agricultural and environmental weeds as well as invasive species by considering the structure, composition, and species diversity of the understory species existing in each site. These findings also provided the basis for better understanding the flora of the region as a whole and for developing a flora database of West Timor in future.Keywords: tropical savanna, understory species, integrated management, weedy and invasive species
Procedia PDF Downloads 1361294 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)
Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier
Abstract:
The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance
Procedia PDF Downloads 1581293 Lessons Learned from Push-Plus Implementation in Northern Nigeria
Authors: Aisha Giwa, Mohammed-Faosy Adeniran, Olufunke Femi-Ojo
Abstract:
Four decades ago, the World Health Organization (WHO) launched the Expanded Programme on Immunization (EPI). The EPI blueprint laid out the technical and managerial functions necessary to routinely vaccinate children with a limited number of vaccines, providing protection against diphtheria, tetanus, whooping cough, measles, polio, and tuberculosis, and to prevent maternal and neonatal tetanus by vaccinating women of childbearing age with tetanus toxoid. Despite global efforts, the Routine Immunization (RI) coverage in two of the World Health Organization (WHO) regions; the African Region and the South-East Asia Region, still remains short of its targets. As a result, the WHO Regional Director for Africa declared 2012 as the year for intensifying RI in these regions and this also coincided with the declaration of polio as a programmatic emergency by the WHO Executive Board. In order to intensify routine immunization, the National Routine Immunization Strategic Plan (2013-2015) stated that its core priority is to ensure 100% adequacy and availability of vaccines for safe immunization. To achieve 100% availability, the “PUSH System” and then “Push-Plus” were adopted for vaccine distribution, which replaced the inefficient “PULL” method. The NPHCDA plays the key role in coordinating activities in area advocacy, capacity building, engagement of 3PL for the state as well as monitoring and evaluation of the vaccine delivery process. eHealth Africa (eHA) is a player as a 3PL service provider engaged by State Primary Health Care Boards (SPHCDB) to ensure vaccine availability through Vaccine Direct Delivery (VDD) project which is essential to successful routine immunization services. The VDD project ensures the availability and adequate supply of high-quality vaccines and immunization-related materials to last-mile facilities. eHA’s commitment to the VDD project saw the need for an assessment of the project vis-a-vis the overall project performance, evaluation of a process for necessary improvement suggestions as well as general impact across Kano State (Where eHA had transitioned to the state), Bauchi State (currently manage delivery to all LGAs except 3 LGAs currently being managed by the state), Sokoto State (eHA currently covers all LGAs) and Zamfara State (Currently, in-sourced and managed solely by the state).Keywords: cold chain logistics, health supply chain system strengthening, logistics management information system, vaccine delivery traceability and accountability
Procedia PDF Downloads 3171292 A Questionnaire Survey Reviewing Radiographers' Knowledge of Computed Tomography Exposure Parameters
Authors: Mohammad Rawashdeh, Mark McEntee, Maha Zaitoun, Mostafa Abdelrahman, Patrick Brennan, Haytham Alewaidat, Sarah Lewis, Charbel Saade
Abstract:
Despite the tremendous advancements that have been generated by Computed Tomography (CT) in the field of diagnosis, concerns have been raised about the potential cancer induction risk from CT because of the exponentially increased use of it in medicine. This study aims at investigating the application and knowledge of practicing radiographers in Jordan about CT radiation. In order to collect the primary data of this study, a questionnaire was designed and distributed by social media using a snow-balling sampling method. The respondents (n=54) have answered 36 questions including the questions about their demographic information, knowledge about Diagnostic Reference Levels (DRLs), CT exposure and adaptation of pediatric patients exposure. The educational level of the respondents was either at a diploma degree (35.2%) or bachelor (64.8%). The results of this study have indicated a good level of general knowledge between radiographers about the relationship between image quality, exposure parameters, and patient dose. The level of knowledge related to DRL was poor where less than 7.4 percent of the sample members were able to give specific values for a number of common anatomical fields, including abdomen, brain, and chest. Overall, Jordanian radiographers need to gain more knowledge about the expected levels of the dose when applying good practice. Additional education on DRL or DRL inclusion in educational programs is highlighted.Keywords: computed tomography, CT scan, DRLs, exposure parameters, image quality, radiation dose
Procedia PDF Downloads 1451291 Security in Resource Constraints: Network Energy Efficient Encryption
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless nodes in a sensor network gather and process critical information designed to process and communicate, information flooding through such network is critical for decision making and data processing, the integrity of such data is one of the most critical factors in wireless security without compromising the processing and transmission capability of the network. This paper presents mechanism to securely transmit data over a chain of sensor nodes without compromising the throughput of the network utilizing available battery resources available at the sensor node.Keywords: hybrid protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node data processing, Z-MAC
Procedia PDF Downloads 1451290 Decision Tree Modeling in Emergency Logistics Planning
Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi
Abstract:
Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.Keywords: decision tree modeling, forecasting, humanitarian relief, emergency supply chain
Procedia PDF Downloads 4851289 Competitive Advantages of Efficient Reverse Logistics: A Case Study Integrating Firms and Customers Perspectives
Authors: Adèle Oliva, Samuel Fosso Wamba
Abstract:
This study looks at how firms can create competitive advantages through effective reserve logistics strategies. Upon using data collected from reverse supply chain managers of electronic commerce companies, the study found that improved reverse logistics management can have a positive impact on companies’ business benefits. These include playing a role in the implementation of many factors that highly influence the decision to purchase, customers’ loyalty, as well as increasing companies’ turnover. As a result, through an efficient design and management of their reverse flow, companies can decrease the costs associated to returned products.Keywords: reverse logistics, competitive advantage, case study, business value
Procedia PDF Downloads 4561288 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis
Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix
Abstract:
This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.Keywords: CFRP, composite failure, FEA, non-circular chainring
Procedia PDF Downloads 2961287 Characterization of Dota-Girentuximab Conjugates for Radioimmunotherapy
Authors: Tais Basaco, Stefanie Pektor, Josue A. Moreno, Matthias Miederer, Andreas Türler
Abstract:
Radiopharmaceuticals based in monoclonal anti-body (mAb) via chemical linkers have become a potential tool in nuclear medicine because of their specificity and the large variability and availability of therapeutic radiometals. It is important to identify the conjugation sites and number of attached chelator to mAb to obtain radioimmunoconjugates with required immunoreactivity and radiostability. Girentuximab antibody (G250) is a potential candidate for radioimmunotherapy of clear cell carcinomas (RCCs) because it is reactive with CAIX antigen, a transmembrane glycoprotein overexpressed on the cell surface of most ( > 90%) (RCCs). G250 was conjugated with the bifunctional chelating agent DOTA (1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid) via a benzyl-thiocyano group as a linker (p-SCN-Bn-DOTA). DOTA-G250 conjugates were analyzed by size exclusion chromatography (SE-HPLC) and by electrophoresis (SDS-PAGE). The potential site-specific conjugation was identified by liquid chromatography–mass spectrometry (LC/MS-MS) and the number of linkers per molecule of mAb was calculated using the molecular weight (MW) measured by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The average number obtained in the conjugates in non-reduced conditions was between 8-10 molecules of DOTA per molecule of mAb. The average number obtained in the conjugates in reduced conditions was between 1-2 and 3-4 molecules of DOTA per molecule of mAb in the light chain (LC) and heavy chain (HC) respectively. Potential DOTA modification sites of the chelator were identified in lysine residues. The biological activity of the conjugates was evaluated by flow cytometry (FACS) using CAIX negative (SKRC-18) and CAIX positive (SKRC-52). The DOTA-G250 conjugates were labelled with 177Lu with a radiochemical yield > 95% reaching specific activities of 12 MBq/µg. The stability in vitro of different types of radioconstructs was analyzed in human serum albumin (HSA). The radiostability of 177Lu-DOTA-G250 at high specific activity was increased by addition of sodium ascorbate after the labelling. The immunoreactivity was evaluated in vitro and in vivo. Binding to CAIX positive cells (SK-RC-52) at different specific activities was higher for conjugates with less DOTA content. Protein dose was optimized in mice with subcutaneously growing SK-RC-52 tumors using different amounts of 177Lu- DOTA-G250.Keywords: mass spectrometry, monoclonal antibody, radiopharmaceuticals, radioimmunotheray, renal cancer
Procedia PDF Downloads 3091286 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine
Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi
Abstract:
Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer
Procedia PDF Downloads 4251285 Impact of Solar Radiation Effects on the Physicochemical Properties of Unformulated Polyethylene (PE) Plastic Film
Authors: A. Adelhafidhi, I. M. Babaghayou, S. F. Chabira, M. Sebaa
Abstract:
This study deals with the photodegradation of unformulated polyethylene films for greenhouse covering. The UV range of solar light appears as the most deleterious factor of plastic degradation in outdoor exposure. The reasons of this photosensitivity are structural defects which are light-absorbing. The use of FTIR as an investigation tool has revealed that the material reacts with surrounding oxygen via a photooxidation process. Although the photochemical process is quite complex, it appears through this study than crosslinking and chain scissions are the most important events taking place during aging These two key reactions change irremediably the average molecular weight affecting thus drastically the mechanical properties and reducing, in the same way, the service lifetime of the films.Keywords: polyethylene, films, unformulated, FTIR, ageing
Procedia PDF Downloads 3681284 Augmented Reality for Children Vocabulary Learning: Case Study in a Macau Kindergarten
Authors: R. W. Chan, Kan Kan Chan
Abstract:
Augmented Reality (AR), with the affordance of bridging between real world and virtual world, brings users immersive experience. It has been applied in education gradually and even come into practice in student daily learning. However, a systematic review shows that there are limited researches in the area of vocabulary acquisition in early childhood education. Since kindergarten is a key stage where children acquire language and AR as an emerging and potential technology to support the vocabulary acquisition, this study aims to explore its value in in real classroom with teacher’s view. Participants were a class of 5 to 6 years old kids studying in a Macau school that follows Cambridge curriculum and emphasizes multicultural ethos. There were 11 boys, 13 girls, and in a total of 24 kids. They learnt animal vocabulary using mobile device and AR flashcards, IPad to scan AR flashcards and interact with pop-up virtual objects. In order to estimate the effectiveness of using Augmented Reality, children attended vocabulary pre-posttest. In addition, teacher interview was administrated after this learning activity to seek practitioner’s opinion towards this technology. For data analysis, paired samples t-test was utilized to measure the instructional effect based on the pre-posttest data. Result shows that Augmented Reality could significantly enhance children vocabulary learning with large effect size. Teachers indicated that children enjoyed the AR learning activity but clear instruction is needed. Suggestions for the future implementation of vocabulary acquisition using AR are suggested.Keywords: augmented reality, kindergarten children, vocabulary learning, Macau
Procedia PDF Downloads 1501283 Automatic Classification of Lung Diseases from CT Images
Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari
Abstract:
Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification
Procedia PDF Downloads 1571282 Iterative Method for Lung Tumor Localization in 4D CT
Authors: Sarah K. Hagi, Majdi Alnowaimi
Abstract:
In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.Keywords: automated algorithm , computed tomography, lung tumor, tumor localization
Procedia PDF Downloads 6051281 Ensemble Sampler For Infinite-Dimensional Inverse Problems
Authors: Jeremie Coullon, Robert J. Webber
Abstract:
We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction
Procedia PDF Downloads 1541280 Study of Eatable Aquatic Invertebrates in the River Dhansiri, Dimapur, Nagaland, India
Authors: Dilip Nath
Abstract:
A study has been conducted on the available aquatic invertebrates in the river Dhansiri at Dimapur site. The study confirmed that the river body composed of aquatic macroinvertebrate community under two phyla viz., Arthropods and Molluscs. Total 10 species have been identified from there as the source of alternative protein food for the common people. Not only the protein source, they are also the component of aquatic food chain and indicators of aquatic ecosystem. Proper management and strategies to promote the edible invertebrates can be considered as the alternative protein and alternative income source for the common people for sustainable livelihood improvement.Keywords: Dhansiri, Dimapur, invertebrates, livelihood improvement, protein
Procedia PDF Downloads 1521279 Design of an Acoustic Imaging Sensor Array for Mobile Robots
Authors: Dibyendu Roy, V. Ramu Reddy, Parijat Deshpande, Ranjan Dasgupta
Abstract:
Imaging of underwater objects is primarily conducted by acoustic imagery due to the severe attenuation of electro-magnetic waves in water. Acoustic imagery underwater has varied range of significant applications such as side-scan sonar, mine hunting sonar. It also finds utility in other domains such as imaging of body tissues via ultrasonography and non-destructive testing of objects. In this paper, we explore the feasibility of using active acoustic imagery in air and simulate phased array beamforming techniques available in literature for various array designs to achieve a suitable acoustic sensor array design for a portable mobile robot which can be applied to detect the presence/absence of anomalous objects in a room. The multi-path reflection effects especially in enclosed rooms and environmental noise factors are currently not simulated and will be dealt with during the experimental phase. The related hardware is designed with the same feasibility criterion that the developed system needs to be deployed on a portable mobile robot. There is a trade of between image resolution and range with the array size, number of elements and the imaging frequency and has to be iteratively simulated to achieve the desired acoustic sensor array design. The designed acoustic imaging array system is to be mounted on a portable mobile robot and targeted for use in surveillance missions for intruder alerts and imaging objects during dark and smoky scenarios where conventional optic based systems do not function well.Keywords: acoustic sensor array, acoustic imagery, anomaly detection, phased array beamforming
Procedia PDF Downloads 4091278 Supplier Selection by Considering Cost and Reliability
Authors: K. -H. Yang
Abstract:
Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.Keywords: mixed integer programming, quantitative approach, supplier’s reliability, supplier selection
Procedia PDF Downloads 3841277 Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model
Authors: Boukelkoul Lahcen
Abstract:
The cumulative costs for O&M may represent as much as 65%-90% of the turbine's investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance.Keywords: cost, finite state, Markov model, operation and maintenance
Procedia PDF Downloads 5331276 Artificial Intelligence in Enterprise Information Systems: A Review
Authors: Danah S. Alabdulmohsin
Abstract:
Due to the fast growth of organizational data as well as the emergence of new technologies such as artificial intelligence (AI), organizations tend to utilize these new technologies in their enterprise information systems (EIS) either to overcome the issues they struggle with or to enhance their functions. The aim of this paper is to review the potential role of AI technologies in EIS, namely: enterprise resource planning systems (ERP), customer relation management systems (CRM), supply chain management systems (SCM), knowledge systems (KM), and human resources management systems (HRM). The paper provided the definitions of these systems as well as the definitions of AI technologies that have been used in EIS. In addition, the paper discussed the challenges that organizations might face while integrating AI with their information systems and explained why some organizations fail in achieving successful implementations of the integration.Keywords: artificial intelligence, AI, enterprise information system, EIS, integration
Procedia PDF Downloads 971275 Time to CT in Major Trauma in Coffs Harbour Health Campus - The Australian Rural Centre Experience
Authors: Thampi Rawther, Jack Cecire, Andrew Sutherland
Abstract:
Introduction: CT facilitates the diagnosis of potentially life-threatening injuries and facilitates early management. There is evidence that reduced CT acquisition time reduces mortality and length of hospital stay. Currently, there are variable recommendations for ideal timing. Indeed, the NHS standard contract for a major trauma service and STAG both recommend immediate access to CT within a maximum time of 60min and appropriate reporting within 60min of the scan. At Coffs Harbour Health Campus (CHHC), a CT radiographer is on site between 8am-11pm. Aim: To investigate the average time to CT at CHHC and assess for any significant relationship between time to CT and injury severity score (ISS) or time of triage. Method: All major trauma calls between Jan 2021-Oct 2021 were audited (N=87). Patients were excluded if they went from ED to the theatre. Time to CT is defined as the time between triage to the timestamp on the first CT image. Median and interquartile range was used as a measure of central tendency as the data was not normally distributed, and Chi-square test was used to determine association. Results: The median time to CT is 51.5min (IQR 40-74). We found no relationship between time to CT and ISS (P=0.18) and time of triage to time to CT (P=0.35). We compared this to other centres such as John Hunter Hospital and Gold Coast Hospital. We found that the median CT acquisition times were 76min (IQR 52-115) and 43min, respectively. Conclusion: This shows an avenue for improvement given 35% of CT’s were >30min. Furthermore, being proactive and aware of time to CT as an important factor to trauma management can be another avenue for improvement. Based on this, we will re-audit in 12-24months to assess if any improvement has been made.Keywords: imaging, rural surgery, trauma surgery, improvement
Procedia PDF Downloads 1041274 Block Mining: Block Chain Enabled Process Mining Database
Authors: James Newman
Abstract:
Process mining is an emerging technology that looks to serialize enterprise data in time series data. It has been used by many companies and has been the subject of a variety of research papers. However, the majority of current efforts have looked at how to best create process mining from standard relational databases. This paper is the first pass at outlining a database custom-built for the minimal viable product of process mining. We present Block Miner, a blockchain protocol to store process mining data across a distributed network. We demonstrate the feasibility of storing process mining data on the blockchain. We present a proof of concept and show how the intersection of these two technologies helps to solve a variety of issues, including but not limited to ransomware attacks, tax documentation, and conflict resolution.Keywords: blockchain, process mining, memory optimization, protocol
Procedia PDF Downloads 1041273 Electrochemical Behavior of Cocaine on Carbon Paste Electrode Chemically Modified with Cu(II) Trans 3-MeO Salcn Complex
Authors: Alex Soares Castro, Matheus Manoel Teles de Menezes, Larissa Silva de Azevedo, Ana Carolina Caleffi Patelli, Osmair Vital de Oliveira, Aline Thais Bruni, Marcelo Firmino de Oliveira
Abstract:
Considering the problem of the seizure of illicit drugs, as well as the development of electrochemical sensors using chemically modified electrodes, this work shows the study of the electrochemical activity of cocaine in carbon paste electrode chemically modified with Cu (II) trans 3-MeO salcn complex. In this context, cyclic voltammetry was performed on 0.1 mol.L⁻¹ KCl supporting electrolyte at a scan speed of 100 mV s⁻¹, using an electrochemical cell composed of three electrodes: Ag /AgCl electrode (filled KCl 3 mol.L⁻¹) from Metrohm® (reference electrode); a platinum spiral electrode, as an auxiliary electrode, and a carbon paste electrode chemically modified with Cu (II) trans 3-MeO complex (as working electrode). Two forms of cocaine were analyzed: cocaine hydrochloride (pH 3) and cocaine free base form (pH 8). The PM7 computational method predicted that the hydrochloride form is more stable than the free base form of cocaine, so with cyclic voltammetry, we found electrochemical signal only for cocaine in the form of hydrochloride, with an anodic peak at 1.10 V, with a linearity range between 2 and 20 μmol L⁻¹ had LD and LQ of 2.39 and 7.26x10-5 mol L⁻¹, respectively. The study also proved that cocaine is adsorbed on the surface of the working electrode, where through an irreversible process, where only anode peaks are observed, we have the oxidation of cocaine, which occurs in the hydrophilic region due to the loss of two electrons. The mechanism of this reaction was confirmed by the ab-inito quantum method.Keywords: ab-initio computational method, analytical method, cocaine, Schiff base complex, voltammetry
Procedia PDF Downloads 194