Search results for: efficient score function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11476

Search results for: efficient score function

10486 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 55
10485 Three Phase PWM Inverter for Low Rating Energy Efficient Systems

Authors: Nelson Lujara

Abstract:

The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) array-powered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.

Keywords: energy, inverter, losses, photovoltaic

Procedia PDF Downloads 640
10484 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks

Authors: Sungchul Ha, Hyunwoo Kim

Abstract:

In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.

Keywords: MANETs, IDS, power control, minimum spanning tree

Procedia PDF Downloads 373
10483 Plaque Removal Efficacy of Different Dental Care Products during Fixed Orthodontic Appliance Therapy

Authors: Zeynep Karakoc, Hasan Ilhan Mutaf

Abstract:

Plaque removal efficacy of different dental brushes and mouth wash during fixed orthodontic appliance therapy was evaluated in this single-blind, crossover and prospective study. Thirty orthodontic patients aged 18 and over undergoing fixed appliance therapy at the end of leveling stage were divided into three groups. Subjects brushed their teeth with a toothbrush under standardized conditions for a period of 30 days prior to inter-dental care products. The same procedure was repeated each time with a different, randomly assigned inter-dental care products in a crossover design. (Inter-dental brush, powered inter-dental brush and mouth wash). At start and end of each removal period, plaque indexes of participants were scored. Each brush achieved statistically significant plaque removal; however, there were no statistical differences among groups for all surfaces of teeth when the plaque score was evaluated. The mouth wash group presented significant improvement in reduction of visible plaque on mesial and distal surfaces of posterior teeth. (-60.9 %, P< .001) Plaque removal for right and left side of mouth showed no significant differences within groups, only mouth wash was more efficient in right side than left side. It is concluded that effectiveness of plaque removal may not be related to the kind of inter-dental products directly. However, toothbrush when used with inter-dental care products is significantly better at removing plaque deposits from fixed appliance patients.

Keywords: orthodontics, dental care, brush, plaque

Procedia PDF Downloads 243
10482 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India

Authors: Mahesh Kothari, K. D. Gharde

Abstract:

The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.

Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification

Procedia PDF Downloads 570
10481 Organization Development’s Role in Environmental, Social and Governance (ESG) Sustainability in the Private Organizations

Authors: Karmela Palma Samson

Abstract:

In recent years, there has been a growing interest in the implementation of Environmental, Social, and Governance (ESG) frameworks in private organizations. The COVID-19 pandemic and increasing global environmental concerns have further highlighted the importance of ESG practices in businesses. To be effective, the development and sustainability of ESG implementation require specific organizational functions. One such function is Organization Development (OD). This study aims to identify the roles of OD in the development, monitoring, and evaluation of ESG in private organizations. The role of OD in sustaining ESG implementation in private organizations was analyzed in this study. Qualitative research was conducted, which included interviews with OD practitioners to understand their role and challenges in maintaining ESG programs and initiatives. The study found that OD practitioners have low participation in managing ESG programs, initiatives, and indicators. However, the study also revealed that the OD function is crucial for the development, monitoring, and evaluation of ESG implementation in private organizations. In essence, the study highlights the importance of the OD function in ensuring the success of ESG implementation in private organizations. With their expertise in organizational development, OD practitioners can contribute significantly to the development, implementation, and evaluation of ESG initiatives. Therefore, private organizations should involve their OD departments in ESG implementation to ensure that they are sustainable, effective, and aligned with their organizational goals.

Keywords: ESG, organization development, private sector, sustainability

Procedia PDF Downloads 90
10480 Delayed Contralateral Prophylactic Mastectomy (CPM): Reasons and Rationale for Patients with Unilateral Breast Cancer

Authors: C. Soh, S. Muktar, C. M. Malata, J. R. Benson

Abstract:

Introduction Reasons for requesting CPM include prevention of recurrence, peace of mind and moving on after breast cancer. Some women seek CPM as a delayed procedure but factors influencing this are poorly understood. Methods A retrospective analysis examined patients undergoing CPM as either an immediate or delayed procedure with or without breast reconstruction (BR) between January 2009 and December 2019. A cross-sectional survey based on validated questionnaires (5 point Likert scale) explored patients’ decision-making process in terms of timing of CPM and any BR. Results A total of 123 patients with unilateral breast cancer underwent CPM with 39 (32.5%) delayed procedures with or without BR. The response rate amongst patients receiving questionnaires (n=33) was 22/33 (66%). Within this delayed CPM cohort were three reconstructive scenarios 1) unilateral immediate BR with CPM (n=12); 2) delayed CPM with concomitant bilateral BR (n=22); 3) delayed bilateral BR after delayed CPM (n=3). Two patients had delayed CPM without BR. The most common reason for delayed CPM was to complete all cancer treatments (including radiotherapy) before surgery on the unaffected breast (score 2.91). The second reason was unavailability of genetic test results at the time of therapeutic mastectomy (score 2.64) whilst the third most cited reason was a subsequent change in family cancer history. Conclusion Factors for delayed CPM are patient-driven with few women spontaneously changing their mind having initially decided against immediate CPM for reasons also including surgical duration. CPM should be offered as a potentially delayed option with informed discussion of risks and benefits.

Keywords: Breast Cancer, CPM, Prophylactic, Rationale

Procedia PDF Downloads 113
10479 Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration

Authors: Jitendra Singh, Vivek Kumar

Abstract:

In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.

Keywords: SIS (Susceptible Infective Susceptible) model, migration function, susceptible, stability

Procedia PDF Downloads 264
10478 Effects of Porosity Logs on Pore Connectivity and Volumetric Estimation

Authors: Segun S. Bodunde

Abstract:

In Bona Field, Niger Delta, two reservoirs across three wells were analyzed. The research aimed at determining the statistical dependence of permeability and oil volume in place on porosity logs. Of the three popular porosity logs, two were used; the sonic and density logs. The objectives of the research were to identify the porosity logs that vary more with location and direction, to visualize the depth trend of both logs and to determine the influence of these logs on pore connectivity determination and volumetric analysis. The focus was on density and sonic logs. It was observed that the sonic derived porosities were higher than the density derived porosities (in well two, across the two reservoir sands, sonic porosity averaged 30.8% while density derived porosity averaged 23.65%, and the same trend was observed in other wells.). The sonic logs were further observed to have lower co-efficient of variation when compared to the density logs (in sand A, well 2, sonic derived porosity had a co-efficient of variation of 12.15% compared to 22.52% from the density logs) indicating a lower tendency to vary with location and direction. The bulk density was observed to increase with depth while the transit time reduced with depth. It was also observed that for an 8.87% decrease in porosity, the pore connectivity was observed to decrease by about 38%.

Keywords: pore connectivity, co-efficient of variation, density derived porosity, sonic derived porosity

Procedia PDF Downloads 193
10477 Fecundity and Egg Laying in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Model Development and Field Validation

Authors: Muhammad Noor Ul Ane, Dong-Soon Kim, Myron P. Zalucki

Abstract:

Models can be useful to help understand population dynamics of insects under diverse environmental conditions and in developing strategies to manage pest species better. Adult longevity and fecundity of Helicoverpa armigera (Hübner) were evaluated against a wide range of constant temperatures (15, 20, 25, 30, 35 and 37.5ᵒC). The modified Sharpe and DeMichele model described adult aging rate and was used to estimate adult physiological age. Maximum fecundity of H. armigera was 973 egg/female at 25ᵒC decreasing to 72 eggs/female at 37.5ᵒC. The relationship between adult fecundity and temperature was well described by an extreme value function. Age-specific cumulative oviposition rate and age-specific survival rate were well described by a two-parameter Weibull function and sigmoid function, respectively. An oviposition model was developed using three temperature-dependent components: total fecundity, age-specific oviposition rate, and age-specific survival rate. The oviposition model was validated against independent field data and described the field occurrence pattern of egg population of H. armigera very well. Our model should be a useful component for population modeling of H. armigera and can be independently used for the timing of sprays in management programs of this key pest species.

Keywords: cotton bollworm, life table, temperature-dependent adult development, temperature-dependent fecundity

Procedia PDF Downloads 153
10476 Studying the Effectiveness of Using Narrative Animation on Students’ Understanding of Complex Scientific Concepts

Authors: Atoum Abdullah

Abstract:

The purpose of this research is to determine the extent to which computer animation and narration affect students’ understanding of complex scientific concepts and improve their exam performance, this is compared to traditional lectures that include PowerPoints with texts and static images. A mixed-method design in data collection was used, including quantitative and qualitative data. Quantitative data was collected using a pre and post-test method and a close-ended questionnaire. Qualitative data was collected through an open-ended questionnaire. A pre and posttest strategy was used to measure the level of students’ understanding with and without the use of animation. The test included multiple-choice questions to test factual knowledge, open-ended questions to test conceptual knowledge, and to label the diagram questions to test application knowledge. The results showed that students on average, performed significantly higher on the posttest as compared to the pretest on all areas of acquired knowledge. However, the increase in the posttest score with respect to the acquisition of conceptual and application knowledge was higher compared to the increase in the posttest score with respect to the acquisition of factual knowledge. This result demonstrates that animation is more beneficial when acquiring deeper, conceptual, and cognitive knowledge than when only factual knowledge is acquired.

Keywords: animation, narration, science, teaching

Procedia PDF Downloads 170
10475 Trajectory Design and Power Allocation for Energy -Efficient UAV Communication Based on Deep Reinforcement Learning

Authors: Yuling Cui, Danhao Deng, Chaowei Wang, Weidong Wang

Abstract:

In recent years, unmanned aerial vehicles (UAVs) have been widely used in wireless communication, attracting more and more attention from researchers. UAVs can not only serve as a relay for auxiliary communication but also serve as an aerial base station for ground users (GUs). However, limited energy means that they cannot work all the time and cover a limited range of services. In this paper, we investigate 2D UAV trajectory design and power allocation in order to maximize the UAV's service time and downlink throughput. Based on deep reinforcement learning, we propose a depth deterministic strategy gradient algorithm for trajectory design and power distribution (TDPA-DDPG) to solve the energy-efficient and communication service quality problem. The simulation results show that TDPA-DDPG can extend the service time of UAV as much as possible, improve the communication service quality, and realize the maximization of downlink throughput, which is significantly improved compared with existing methods.

Keywords: UAV trajectory design, power allocation, energy efficient, downlink throughput, deep reinforcement learning, DDPG

Procedia PDF Downloads 151
10474 Perception of Nursing Students’ Engagement With Emergency Remote Learning During COVID 19 Pandemic

Authors: Jansirani Natarajan, Mickael Antoinne Joseph

Abstract:

The COVID-19 pandemic has interrupted face-to-face education and forced universities into an emergency remote teaching curriculum over a short duration. This abrupt transition in the Spring 2020 semester left both faculty and students without proper preparation for continuing higher education in an online environment. Online learning took place in different formats, including fully synchronous, fully asynchronous, and blended in our university through the e-learning platform MOODLE. Studies have shown that students’ engagement, is a critical factor for optimal online teaching. Very few studies have assessed online engagement with ERT during the COVID-19 pandemic. Purpose: Therefore, this study, sought to understand how the sudden transition to emergency remote teaching impacted nursing students’ engagement with online courses in a Middle Eastern public university. Method: A cross-sectional descriptive research design was adopted in this study. Data were collected through a self-reported online survey using Dixon’s online students’ engagement questionnaire from a sample of 177 nursing students after the ERT learning semester. Results The maximum possible engagement score was 95, and the maximum scores in the domains of skills engagement, emotional engagement, participation engagement, and performance engagement were 30, 25, 30, and 10 respectively. Dixson (2010) noted that a mean item score of ≥3.5 (total score of ≥66.5) represents a highly engaged student. The majority of the participants were females (71.8%) and 84.2% were regular BSN students. Most of them (32.2%) were second-year students and 52% had a CGPA between 2 and 3. Most participants (56.5%) had low engagement scores with ERT learning during the COVID lockdown. Among the four engagement domains, 78% had low engagement scores for the participation domain. There was no significant association found between the engagement and the demographic characteristics of the participants. Conclusion The findings supported the importance of engaging students in all four categories skill, emotional, performance, and participation. Based on the results, training sessions were organized for faculty on various strategies for engaging nursing students in all domains by using the facilities available in the MOODLE (online e-learning platform). It added value as a dashboard of information regarding ERT for the administrators and nurse educators to introduce numerous active learning strategies to improve the quality of teaching and learning of nursing students in the University.

Keywords: engagement, perception, emergency remote learning, COVID-19

Procedia PDF Downloads 65
10473 Energy Efficient Clustering with Adaptive Particle Swarm Optimization

Authors: KumarShashvat, ArshpreetKaur, RajeshKumar, Raman Chadha

Abstract:

Wireless sensor networks have principal characteristic of having restricted energy and with limitation that energy of the nodes cannot be replenished. To increase the lifetime in this scenario WSN route for data transmission is opted such that utilization of energy along the selected route is negligible. For this energy efficient network, dandy infrastructure is needed because it impinges the network lifespan. Clustering is a technique in which nodes are grouped into disjoints and non–overlapping sets. In this technique data is collected at the cluster head. In this paper, Adaptive-PSO algorithm is proposed which forms energy aware clusters by minimizing the cost of locating the cluster head. The main concern is of the suitability of the swarms by adjusting the learning parameters of PSO. Particle Swarm Optimization converges quickly at the beginning stage of the search but during the course of time, it becomes stable and may be trapped in local optima. In suggested network model swarms are given the intelligence of the spiders which makes them capable enough to avoid earlier convergence and also help them to escape from the local optima. Comparison analysis with traditional PSO shows that new algorithm considerably enhances the performance where multi-dimensional functions are taken into consideration.

Keywords: Particle Swarm Optimization, adaptive – PSO, comparison between PSO and A-PSO, energy efficient clustering

Procedia PDF Downloads 249
10472 Entrepreneurship Education: A Pre-Requisite for Graduate Entrepreneurship, a Study of Entrepreneurs in Yenagoa City

Authors: Kurotimi M. Fems, Francis D. W. Poazi, Helen Opigo

Abstract:

Entrepreneurship education and graduate entrepreneurship have taken centre stage in many countries as a 21st century strategy for economic growth and development. Entrepreneurship education has been viewed as a pre-requisite tool for a more effective and successful business operation. The purpose of this study is to ascertain if entrepreneurship education is a foundational requirement for graduate entrepreneurial engagement or, if other factors such as personality trait, need for achievement, situational circumstances or experience and competence played a more vital role in stimulating graduate entrepreneurial engagement. The scope of the research study is entrepreneurs within Yenagoa metropolis in Bayelsa state, Nigeria. The sample target is graduates engaged in entrepreneurship activities (graduates who own and run businesses). Stratified sampling technique was used and 101 responses were gotten from a total of 300 questionnaires issued. Bar chart, tables, and percentages were used to analyze the data collected. Findings: The findings revealed that personality traits, situational circumstance, need for achievement and experience/competence were the foundational factors stimulating graduate entrepreneurs to engage in entrepreneurial pursuits. Of all, personality trait showed the highest score with 73 (73%) out of 101 entrepreneurs agreeing. Experience/Competence and situational circumstances followed behind with 66 (65%) and 63 (62.4%) respectively. Entrepreneurship education revealed the least score with 33 (32.3%) out of 101 participating entrepreneurs. All hope, however, is not lost, as this shows that something can be done to increase the impact of entrepreneurship education on graduate entrepreneurship.

Keywords: creative destruction, entrepreneurs, entrepreneurship education, graduate entrepreneurship, pre-requisite

Procedia PDF Downloads 374
10471 Solving 94-Bit ECDLP with 70 Computers in Parallel

Authors: Shunsuke Miyoshi, Yasuyuki Nogami, Takuya Kusaka, Nariyoshi Yamai

Abstract:

Elliptic curve discrete logarithm problem (ECDLP) is one of problems on which the security of pairing-based cryptography is based. This paper considers Pollard's rho method to evaluate the security of ECDLP on Barreto-Naehrig (BN) curve that is an efficient pairing-friendly curve. Some techniques are proposed to make the rho method efficient. Especially, the group structure on BN curve, distinguished point method, and Montgomery trick are well-known techniques. This paper applies these techniques and shows its optimization. According to the experimental results for which a large-scale parallel system with MySQL is applied, 94-bit ECDLP was solved about 28 hours by parallelizing 71 computers.

Keywords: Pollard's rho method, BN curve, Montgomery multiplication

Procedia PDF Downloads 272
10470 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 12
10469 Dynamic Gabor Filter Facial Features-Based Recognition of Emotion in Video Sequences

Authors: T. Hari Prasath, P. Ithaya Rani

Abstract:

In the world of visual technology, recognizing emotions from the face images is a challenging task. Several related methods have not utilized the dynamic facial features effectively for high performance. This paper proposes a method for emotions recognition using dynamic facial features with high performance. Initially, local features are captured by Gabor filter with different scale and orientations in each frame for finding the position and scale of face part from different backgrounds. The Gabor features are sent to the ensemble classifier for detecting Gabor facial features. The region of dynamic features is captured from the Gabor facial features in the consecutive frames which represent the dynamic variations of facial appearances. In each region of dynamic features is normalized using Z-score normalization method which is further encoded into binary pattern features with the help of threshold values. The binary features are passed to Multi-class AdaBoost classifier algorithm with the well-trained database contain happiness, sadness, surprise, fear, anger, disgust, and neutral expressions to classify the discriminative dynamic features for emotions recognition. The developed method is deployed on the Ryerson Multimedia Research Lab and Cohn-Kanade databases and they show significant performance improvement owing to their dynamic features when compared with the existing methods.

Keywords: detecting face, Gabor filter, multi-class AdaBoost classifier, Z-score normalization

Procedia PDF Downloads 280
10468 Eco-Benign and Highly Efficient Procedures for the Synthesis of Amides Catalyzed by Heteropolyanion-Based Ionic Liquids under Solvent-Free Conditions

Authors: Zhikai Chena, Renzhong Fu, Wen Chaib, Rongxin Yuanb

Abstract:

Two eco-benign and highly efficient routes for the synthesis of amides have been developed by treating amines with corresponding carboxylic acids or carboxamides in the presence of heteropolyanion-based ionic liquids (HPAILs) as catalysts. These practical reactions can tolerate a wide range of substrates. Thus, various amides were obtained in good to excellent yields under solvent-free conditions at heating. Moreover, recycling studies revealed that HPAILs are easily reusable for this two procedures. These methods provide green and much improved protocols over the existing methods.

Keywords: synthesis, amide, ıonic liquid, catalyst

Procedia PDF Downloads 259
10467 From Convexity in Graphs to Polynomial Rings

Authors: Ladznar S. Laja, Rosalio G. Artes, Jr.

Abstract:

This paper introduced a graph polynomial relating convexity concepts. A graph polynomial is a polynomial representing a graph given some parameters. On the other hand, a subgraph H of a graph G is said to be convex in G if for every pair of vertices in H, every shortest path with these end-vertices lies entirely in H. We define the convex subgraph polynomial of a graph G to be the generating function of the sequence of the numbers of convex subgraphs of G of cardinalities ranging from zero to the order of G. This graph polynomial is monic since G itself is convex. The convex index which counts the number of convex subgraphs of G of all orders is just the evaluation of this polynomial at 1. Relationships relating algebraic properties of convex subgraphs polynomial with graph theoretic concepts are established.

Keywords: convex subgraph, convex index, generating function, polynomial ring

Procedia PDF Downloads 217
10466 Aquatic Therapy Improving Balance Function of Individuals with Stroke: A Systematic Review with Meta-Analysis

Authors: Wei-Po Wu, Wen-Yu Liu, Wei−Ting Lin, Hen-Yu Lien

Abstract:

Introduction: Improving balance function for individuals after stroke is a crucial target in physiotherapy. Aquatic therapy which challenges individual’s postural control in an unstable fluid environment may be beneficial in enhancing balance functions. The purposes of the systematic review with meta-analyses were to validate the effects of aquatic therapy in improving balance functions for individuals with strokes in contrast to conventional physiotherapy. Method: Available studies were explored from three electronic databases: PubMed, Scopus, and Web of Science. During literature search, the published date of studies was not limited. The study design of the included studies should be randomized controlled trials (RCTs) and the studies should contain at least one outcome measurement of balance function. The PEDro scale was adopted to assess the quality of included studies, while the 'Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence' was used to evaluate the level of evidence. After the data extraction, studies with same outcome measures were pooled together for meta-analysis. Result: Ten studies with 282 participants were included in analyses. The research qualities of the studies were ranged from fair to good (4 to 8 points). Levels of evidence of the included studies were graded as level 2 and 3. Finally, scores of Berg Balance Scale (BBS), Eye closed force plate center of pressure velocity (anterior-posterior, medial-lateral axis) and Timed up and Go test were pooled and analyzed separately. The pooled results shown improvement in balance function (BBS mean difference (MD): 1.39 points; 95% confidence interval (CI): 0.05-2.29; p=0.002) (Eye closed force plate center of pressure velocity (anterior-posterior axis) MD: 1.39 mm/s; 95% confidence interval (CI): 0.93-1.86; p<0.001) (Eye closed force plate center of pressure velocity (medial-lateral) MD: 1.48 mm/s; 95% confidence interval (CI): 0.15-2.82; p=0.03) and mobility (MD: 0.9 seconds; 95% CI: 0.07-1.73; p=0.03) of stroke individuals after aquatic therapy compared to conventional therapy. Although there were significant differences between two treatment groups, the differences in improvement were relatively small. Conclusion: The aquatic therapy improved general balance function and mobility in the individuals with stroke better than conventional physiotherapy.

Keywords: aquatic therapy, balance function, meta-analysis, stroke, systematic review

Procedia PDF Downloads 202
10465 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 161
10464 On the Cluster of the Families of Hybrid Polynomial Kernels in Kernel Density Estimation

Authors: Benson Ade Eniola Afere

Abstract:

Over the years, kernel density estimation has been extensively studied within the context of nonparametric density estimation. The fundamental components of kernel density estimation are the kernel function and the bandwidth. While the mathematical exploration of the kernel component has been relatively limited, its selection and development remain crucial. The Mean Integrated Squared Error (MISE), serving as a measure of discrepancy, provides a robust framework for assessing the effectiveness of any kernel function. A kernel function with a lower MISE is generally considered to perform better than one with a higher MISE. Hence, the primary aim of this article is to create kernels that exhibit significantly reduced MISE when compared to existing classical kernels. Consequently, this article introduces a cluster of hybrid polynomial kernel families. The construction of these proposed kernel functions is carried out heuristically by combining two kernels from the classical polynomial kernel family using probability axioms. We delve into the analysis of error propagation within these kernels. To assess their performance, simulation experiments, and real-life datasets are employed. The obtained results demonstrate that the proposed hybrid kernels surpass their classical kernel counterparts in terms of performance.

Keywords: classical polynomial kernels, cluster of families, global error, hybrid Kernels, Kernel density estimation, Monte Carlo simulation

Procedia PDF Downloads 95
10463 Numerical Applications of Tikhonov Regularization for the Fourier Multiplier Operators

Authors: Fethi Soltani, Adel Almarashi, Idir Mechai

Abstract:

Tikhonov regularization and reproducing kernels are the most popular approaches to solve ill-posed problems in computational mathematics and applications. And the Fourier multiplier operators are an essential tool to extend some known linear transforms in Euclidean Fourier analysis, as: Weierstrass transform, Poisson integral, Hilbert transform, Riesz transforms, Bochner-Riesz mean operators, partial Fourier integral, Riesz potential, Bessel potential, etc. Using the theory of reproducing kernels, we construct a simple and efficient representations for some class of Fourier multiplier operators Tm on the Paley-Wiener space Hh. In addition, we give an error estimate formula for the approximation and obtain some convergence results as the parameters and the independent variables approaches zero. Furthermore, using numerical quadrature integration rules to compute single and multiple integrals, we give numerical examples and we write explicitly the extremal function and the corresponding Fourier multiplier operators.

Keywords: fourier multiplier operators, Gauss-Kronrod method of integration, Paley-Wiener space, Tikhonov regularization

Procedia PDF Downloads 319
10462 Characteristics of Cumulative Distribution Function of Grown Crack Size at Specified Fatigue Crack Propagation Life under Different Maximum Fatigue Loads in AZ31

Authors: Seon Soon Choi

Abstract:

Magnesium alloy has been widely used in structure such as an automobile. It is necessary to consider probabilistic characteristics of a structural material because a fatigue behavior of a structure has a randomness and uncertainty. The purpose of this study is to find the characteristics of the cumulative distribution function (CDF) of the grown crack size at a specified fatigue crack propagation life and to investigate a statistical crack propagation in magnesium alloys. The statistical fatigue data of the grown crack size are obtained through the fatigue crack propagation (FCP) tests under different maximum fatigue load conditions conducted on the replicated specimens of magnesium alloys. The 3-parameter Weibull distribution is used to find the CDF of grown crack size. The CDF of grown crack size in case of larger maximum fatigue load has longer tail in below 10 percent and above 90 percent. The fatigue failure occurs easily as the tail of CDF of grown crack size becomes long. The fatigue behavior under the larger maximum fatigue load condition shows more rapid propagation and failure mode.

Keywords: cumulative distribution function, fatigue crack propagation, grown crack size, magnesium alloys, maximum fatigue load

Procedia PDF Downloads 288
10461 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function

Authors: Wei Tian, Jie Liang, Hammad Naveed

Abstract:

Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.

Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space

Procedia PDF Downloads 618
10460 Analysis of Train Passenger Seat Using Ergonomic Function Deployment Method

Authors: Robertoes K. K. Wibowo, Siswoyo Soekarno, Irma Puspitasari

Abstract:

Indonesian people use trains for their transportation, especially they use economy class train transportation because it is cheaper and has a more precise schedule than any other ground transportation. Nevertheless, the economy class passenger seat raises some inconvenience issues for passengers. This is due to the design of the chair on the economic class of trains that did not adjusted to the shape of anthropometry of Indonesian people. Thus, research needs to be conducted on the design of the seats in the economic class of trains. The purpose of this research is to make the design of economy class passenger seats ergonomic. This research method uses questionnaires and anthropometry measurements. The data obtained is processed using House of Quality of Ergonomic Function Development. From the results of analysis and data processing were obtained important changes from the original design. Ergonomic chair design according to the analysis is a stainless steel frame, seat height 390 mm, with a seat width for each passenger of 400 mm and a depth of 400 mm. Design of the backrest has a height of 840 mm, width of 430 mm and length of 300 mm that can move at the angle of 105-115 degrees. The width of the footrest is 42 mm and 400 mm length. The thickness of the seat cushion is 100 mm.

Keywords: chair, ergonomics, function development, train passenger

Procedia PDF Downloads 295
10459 Multidimensional Poverty and Child Cognitive Development

Authors: Bidyadhar Dehury, Sanjay Kumar Mohanty

Abstract:

According to the Right to Education Act of India, education is the fundamental right of all children of age group 6-14 year irrespective of their status. Using the unit level data from India Human Development Survey (IHDS), we tried to understand the inter-relationship between the level of poverty and the academic performance of the children aged 8-11 years. The level of multidimensional poverty is measured using five dimensions and 10 indicators using Alkire-Foster approach. The weighted deprivation score was obtained by giving equal weight to each dimension and indicators within the dimension. The weighted deprivation score varies from 0 to 1 and grouped into four categories as non-poor, vulnerable, multidimensional poor and sever multidimensional poor. The academic performance index was measured using three variables reading skills, math skills and writing skills using PCA. The bivariate and multivariate analysis was used in the analysis. The outcome variable was ordinal. So the predicted probabilities were calculated using the ordinal logistic regression. The predicted probabilities of good academic performance index was 0.202 if the child was sever multidimensional poor, 0.235 if the child was multidimensional poor, 0.264 if the child was vulnerable, and 0.316 if the child was non-poor. Hence, if the level of poverty among the children decreases from sever multidimensional poor to non-poor, the probability of good academic performance increases.

Keywords: multidimensional poverty, academic performance index, reading skills, math skills, writing skills, India

Procedia PDF Downloads 595
10458 Development of selective human matrix metalloproteinases-9 (hMMP-9) inhibitors as potent diabetic wound healing agents

Authors: Geetakshi Arora, Danish Malhotra

Abstract:

Diabetic wounds are serious health issues and often fail to heal, leading to limb amputation that makes the life of the patient miserable. Delayed wound healing has been characterized by an increase in matrix metalloproteinase-9 (MMP-9). Thus research throughout the world has been going on to develop selective MMP-9 inhibitors for aiding diabetic wound healing. Bioactive constituents from natural sources always served as potential leads in drug development with high rates of success. Considering the need for novel selective MMP-9 inhibitors and the importance of natural bioactive compounds in drug development, we have screened a library of bioactive constituents from plant sources that were effective in diabetic wound healing on human MMP-9 (hMMP-9) using molecular docking studies. Screened constituents are ranked according to their dock score, ∆G value (binding affinity), and Ligand efficiency evaluated from FleXX docking and Hyde scoring modules available with drug designing platform LeadIT. Rhamnocitrin showed the highest correlation between dock score, ∆G value (binding affinity), and Ligand efficiency was further explored for binding interactions with hMMP-9. The overall study suggest that Rhamnocitrin is sufficiently decorated with both hydrophilic and hydrophobic substitutions that perfectly block hMMP-9 and act as a potential lead in the design and development of selective hMMP-9 inhibitors.

Keywords: MMP-9, diabetic wound, molecular docking, phytoconstituents

Procedia PDF Downloads 126
10457 Efficient Alias-Free Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide alias-free high-fidelity signal reconstruction for speech signals without exponentially increasing sample number with increasing bit-depth. We introduce methods in LC sampling that reduce the sampling rate close to the Nyquist frequency even for large bit-depth. The results indicate that larger variation in the sampling intervals leads to an alias-free sampling scheme; this is achieved by either reducing the bit-depth or adding jitter to the system for high bit-depths. In conjunction with windowing, the signal is reconstructed from the LC samples using an efficient Toeplitz reconstruction algorithm.

Keywords: alias-free, level crossing sampling, spectrum, trigonometric polynomial

Procedia PDF Downloads 212