Search results for: acceptor synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2174

Search results for: acceptor synthesis

1184 Efficient Heuristic Algorithm to Speed Up Graphcut in Gpu for Image Stitching

Authors: Tai Nguyen, Minh Bui, Huong Ninh, Tu Nguyen, Hai Tran

Abstract:

GraphCut algorithm has been widely utilized to solve various types of computer vision problems. Its expensive computational cost encouraged many researchers to improve the speed of the algorithm. Recent works proposed schemes that work on parallel computing platforms such as CUDA. However, the problem of low convergence speed prevents the usage of GraphCut for real time applications. In this paper, we propose global suppression heuristic to boost the conver-gence process of the algorithm. A parallel implementation of GraphCut algorithm on CUDA designed for the image stitching problem is introduced. Our method achieves up to 3× time boost on the graph of size 80 × 480 compared to the best sequential GraphCut algorithm while achieving satisfactory stitched images, suitable for panorama applications. Our source code will be soon available for further research.

Keywords: CUDA, graph cut, image stitching, texture synthesis, maxflow/mincut algorithm

Procedia PDF Downloads 111
1183 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst

Authors: Meichen Lee, Michael K. H. Leung

Abstract:

In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.

Keywords: microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis

Procedia PDF Downloads 443
1182 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels

Authors: Florin Leon, Silvia Curteanu

Abstract:

The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.

Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks

Procedia PDF Downloads 132
1181 Various Modification of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide

Authors: W. J. Stępniowski, W. Florkiewicz, M. Norek, M. Michalska-Domańska, E. Kościuczyk, T. Czujko

Abstract:

In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology.

Keywords: anodic aluminum oxide, anodization, barrier layer thinning, nanopores

Procedia PDF Downloads 310
1180 Effect of Ba Addition on the Dielectric Properties and Microstructure of (Ca₀.₆Sr₀.₄)ZrO₃

Authors: Ying-Chieh Lee, Huei-Jyun Shih, Ting-Yang Wang, Christian Pithan

Abstract:

This study focuses on the synthesis and characterization of Ca₀.₆Sr₀.₄₋ₓBaₓZrO₃ (x = 0.01, 0.04, 0.07, and 0.10) ceramics prepared via the solid-state method and sintered at 1450 °C. The impact of Sr substitution by Ba at the A-site of the perovskite structure on crystalline properties and microwave dielectric performance was investigated. The experimental results show the formation of a single-phase structure, Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃(CSZ), across the entire range of x values. It is evident that the Ca₀.₆Sr₀.₃₉Ba₀.₀₁ZrO₃ ceramics exhibit the highest sintering density and the lowest porosity. These ceramics exhibit impressive dielectric properties, including a high permittivity of 28.38, low dielectric loss of 4.0×10⁻⁴, and a Q factor value of 22988 at 9~10GHz. The research reveals that the influences of Sr substitution by Ba in enhancing the microwave dielectric properties of Ca₀.₆₁₂Sr₀.₃₈₈ZrO₃ ceramics and the impedance curves clearly showed effects on the electrical properties.

Keywords: NPO dielectric material, (Ca₀.₆Sr₀.₄)ZrO₃, microwave dielectric properties

Procedia PDF Downloads 44
1179 Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition

Authors: Katya Milenova, Penko Nikolov, Irina Stambolova, Plamen Nikolov, Vladimir Blaskov

Abstract:

In the recent article, a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes-in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity.

Keywords: activated carbon, adsorption, copper, ozone decomposition, TiO2

Procedia PDF Downloads 405
1178 Synthesis and in-vitro Evaluation of Quinozolines as Potent EGFR Inhibitor

Authors: Vinaya Kambappa, Chinnadurai Mani, Komaraiah Palle

Abstract:

Non-small cell-lung cancer (NSCLC) cells have increased expression of EGFR, which makes them a potential target for cancer therapy. Based on molecular docking and previous reports, we designed and synthesized quinazoline derivatives as potent EGFR inhibitors. Among the derivatives, three compounds showed good antiproliferative activity against A-549 and H-1299 cells. Furthermore, these compounds inhibited EGFR signaling exhibiting diminishing p-EGFR and its downstream proteins like p-Akt, p-Erk1/2, and p-mTOR; however, it did not alter the levels of EGFR, Akt, Erk1/2 and mTOR proteins. Flow cytometric analysis indicated the accumulation of cells at G1 phase suggesting induction of apoptosis, which was further confirmed by annexin V/propidium iodide staining. Our study suggested that quinazoline scaffold can be developed as novel EGFR kinase inhibitors for cancer therapy.

Keywords: apoptosis, non-small cell-lung cancer cells, EGFR, quinazoline

Procedia PDF Downloads 170
1177 Method of Synthesis of Controlled Generators Balanced a Strictly Avalanche Criteria-Functions

Authors: Ali Khwaldeh, Nimer Adwan

Abstract:

In this paper, a method for constructing a controlled balanced Boolean function satisfying the criterion of a Strictly Avalanche Criteria (SAC) effect is proposed. The proposed method is based on the use of three orthogonal nonlinear components which is unlike the high-order SAC functions. So, the generator synthesized by the proposed method has separate sets of control and information inputs. The proposed method proves its simplicity and the implementation ability. The proposed method allows synthesizing a SAC function generator with fixed control and information inputs. This ensures greater efficiency of the built-in oscillator compared to high-order SAC functions that can be used as a generator. Accordingly, the method is completely formalized and implemented as a software product.

Keywords: boolean function, controlled balanced boolean function, strictly avalanche criteria, orthogonal nonlinear

Procedia PDF Downloads 142
1176 Synthesis of Microporous Interconnected Polymeric Foam of Poly (Glycidyl Methacrylate-Co-Divinylbenzene-Co-Butyl Acrylate) by Using Aqueous Foam as a Template

Authors: A. A. Gadgeel, S. T. Mhaske

Abstract:

Hexadecyltrimethylammonium bromide (HTAB) modified nano silica were used as pore stabilizer for the preparation of interconnected macroporous copolymer foam of glycidyl methacrylate (GMA), divinylbenzene (DVB) and tert-butyl acrylate (BA). The polymerization of air infused aqueous foam is carried out through free radical thermal initiator. The porosity of the polymerized foam depends on the concentration of HTAB used to control the hydrophobic and hydrophilic behavior of silica nanoparticle. Modified silica particle results to form closed cell foam with 74% of porosity for 60% of air infusion during aqueous foaming. The preliminary structure of microfoam was observed through optical microscopy, whereas for a better understanding of morphology SEM was used. The proposed route is an eco-friendly route for synthesizing polymeric microporous polymer as compared to other chemical and additive-based routes available.

Keywords: air-infused, interconnected microporous, porosity, aqueous foam

Procedia PDF Downloads 102
1175 Recycling of Sclareolide in the Crystallization Mother Liquid of Sclareolide by Adsorption and Chromatography

Authors: Xiang Li, Kui Chen, Bin Wu, Min Zhou

Abstract:

Sclareolide is made from sclareol by oxidiative synthesis and subsequent crystallization, while the crystallization mother liquor still contains 15%~30%wt of sclareolide to be reclaimed. With the reaction material of sclareol is provided as plant extract, many sorts of complex impurities exist in the mother liquor. Due to the difficulty in recycling sclareolide after solvent recovery, it is common practice for the factories to discard the mother liquor, which not only results in loss of sclareolide, but also contributes extra environmental burden. In this paper, a process based on adsorption and elution has been presented for recycling of sclareolide from mother liquor. After pretreatment of the crystallization mother liquor by HZ-845 resin to remove parts of impurities, sclareolide is adsorbed by HZ-816 resin. The HZ-816 resin loaded with sclareolide is then eluted by elution solvent. Finally, the eluent containing sclareolide is concentrated and fed into the crystallization step in the process. By adoption of the recycle from mother liquor, total yield of sclareolide increases from 86% to 90% with a stable purity of the final sclareolide products maintained.

Keywords: sclareolide, resin, adsorption, chromatography

Procedia PDF Downloads 218
1174 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 149
1173 Subarray Based Multiuser Massive MIMO Design Adopting Large Transmit and Receive Arrays

Authors: Tetsiki Taniguchi, Yoshio Karasawa

Abstract:

This paper describes a subarray based low computational design method of multiuser massive multiple input multiple output (MIMO) system. In our previous works, use of large array is assumed only in transmitter, but this study considers the case both of transmitter and receiver sides are equipped with large array antennas. For this aim, receive arrays are also divided into several subarrays, and the former proposed method is modified for the synthesis of a large array from subarrays in both ends. Through computer simulations, it is verified that the performance of the proposed method is degraded compared with the original approach, but it can achieve the improvement in the aspect of complexity, namely, significant reduction of the computational load to the practical level.

Keywords: large array, massive multiple input multiple output (MIMO), multiuser, singular value decomposition, subarray, zero forcing

Procedia PDF Downloads 386
1172 Reconfigurable Efficient IIR Filter Design Using MAC Algorithm

Authors: Rajesh Mehra

Abstract:

In this paper an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with MATLAB and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Keywords: butterworth, DSP, IIR, MAC, FPGA

Procedia PDF Downloads 342
1171 Different Methods of Producing Bioemulsifier by Bacillus licheniformis Strains

Authors: Saba Pajuhan, Afshin Farahbakhsh, S. M. M. Dastgheib

Abstract:

Biosurfactants and bioemulsifiers are a structurally diverse group of surface-active molecules synthesized by microorganisms, they are amphipathic molecules which reduce surface and interfacial tensions and widely used in pharmaceutical, cosmetic, food and petroleum industries. In this paper, several methods of bioemulsifer synthesis and purification by Bacillus licheniformis strains (namely ACO1, PTCC 1595 and ACO4) were investigated. Strains were grown in nutrient broth with different conditions in order to get maximum production of bioemulsifer. The purification of bio emulsifier and the quality evaluation of the product was done by adding sulfuric acid (H₂SO₄) (98%), Ethanol or HCl to the solution followed by centrifuging. To determine the optimal conditions yielding the highest bioemulsifier production, the effect of various carbon and nitrogen sources, temperature, NaCl concentration, pH, O₂ levels, incubation time are indispensable and all of them were highly effective in bioemulsifiers production.

Keywords: biosurfactant, bioemulsifier, purification, surface tension, interfacial tension

Procedia PDF Downloads 254
1170 Effect of Zinc Oxide Nanoparticles along with Sodium Hydroxide on Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

Authors: Mohammad Mirjalili, Maryam Mohammdi, Loghman Karimi

Abstract:

In this study, synthesis of zinc oxide nanoparticles was carried out along with the hydrolysis of Polyethylene terephthalate using sodium hydroxide to increase the surface activity and enhance the nanoparticles adsorption. The polyester fabrics were treated with zinc acetate and sodium hydroxide at ultrasound bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The self-cleaning property of treated polyethylene terephthalate was evaluated through discoloring methylene blue stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound treated polyethylene terephthalate improved significantly.

Keywords: zinc oxide, polyethylene terephthalate, self-cleaning, antibacterial

Procedia PDF Downloads 313
1169 Free and Encapsulated (TiO2)2 Dimers into Carbon Nanotubes

Authors: S. Dargouthi, S. Boughdiri, B. Tangour

Abstract:

This work invoked two complementary parts. In the first, we performed a theoretical study of various dimers of molecular of titanium dioxide. Five structures were examined. Three among them, the (T), (C) and (T/P) isomers, may be considered as stable compounds because they represent absolute minima on their potential energy surfaces. (T) and (C) may coexist because they are separted by only 6.5 kcal mol-1 but (T/P) dimer is in a metastable state from an energetic point of view. Non bonded dimer (P) transforms into its homologue (O) which has been considered as transitory specie with low lifetime which evolves to (T) structure. In the second part, we highlight the possible stabilization of (T), (C) and (P) dimers by encapsulation in carbon nanotubes. This indicates the probable role that plays this transitory specie the polymerization process of molecular TiO2. Confinement is suitable to control the fast evolution process and could towards the synthesis of new titanium dioxide nanostructured materials. An alternative description of TiO2 polymorphs (Rutie, anatase et Brookite) is proposed from (T), (C) and (T/P) dimmers motifs.

Keywords: titanium dioxide, carbon nanotube, confinement. encapsulation, transitory specie

Procedia PDF Downloads 275
1168 Rh(III)-Catalyzed Cross-Coupling Reaction of 8-Methylquinolines with Maleimides

Authors: Sangil Han, In Su Kim

Abstract:

Transition-metal-catalyzed C–H bond activation and its subsequent functionalization has been one of the most attractive topics in organic synthesis because of its remarkable potential for atom economy and environmental sustainability. In this addition, a variety of C(sp2)–H functionalization has been developed under metal catalysis in the past decade. Recently, much attention has been moved towards the C(sp3)–H functionalization events, which continue to be a challenging issue. In this area, directing group assisted sp3 C–H functionalization has been explored by use of amides, carboxylic acids, oximes, N-heterocycles, and etc. In particular, 8-methylquinolines have been found as good substrates for sp3 C–H functionalization due to its ability to form cyclometalated complexes. Succinimides have been recognized as privileged structural cores found in a number of bioactive natural products, pharmaceuticals, and functional materials. Furthermore, the reduced derivatives such as pyrrolidines and γ-lactams have been also found in a large number of pharmaceutical relevant molecules, thus making them one of the most important and promising compounds. We herein describe the first C(sp3)–H activation of 8-methylquinolines and subsequent functionalization with maleimides to afford various succinimide derivatives.

Keywords: C(sp3)–H activation, 8-methylquinolines, maleimides, succinimides

Procedia PDF Downloads 206
1167 Synthesis and Functionalization of MnFe₂O₄ Nano−Hollow Spheres for Optical and Catalytic Properties

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Herein, we synthesize MnFe₂O₄ nano−hollow spheres (NHSs) of average diameter 100 nm through a facile template free solvothermal process and carry out a time dependent morphological study to investigate their process of core excavation. Further, a surface engineering of as−synthesized MnFe₂O₄ NHSs has been executed with organic disodium tartrate dihydrate ligand and interestingly, the surface modified MnFe₂O₄ NHSs are found to capable of emerging multicolor fluorescence starting from blue, green to red. The magnetic measurements through vibrating sample magnetometer demonstrate that room temperature superparamagnetic nature of MnFe₂O₄ NHSs remains unaltered after surface modification. Moreover, functionalized MnFe₂O₄ NHSs are found to exhibit excellent reusable photocatalytic efficiency in the degradation of cationic dye, methylene blue with rate constant of 2.64×10−2 min.

Keywords: nano hollow sphere, tartrate modification, multiple fluorescence, catalytic property

Procedia PDF Downloads 168
1166 Synthesis of Highly Valuable Fuel Fractions from Waste Date Seeds Oil

Authors: Farrukh Jamil, Ala'A H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Environmental problems and the security of energy supply have motivated the attention in the expansion of alternatives for fossil based fuels. Biomass has been recognized as a capable resource because it is plentifully available and in principle carbon dioxide neutral. Present study focuses on utilization date seeds oil for synthesizing high value fuels formulations such as green diesel and jet fuel. The hydrodeoxygenation of date seeds oil occurred to be highly efficient at following operating conditions temperature 300°C pressure 10bar with continuous stirring at 500 rpm. Products characterization revealed the efficiency of hydrodeoxygenation by formation of linear hydrocarbons (paraffin) in larger fraction. Based on the type of components in product oil it was calculated that maximum fraction lies within the range of green diesel 72.78 % then jet fuel 28.25 % by using Pt/C catalyst. It can be concluded that waste date seeds oil has potential to be used for obtaining high value products.

Keywords: date seeds, hydrodeoxygenation, paraffin, deoxygenation

Procedia PDF Downloads 247
1165 Synthesis and Physico-Chemical Analysis of Jatropha curcas Seed Oil for ISO VG32 and VG46 Applications

Authors: M. Nuhu, M. S. Amina, A. H. Aminu, A. J. Abbas, N. Salahudeen, A. Z. Yusuf

Abstract:

Transesterification of jatropha methyl ester (JME) with the common polyol, trimethylolpropane (TMP) produced the TMP based ester which exhibits improved temperature properties. This paper discusses the physic-chemical properties of jatropha bio-lubricant base oil applicable for ISO VG32 and VG46 requirement. The catalyst employed for the JME was CaO synthesized in National Research Institute for Chemical Technology (NARICT) that gives 100% conversion. The molar ratio of JME to TMP was 3.5:1 and the catalyst (NaOCH3) loading were found to be 0.8% of the weight of the total reactants. The final fractionated jatropha bio-lubricant base was found to contain 11.95% monoesters, 43.89% diesters and 44.16% triesters (desired product). In addition, it was found that the bio-lubricant base oil produced is comparable to the ISO VG46 commercial standards for light and industrial gears applications and other plant based bio-lubricant.

Keywords: biodegradability, methyl ester, pour point, transesterification, viscosity index

Procedia PDF Downloads 640
1164 Preparation and Characterization of Lanthanum Aluminate Electrolyte Material for Solid Oxide Fuel Cell

Authors: Onkar Nath Verma, Nitish Kumar Singh, Raghvendra, Pravin Kumar, Prabhakar Singh

Abstract:

The perovskite type electrolyte material LaAlO3 was prepared by solution based auto-combustion method using Al (NO3)3.6H2O, La2O3 with dilute nitrate acid (HNO3) as precursors and citric acid (C6H8O7.H2O) as a fuel. The synthesis protocol gave an easy processing of the LaAlO3 nano-particles. The XRD measurement revealed that the material has single phase with space group R-3c (rhombohedral). Thermal behavior was measured by simultaneous differential thermal analysis and thermo gravimetric analysis (DTA-TGA). The compact pellet density was determined. Also, the surface morphology was studied using scanning electron microscopy (SEM). The conductivity of LaAlO3 was measured employing LCR meter and found to increase with increasing temperature. This increase in conductivity may be attributed to increased mobility of oxide ion.

Keywords: perovskite, LaAlO3, XRD, SEM, DTA-TGA, SOFC

Procedia PDF Downloads 483
1163 Synthesis of Graphene Oxide/Chitosan Nanocomposite for Methylene Blue Adsorption

Authors: S. Melvin Samuel, Jayanta Bhattacharya

Abstract:

In the present study, a graphene oxide/chitosan (GO-CS) composite material was prepared and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The synthesized GO-CS adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopes (SEM), transmission electron microscopy (TEM), Raman spectroscopy and thermogravimetric analysis (TGA). The removal of MB was conducted in batch mode. The effect of parameters influencing the adsorption of MB such as pH of the solution, initial MB concentration, shaking speed, contact time and adsorbent dosage were studied. The results showed that the GO-CS composite material has high adsorption capacity of 196 mg/g of MB solution at pH 9.0. Further, the adsorption of MB on GO-CS followed pseudo second order kinetics and equilibrium adsorption data well fitted by the Langmuir isotherm model. The study suggests that the GO-CS is a favorable adsorbent for the removal of MB from aqueous solution.

Keywords: Methylene blue, Graphene oxide-chitosan, Isotherms, Kinetics.

Procedia PDF Downloads 167
1162 Non-Steroidal Microtubule Disrupting Analogues Induce Programmed Cell Death in Breast and Lung Cancer Cell Lines

Authors: Marcel Verwey, Anna M. Joubert, Elsie M. Nolte, Wolfgang Dohle, Barry V. L. Potter, Anne E. Theron

Abstract:

A tetrahydroisoquinolinone (THIQ) core can be used to mimic the A,B-ring of colchicine site-binding microtubule disruptors such as 2-methoxyestradiol in the design of anti-cancer agents. Steroidomimeric microtubule disruptors were synthesized by introducing C'2 and C'3 of the steroidal A-ring to C'6 and C'7 of the THIQ core and by introducing a decorated hydrogen bond acceptor motif projecting from the steroidal D-ring to N'2. For this in vitro study, four non-steroidal THIQ-based analogues were investigated and comparative studies were done between the non-sulphamoylated compound STX 3450 and the sulphamoylated compounds STX 2895, STX 3329 and STX 3451. The objective of this study was to investigate the modes of cell death induced by these four THIQ-based analogues in A549 lung carcinoma epithelial cells and metastatic breast adenocarcinoma MDA-MB-231 cells. Cytotoxicity studies to determine the half maximal growth inhibitory concentrations were done using spectrophotometric quantification via crystal violet staining and lactate dehydrogenase (LDH) assays. Microtubule integrity and morphologic changes of exposed cells were investigated using polarization-optical transmitted light differential interference contrast microscopy, transmission electron microscopy and confocal microscopy. Flow cytometric quantification was used to determine apoptosis induction and the effect that THIQ-based analogues have on cell cycle progression. Signal transduction pathways were elucidated by quantification of the mitochondrial membrane integrity, cytochrome c release and caspase 3, -6 and -8 activation. Induction of autophagic cell death by the THIQ-based analogues was investigated by morphological assessment of fluorescent monodansylcadaverine (MDC) staining of acidic vacuoles and by quantifying aggresome formation via flow cytometry. Results revealed that these non-steroidal microtubule disrupting analogues inhibited 50% of cell growth at nanomolar concentrations. Immunofluorescence microscopy indicated microtubule depolarization and the resultant mitotic arrest was further confirmed through cell cycle analysis. Apoptosis induction via the intrinsic pathway was observed due to depolarization of the mitochondrial membrane, induction of cytochrome c release as well as, caspase 3 activation. Potential involvement of programmed cell death type II was observed due to the presence of acidic vacuoles and aggresome formation. Necrotic cell death did not contribute significantly, indicated by stable LDH levels. This in vitro study revealed the induction of the intrinsic apoptotic pathway as well as possible involvement of autophagy after exposure to these THIQ-based analogues in both MDA-MB-231- and A549 cells. Further investigation of this series of anticancer drugs still needs to be conducted to elucidate the temporal, mechanistic and functional crosstalk mechanisms between the two observed programmed cell deaths pathways.

Keywords: apoptosis, autophagy, cancer, microtubule disruptor

Procedia PDF Downloads 233
1161 Hydrogeological Study of the Different Aquifers in the Area of Biskra

Authors: A. Sengouga, Y. Imessaoudene, A. Semar, B. Mouhouche, M. Kadir

Abstract:

Biskra or Zibans, is located in a structural transition zone between the chain of the Saharan Atlas Mountains and the Sahara. It is an arid region where the superficial water resource is the mild, hence the importance of the lithological description and the evaluation of aquifers rock’s volumes, which are highly dependent on the mobilized water contained in the various reservoirs (Quaternary, Mio-Pliocene, Eocene and Continental intercalary). Through a data synthesis which is particularly based on stratigraphic logs of drilling, the description of aquifers heterogeneity and the determining of the spatial variability of aquifer appearance became possible, by using geostatistical analysis, which allowed the representation of the aquifer thicknesses mapping and their space variation. The different thematic maps realized focus on drilling position, the substratum shape and finally the aquifers thicknesses of the region. It is found that the high density of water points especially these of drilling points are superposed on the hydrologic reservoirs with significant thicknesses.

Keywords: log stratigraphic ArcGIS 10, geometry of aquifers, rocks reservoir volume, Biskra

Procedia PDF Downloads 444
1160 Synthesis and Characterization of Iron Modified Geopolymer and Its Resistance against Chloride and Sulphate

Authors: Noor-ul-Amin, Lubna Nawab, Sabiha Sultana

Abstract:

Geopolymer with different silica to alumina ratio with iron have been synthesized using sodium silicate, aluminum, and iron salts as a source of silica, alumina and iron source, and sodium/potassium hydroxide as an alkaline medium. The iron source will be taken from iron (III) salts and laterite clay samples. Laterite has been used as a natural source of iron in modified geopolymer. The synthesized iron modified geopolymer was submitted to the different aggressive environment, including chloride and sulphate solutions in different concentration. Different experimental techniques, including XRF, XRD, and FTIR, were used to study the bonding nature and effect of aggressive environment on geopolymer. The major phases formed during geopolymerization are sodalite (Na₄Al₃Si₃O₁₂Cl), albite (NaAlSi₃O₈), hematite (Fe₂O₃), and chabazite as confirmed from the XRD results. The resulting geopolymer showed greater resistance to sulphate and chloride as compared to the normal geopolymer.

Keywords: modified geopolymer, laterite, chloride, sulphate

Procedia PDF Downloads 136
1159 FPGA Based IIR Filter Design Using MAC Algorithm

Authors: Rajesh Mehra, Bharti Thakur

Abstract:

In this paper, an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with Matlab and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Keywords: Butterworth filter, DSP, IIR, MAC, FPGA

Procedia PDF Downloads 369
1158 Synthesis of Cationic Bleach Activator for Textile Industry

Authors: Pelin Altay, Ahmed El-Shafei, Peter J. Hauser, Nevin Cigdem Gursoy

Abstract:

Exceedingly high temperatures are used (around 95 °C) to perform hydrogen peroxide bleaching of cotton fabrics in textile industry, which results in high energy consumption and also gives rise to significant fiber damage. Activated bleach systems have the potential to produce more efficient bleaching through increased oxidation rates with reducing energy cost, saving time and causing less fiber damage as compared to conventional hot peroxide bleaching. In this study, a cationic bleach activator was synthesized using caprolactam as a leaving group and triethylamine as a cationic group to establish an activated peroxide system for low temperature bleaching. Cationic bleach activator was characterized by FTIR, 1H NMR and mass spectrometry. The bleaching performance of the prototype cationic bleach activator was evaluated and optimizing the bleach recipe was performed.

Keywords: bleach activator, cotton bleaching, hydrogen peroxide bleaching, low temperature bleaching

Procedia PDF Downloads 249
1157 Sol-Gel Synthesis and Photoluminescent Properties of YPO4: Pr3+ Nanophosphors

Authors: Badis Kahouadji, Lakhdar Guerbous, Lyes Lamiri

Abstract:

For many years, the luminescent materials were investigated principally in the infrared and visible areas, because the ultraviolet (UV) and especially in vacuum Ultraviolet (VUV) are technically more difficult to explore, especially absence of applications requiring of materials suitable to short wavelengths.Recent necessary, related to the development of certain technologies, encouraged research in these spectra domains. It is in this context that the 4Fn-4Fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies. These studies relate in particular to search for new scintillator materials used for spectroscopy and X-ray, ɤ, as well as medical imaging. The 4Fn- 4Fn-15d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggeting to study on a very specific class of inorganic scintillators that are orthophosphate doped with rare earth ions, this study focused on the Pr3+ concentration on the structural and optical properties of Pr3+ doped YPO4 (yttriumorthophosphate) with powder form prepared by the Sol Gel method.

Keywords: rare earth, scintillator, YPO4:Pr3+ nanophosphors, sol gel, 4Fn-4Fn-15d transitions

Procedia PDF Downloads 582
1156 Multitasking Trends and Impact on Education: A Literature Review

Authors: Mohammed Alkahtani, Ali Ahmad, Saber Darmoul, Shatha Samman, Ayoub Al-zabidi, Khaled Ba Matraf

Abstract:

Education systems are complex and involve interactions between humans (teachers and students); media based technologies, lectures, classrooms, etc. to provide educational services. The education system performance is characterized by how well students learn, which is measured using student grades on exams and quizzes, achievements on standardized tests, among others. Advances in portable communications technologies, such as mobile phones, tablets, and laptops, created a different type of classroom, where students seem to engage in more than just the intended learning activities. The performance of more than one task in parallel or in rapid transition is commonly known as multitasking. Several operations in educational systems are performed simultaneously, resulting in a multitasking education environment. This paper surveys existing research on multitasking in educational settings, summarizes literature findings, provides a synthesis of the impact of multitasking on performance, and identifies directions of future research.

Keywords: multitasking, education, education environment, impact

Procedia PDF Downloads 307
1155 Developing Models for Predicting Physiologically Impaired Arm Reaching Paths

Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Mustafa Mhawesh, Reza Langari

Abstract:

This paper describes the development of a model of an impaired human arm performing a reaching motion, which will be used to predict hand path trajectories for people with reduced arm joint mobility. Assuming that the arm was in contact with a surface during the entire movement, the contact conditions at the initial and final task locations were determined and used to generate the entire trajectory. The model was validated by comparing it to experimental data, which simulated an arm joint impairment by physically constraining the joint motion with a brace. Future research will include using the model in the development of physical training protocols that avoid early recruitment of “healthy” Degrees-Of-Freedom (DOF) for reaching motions, thus facilitating an Active Range-Of-Motion Recovery (AROM) for a particular impaired joint.

Keywords: higher order kinematic specifications, human motor coordination, impaired movement, kinematic synthesis

Procedia PDF Downloads 320