Search results for: stochastic production function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12025

Search results for: stochastic production function

2005 Changes in Skin Microbiome Diversity According to the Age of Xian Women

Authors: Hanbyul Kim, Hye-Jin Kin, Taehun Park, Woo Jun Sul, Susun An

Abstract:

Skin is the largest organ of the human body and can provide the diverse habitat for various microorganisms. The ecology of the skin surface selects distinctive sets of microorganisms and is influenced by both endogenous intrinsic factors and exogenous environmental factors. The diversity of the bacterial community in the skin also depends on multiple host factors: gender, age, health status, location. Among them, age-related changes in skin structure and function are attributable to combinations of endogenous intrinsic factors and exogenous environmental factors. Skin aging is characterized by a decrease in sweat, sebum and the immune functions thus resulting in significant alterations in skin surface physiology including pH, lipid composition, and sebum secretion. The present study gives a comprehensive clue on the variation of skin microbiota and the correlations between ages by analyzing and comparing the metagenome of skin microbiome using Next Generation Sequencing method. Skin bacterial diversity and composition were characterized and compared between two different age groups: younger (20 – 30y) and older (60 - 70y) Xian, Chinese women. A total of 73 healthy women meet two conditions: (I) living in Xian, China; (II) maintaining healthy skin status during the period of this study. Based on Ribosomal Database Project (RDP) database, skin samples of 73 participants were enclosed with ten most abundant genera: Chryseobacterium, Propionibacterium, Enhydrobacter, Staphylococcus and so on. Although these genera are the most predominant genus overall, each genus showed different proportion in each group. The most dominant genus, Chryseobacterium was more present relatively in Young group than in an old group. Similarly, Propionibacterium and Enhydrobacter occupied a higher proportion of skin bacterial composition of the young group. Staphylococcus, in contrast, inhabited more in the old group. The beta diversity that represents the ratio between regional and local species diversity showed significantly different between two age groups. Likewise, The Principal Coordinate Analysis (PCoA) values representing each phylogenetic distance in the two-dimensional framework using the OTU (Operational taxonomic unit) values of the samples also showed differences between the two groups. Thus, our data suggested that the composition and diversification of skin microbiomes in adult women were largely affected by chronological and physiological skin aging.

Keywords: next generation sequencing, age, Xian, skin microbiome

Procedia PDF Downloads 135
2004 Bandgap Engineering of CsMAPbI3-xBrx Quantum Dots for Intermediate Band Solar Cell

Authors: Deborah Eric, Abbas Ahmad Khan

Abstract:

Lead halide perovskites quantum dots have attracted immense scientific and technological interest for successful photovoltaic applications because of their remarkable optoelectronic properties. In this paper, we have simulated CsMAPbI3-xBrx based quantum dots to implement their use in intermediate band solar cells (IBSC). These types of materials exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement. The conceptual framework provides a route to analyze the electronic properties of quantum dots. This layer of quantum dots optimizes the position and bandwidth of IB that lies in the forbidden region of the conventional bandgap. A three-dimensional MAPbI3 quantum dot (QD) with geometries including spherical, cubic, and conical has been embedded in the CsPbBr3 matrix. Bound energy wavefunction gives rise to miniband, which results in the formation of IB. If there is more than one miniband, then there is a possibility of having more than one IB. The optimization of QD size results in more IBs in the forbidden region. One band time-independent Schrödinger equation using the effective mass approximation with step potential barrier is solved to compute the electronic states. Envelope function approximation with BenDaniel-Duke boundary condition is used in combination with the Schrödinger equation for the calculation of eigen energies and Eigen energies are solved for the quasi-bound states using an eigenvalue study. The transfer matrix method is used to study the quantum tunneling of MAPbI3 QD through neighbor barriers of CsPbI3. Electronic states are computed using Schrödinger equation with effective mass approximation by considering quantum dot and wetting layer assembly. Results have shown the varying the quantum dot size affects the energy pinning of QD. Changes in the ground, first, second state energies have been observed. The QD is non-zero at the center and decays exponentially to zero at boundaries. Quasi-bound states are characterized by envelope functions. It has been observed that conical quantum dots have maximum ground state energy at a small radius. Increasing the wetting layer thickness exhibits energy signatures similar to bulk material for each QD size.

Keywords: perovskite, intermediate bandgap, quantum dots, miniband formation

Procedia PDF Downloads 148
2003 Computational Simulations and Assessment of the Application of Non-Circular TAVI Devices

Authors: Jonathon Bailey, Neil Bressloff, Nick Curzen

Abstract:

Transcatheter Aortic Valve Implantation (TAVI) devices are stent-like frames with prosthetic leaflets on the inside, which are percutaneously implanted. The device in a crimped state is fed through the arteries to the aortic root, where the device frame is opened through either self-expansion or balloon expansion, which reveals the prosthetic valve within. The frequency at which TAVI is being used to treat aortic stenosis is rapidly increasing. In time, TAVI is likely to become the favoured treatment over Surgical Valve Replacement (SVR). Mortality after TAVI has been associated with severe Paravalvular Aortic Regurgitation (PAR). PAR occurs when the frame of the TAVI device does not make an effective seal against the internal surface of the aortic root, allowing blood to flow backwards about the valve. PAR is common in patients and has been reported to some degree in as much as 76% of cases. Severe PAR (grade 3 or 4) has been reported in approximately 17% of TAVI patients resulting in post-procedural mortality increases from 6.7% to 16.5%. TAVI devices, like SVR devices, are circular in cross-section as the aortic root is often considered to be approximately circular in shape. In reality, however, the aortic root is often non-circular. The ascending aorta, aortic sino tubular junction, aortic annulus and left ventricular outflow tract have an average ellipticity ratio of 1.07, 1.09, 1.29, and 1.49 respectively. An elliptical aortic root does not severely affect SVR, as the leaflets are completely removed during the surgical procedure. However, an elliptical aortic root can inhibit the ability of the circular Balloon-Expandable (BE) TAVI devices to conform to the interior of the aortic root wall, which increases the risk of PAR. Self-Expanding (SE) TAVI devices are considered better at conforming to elliptical aortic roots, however the valve leaflets were not designed for elliptical function, furthermore the incidence of PAR is greater in SE devices than BE devices (19.8% vs. 12.2% respectively). If a patient’s aortic root is too severely elliptical, they will not be suitable for TAVI, narrowing the treatment options to SVR. It therefore follows that in order to increase the population who can undergo TAVI, and reduce the risk associated with TAVI, non-circular devices should be developed. Computational simulations were employed to further advance our understanding of non-circular TAVI devices. Radial stiffness of the TAVI devices in multiple directions, frame bending stiffness and resistance to balloon induced expansion are all computationally simulated. Finally, a simulation has been developed that demonstrates the expansion of TAVI devices into a non-circular patient specific aortic root model in order to assess the alterations in deployment dynamics, PAR and the stresses induced in the aortic root.

Keywords: tavi, tavr, fea, par, fem

Procedia PDF Downloads 428
2002 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device

Authors: Pradakshina Sharma, Jagriti Narang

Abstract:

Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.

Keywords: biosensors, ePAD, arboviral infections, point of care

Procedia PDF Downloads 76
2001 IL6/PI3K/mTOR/GFAP Molecular Pathway Role in COVID-19-Induced Neurodegenerative Autophagy, Impacts and Relatives

Authors: Mohammadjavad Sotoudeheian

Abstract:

COVID-19, which began in December 2019, uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter and spread through the cells. ACE2 mRNA is present in almost every organ, including nasopharynx, lung, as well as the brain. Ports of entry of SARS-CoV-2 into the central nervous system (CNS) may include arterial circulation, while viremia is remarkable. However, it is imperious to develop neurological symptoms evaluation CSF analysis in patients with COVID-19, but theoretically, ACE2 receptors are expressed in cerebellar cells and may be a target for SARS-CoV-2 infection in the brain. Recent evidence agrees that SARS-CoV-2 can impact the brain through direct and indirect injury. Two biomarkers for CNS injury, glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL) detected in the plasma of patients with COVID-19. NFL, an axonal protein expressed in neurons, is related to axonal neurodegeneration, and GFAP is over-expressed in CNS inflammation. GFAP cytoplasmic accumulation causes Schwan cells to misfunction, so affects myelin generation, reduces neuroskeletal support over NfLs during CNS inflammation, and leads to axonal degeneration. Interleukin-6 (IL-6), which extensively over-express due to interleukin storm during COVID-19 inflammation, regulates gene expression, as well as GFAP through STAT molecular pathway. IL-6 also impresses the phosphoinositide 3-kinase (PI3K)/STAT/smads pathway. The PI3K/ protein kinase B (Akt) pathway is the main modulator upstream of the mammalian target of rapamycin (mTOR), and alterations in this pathway are common in neurodegenerative diseases. Most neurodegenerative diseases show a disruption of autophagic function and display an abnormal increase in protein aggregation that promotes cellular death. Therefore, induction of autophagy has been recommended as a rational approach to help neurons clear abnormal protein aggregates and survive. The mTOR is a major regulator of the autophagic process and is regulated by cellular stressors. The mTORC1 pathway and mTORC2, as complementary and important elements in mTORC1 signaling, have become relevant in the regulation of the autophagic process and cellular survival through the extracellular signal-regulated kinase (ERK) pathway.

Keywords: mTORC1, COVID-19, PI3K, autophagy, neurodegeneration

Procedia PDF Downloads 68
2000 Experimental Study of Near Wake of Wind Turbines

Authors: Ramin Rezaei, Terry Ng, Abdollah Afjeh

Abstract:

Near wake development of a wind turbine affects the aerodynamic loads on the tower and the wind turbine. Design considerations of both isolated wind turbines and wind farms must include unsteady wake flow conditions under which the turbines must operate. The consequent aerodynamic loads could lead to over design of wind turbines and adversely affect the cost of wind turbines and, in turn, the cost of energy produced by wind turbines. Reducing the weight of turbine rotors is particularly desirable since larger wind turbine rotors can be utilized without significantly increasing the cost of the supporting structure. Larger rotor diameters produce larger swept areas and consequently greater energy production from the wind thereby reducing the levelized cost of wind energy. To understand the development and structure of the near tower wake of a wind turbine, an experimental study was conducted to describe the flow field of the near wake for both upwind and downwind turbines. The study was conducted under controlled environment of a wind tunnel using a scaled model of a turbine. The NREL 5 MW reference wind turbine was used as a baseline design and was modified as necessary to design and build upwind and downwind scaled wind turbine models. This paper presents the results of the wind tunnel study using turbine models to quantify the near wake of upwind and downwind wind turbine configurations for various lengths of tower-to-turbine spacing. The variations of mean velocity and turbulence are measured using a computer-controlled, traversing hot wire probe. Additionally, smoke flow visualizations were conducted to qualitatively study the wake. The results show a more rapid dissipation of the near wake for an upwind configuration. The results can readily be incorporated into low fidelity system level turbine simulation tools to more accurately account for the wake on the aerodynamic loads of a upwind and downwind turbines.

Keywords: hot wire anemometry, near wake, upwind and downwind turbine. Hot wire anemometry, near wake, upwind and downwind turbine

Procedia PDF Downloads 652
1999 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Tejinder Singh Sidhu

Abstract:

Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.

Keywords: hot corrosion, coating, HVOF, oxidation

Procedia PDF Downloads 66
1998 Socio-Spatial Transformations in Obsolete Port Regions: A Case for Istanbul-Karaköy District

Authors: Umut Tuğlu Karslı

Abstract:

While, port function had a major role during the antiquity and medieval times, it has started to lose its significance in 19th century. In many port cities, while heavy industrial functions and ports have been moved out of the former port districts, the resulting derelict spaces have been transformed to new waterfront quarters to accommodate commercial, tourism, cultural, residential and public uses. Primary aim of these operations is to revitalize abandoned spaces of historical potential and re-establish a relationship between the city and the coast. Karakoy Port, field of this study, located in the Bosphorus, was surrounded by the city centre in time due to the transformation of urban functions, and as a result it has lost its former significance. While Karakoy has 24 hours lively residential and commercial uses in old times; in early 1980s, became a district of mechanical, plumbing and electronic parts suppliers during the day and a place for homeless at night. Today, activities for revitalization of this region continue in two forms and scales. First of these activities is the "planned transformation projects," which also includes the most important one “Galataport project”, and the second one is "spontaneous transformation," which consists of individual interventions. Galataport project that based on the idea of arranging the area specifically for tourists was prepared in 2005 and became a topic of tremendous public debate. On the other hand, the "spontaneous transformation" that is observed in the Karakoy District starts in 2004 with the foundation of “Istanbul Modern Museum”. Istanbul Modern, the first contemporary arts museum of the city, allowed the cultural integration of old naval warehouses of the port to the daily life. Following this adaptive reuse intervention, the district started to accommodate numerous art galleries, studios, café-workshops and design stores. In this context, this paper briefly examines revitalization studies in obsolete port regions, analyzes the planned and ongoing socio-spatial transformations in the specific case of Karakoy under the subjects of "planned transformation projects" and "spontaneous transformation", and realizes a critical review of the sustainability of the proposals on how to reinstate the district in the active life of Istanbul.

Keywords: port cities, socio-spatial transformation, urban regeneration, urban revitalization

Procedia PDF Downloads 432
1997 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 115
1996 Growth Performance Of fresh Water Microalgae Chlorella sp. Exposed to Carbon Dioxide

Authors: Titin Handayani, Adi Mulyanto, Fajar Eko Priyanto

Abstract:

It is generally recognized, that algae could be an interesting option for reducing CO₂ emissions. Based on light and CO₂, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient feeding of CO₂, especially on a large scale, is one of them. Current methods for CO₂ feeding to algae cultures rely on the sparging pure CO₂ or directly from flue gas. The limiting factor in this system is the solubility of CO₂ in water, which demands a considerable amount of energy for an effective gas to liquid transfer and leads to losses to the atmosphere. Due to the current ineffective methods for CO₂ introduction into algae ponds very large surface areas would be required for enough ponds to capture a considerable amount of the CO₂. The purpose of this study is to assess technology to capture carbon dioxide (CO₂) emissions generated by industry by utilizing of microalgae Chlorella sp. The microalgae were cultivated in a bioreactor culture pond raceway type. The result is expected to be useful in mitigating the effects of greenhouse gases in reducing the CO₂ emissions. The research activities include: (1) Characterization of boiler flue gas, (2) Operation of culture pond, (3) Sampling and sample analysis. The results of this study showed that the initial assessment absorption of the flue gas by microalgae using 1000 L raceway pond completed by heat exchanger were quite promising. The transfer of CO₂ into the pond culture system was run well. This identified from the success of cooling the boiler flue gas from the temperature of about 200 °C to below ambient temperature. Except for the temperature, the gas bubbles into the culture media were quite fine. Therefore, the contact between the gas and the media was well performed. The efficiency of CO₂ absorption by Chlorella sp reached 6.68 % with an average CO₂ loading of 0.29 g/L/day.

Keywords: Chlorella sp., CO2 emission, heat exchange, microalgae, milk industry, raceway pond

Procedia PDF Downloads 199
1995 Development and Implementation of a Business Technology Program Based on Techniques for Reusing Water in a Colombian Company

Authors: Miguel A. Jimenez Barros, Elyn L. Solano Charris, Luis E. Ramirez, Lauren Castro Bolano, Carlos Torres Barreto, Juliana Morales Cubillo

Abstract:

This project sought to mitigate the high levels of water consumption in industrial processes in accordance with the water-rationing plan promoted at national and international level due to the water consumption projections published by the United Nations. Water consumption has three main uses, municipal (common use), agricultural and industrial where the latter consumes a minimum percentage (around 20% of the total consumption). Awareness on world water scarcity, a Colombian company responsible for generation of massive consumption products, decided to implement politics and techniques for water treatment, recycling, and reuse. The project consisted in a business technology program that permits a better use of wastewater caused by production operations. This approach reduces the potable water consumption, generates better conditions of water in the sewage dumps, generates a positive environmental impact for the region, and is a reference model in national and international levels. In order to achieve the objective, a process flow diagram was used in order to define the industrial processes that required potable water. This strategy allowed the industry to determine a water reuse plan at the operational level without affecting the requirements associated with the manufacturing process and even more, to support the activities developed in administrative buildings. Afterwards, the company made an evaluation and selection of the chemical and biological processes required for water reuse, in compliance with the Colombian Law. The implementation of the business technology program optimized the water use and recirculation rate up to 70%, accomplishing an important reduction of the regional environmental impact.

Keywords: bio-reactor, potable water, reverse osmosis, water treatment

Procedia PDF Downloads 218
1994 Analyzing Middle Actors' Influence on Land Use Policy: A Case Study in Central Kalimantan, Indonesia

Authors: Kevin Soubly, Kaysara Khatun

Abstract:

This study applies the existing Middle-Out Perspective (MOP) as a complementing analytical alternative to the customary dichotomous options of top-down vs. bottom-up strategies of international development and commons governance. It expands the framework by applying it to a new context of land management and environmental change, enabling fresh understandings of decision making around land use. Using a case study approach in Central Kalimantan, Indonesia among a village of indigenous Dayak, this study explores influences from both internal and external middle actors, utilizing qualitative empirical evidence and incorporating responses across 25 village households and 11 key stakeholders. Applying the factors of 'agency' and 'capacity' specific to the MOP, this study demonstrates middle actors’ unique capabilities and criticality to change due to their influence across various levels of decision-making. Study results indicate that middle actors play a large role, both passively and actively, both directly and indirectly, across various levels of decision-making, perception-shaping, and commons governance. In addition, the prominence of novel 'passive' middle actors, such as the internet, can provide communities themselves with a level of agency beyond that provided by other middle actors such as NGOs and palm oil industry entities – which often operate at the behest of the 'top' or out of self-interest. Further, the study posits that existing development and decision-making frameworks may misidentify the 'bottom' as the 'middle,' raising questions about traditional development and livelihood discourse, strategies, and support, from agricultural production to forest management. In conclusion, this study provides recommendations including that current policy preconceptions be reevaluated to engage middle actors in locally-adapted, integrative manners in order to improve governance and rural development efforts more broadly.

Keywords: environmental management, governance, Indonesia, land use, middle actors, middle-out perspective

Procedia PDF Downloads 98
1993 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: alkali activated materials, alkali-activated binders, sustainable building materials, recycled ceramic brick, bauxite, red mud, clay, fly ash, metallurgical slags, particle size, chemical and mineral composition and amorphousness, water demand, particle density

Procedia PDF Downloads 109
1992 Optimization of Sintering Process with Deteriorating Quality of Iron Ore Fines

Authors: Chandra Shekhar Verma, Umesh Chandra Mishra

Abstract:

Blast Furnace performance mainly depends on the quality of sinter as a major portion of iron-bearing material occupies by it hence its quality w.r.t. Tumbler Index (TI), Reducibility Index (RI) and Reduction Degradation Index (RDI) are the key performance indicators of sinter plant. Now it became very tough to maintain the desired quality with the increasing alumina (Al₂O₃) content in iron fines and study is focused on it. Alumina is a refractory material and required more heat input to fuse thereby affecting the desired sintering temperature, i.e. 1300°C. It goes in between the grain boundaries of the bond and makes it weaker. Sinter strength decreases with increasing alumina content, and weak sinter generates more fines thereby reduces the net sinter production as well as plant productivity. Presence of impurities beyond the acceptable norm: such as LOI, Al₂O₃, MnO, TiO₂, K₂O, Na₂O, Hydrates (Goethite & Limonite), SiO₂, phosphorous and zinc, has led to greater challenges in the thrust areas such as productivity, quality and cost. The ultimate aim of this study is maintaining the sinter strength even with high Al₂O without hampering the plant productivity. This study includes mineralogy test of iron fines to find out the fraction of different phases present in the ore and phase analysis of product sinter to know the distribution of different phases. Corrections were done focusing majorly on varying Al₂O₃/SiO₂ ratio, basicity: B2 (CaO/SiO₂), B3 (CaO+MgO/SiO₂) and B4 (CaO+MgO/SiO₂+Al₂O₃). The concept of Alumina / Silica ratio, B3 & B4 found to be useful. We used to vary MgO, Al₂O₃/SiO₂, B2, B3 and B4 to get the desired sinter strength even at high alumina (4.2 - 4.5%) in sinter. The study concludes with the establishment of B4, and Al₂O₃/SiO₂ ratio in between 1.53-1.60 and 0.63- 0.70 respectively and have achieved tumbler index (Drum Index) 76 plus with the plant productivity of 1.58-1.6 t/m2/hr. at JSPL, Raigarh. Study shows that despite of high alumina in sinter, its physical quality can be controlled by maintaining the above-mentioned parameters.

Keywords: Basicity-2, Basicity-3, Basicity-4, Sinter

Procedia PDF Downloads 152
1991 Experimental Investigation of Visual Comfort Requirement in Garment Factories and Identify the Cost Saving Opportunities

Authors: M. A. Wijewardane, S. A. N. C. Sudasinghe, H. K. G. Punchihewa, W. K. D. L. Wickramasinghe, S. A. Philip, M. R. S. U. Kumara

Abstract:

Visual comfort is one of the major parameters that can be taken to measure the human comfort in any environment. If the provided illuminance level in a working environment does not meet the workers visual comfort, it will lead to eye-strain, fatigue, headache, stress, accidents and finally, poor productivity. However, improvements in lighting do not necessarily mean that the workplace requires more light. Unnecessarily higher illuminance levels will also cause poor visual comfort and health risks. In addition, more power consumption on lighting will also result in higher energy costs. So, during this study, visual comfort and the illuminance requirement for the workers in textile/apparel industry were studied to perform different tasks (i.e. cutting, sewing and knitting) at their workplace. Experimental studies were designed to identify the optimum illuminance requirement depending upon the varied fabric colour and type and finally, energy saving potentials due to controlled illuminance level depending on the workforce requirement were analysed. Visual performance of workers during the sewing operation was studied using the ‘landolt ring experiment’. It was revealed that around 36.3% of the workers would like to work if the illuminance level varies from 601 lux to 850 lux illuminance level and 45.9% of the workers are not happy to work if the illuminance level reduces less than 600 lux and greater than 850 lux. Moreover, more than 65% of the workers who do not satisfy with the existing illuminance levels of the production floors suggested that they have headache, eye diseases, or both diseases due to poor visual comfort. In addition, findings of the energy analysis revealed that the energy-saving potential of 5%, 10%, 24%, 8% and 16% can be anticipated for fabric colours, red, blue, yellow, black and white respectively, when the 800 lux is the prevailing illuminance level for sewing operation.

Keywords: Landolt Ring experiment, lighting energy consumption, illuminance, textile and apparel industry, visual comfort

Procedia PDF Downloads 189
1990 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 82
1989 Concept of Using an Indicator to Describe the Quality of Fit of Clothing to the Body Using a 3D Scanner and CAD System

Authors: Monika Balach, Iwona Frydrych, Agnieszka Cichocka

Abstract:

The objective of this research is to develop an algorithm, taking into account material type and body type that will describe the fabric properties and quality of fit of a garment to the body. One of the objectives of this research is to develop a new algorithm to simulate cloth draping within CAD/CAM software. Existing virtual fitting does not accurately simulate fabric draping behaviour. Part of the research into virtual fitting will focus on the mechanical properties of fabrics. Material behaviour depends on many factors including fibre, yarn, manufacturing process, fabric weight, textile finish, etc. For this study, several different fabric types with very different mechanical properties will be selected and evaluated for all of the above fabric characteristics. These fabrics include woven thick cotton fabric which is stiff and non-bending, woven with elastic content, which is elastic and bends on the body. Within the virtual simulation, the following mechanical properties can be specified: shear, bending, weight, thickness, and friction. To help calculate these properties, the KES system (Kawabata) can be used. This system was originally developed to calculate the mechanical properties of fabric. In this research, the author will focus on three properties: bending, shear, and roughness. This study will consider current research using the KES system to understand and simulate fabric folding on the virtual body. Testing will help to determine which material properties have the largest impact on the fit of the garment. By developing an algorithm which factors in body type, material type, and clothing function, it will be possible to determine how a specific type of clothing made from a particular type of material will fit on a specific body shape and size. A fit indicator will display areas of stress on the garment such as shoulders, chest waist, hips. From this data, CAD/CAM software can be used to develop garments that fit with a very high degree of accuracy. This research, therefore, aims to provide an innovative solution for garment fitting which will aid in the manufacture of clothing. This research will help the clothing industry by cutting the cost of the clothing manufacturing process and also reduce the cost spent on fitting. The manufacturing process can be made more efficient by virtual fitting of the garment before the real clothing sample is made. Fitting software could be integrated into clothing retailer websites allowing customers to enter their biometric data and determine how the particular garment and material type would fit their body.

Keywords: 3D scanning, fabric mechanical properties, quality of fit, virtual fitting

Procedia PDF Downloads 158
1988 Effect of Oxidative Stress on Glutathione Reductase Activity of Escherichia coli Clinical Isolates from Patients with Urinary Tract Infection

Authors: Fariha Akhter Chowdhury, Sabrina Mahboob, Anamika Saha, Afrin Jahan, Mohammad Nurul Islam

Abstract:

Urinary tract infection (UTI) is frequently experienced by the female population where the prevalence increases with aging. Escherichia coli, one of the most common UTI causing organisms, retains glutathione defense mechanism that aids the organism to withstand the harsh physiological environment of urinary tract, host oxidative immune response and even to affect antibiotic-mediated cell death and the emergence of resistance. In this study, we aimed to investigate the glutathione reductase activity of uropathogenic E. coli (UPEC) by observing the reduced glutathione (GSH) level alteration under stressful condition. Urine samples of 58 patients with UTI were collected. Upon isolation and identification, 88% of the samples presented E. coli as UTI causing organism among which randomly selected isolates (n=9), obtained from urine samples of female patients, were considered for this study. E. coli isolates were grown under normal and stressful conditions where H₂O₂ was used as the stress-inducing agent. GSH level estimation of the isolates in both conditions was carried out based on the colorimetric measurement of 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) and GSH reaction product using microplate reader assay. The GSH level of isolated E. coli sampled from adult patients decreased under stress compared to normal condition (p = 0.011). On the other hand, GSH production increased markedly in samples that were collected from elderly subjects (p = 0.024). A significant partial correlation between age and change of GSH level was found as well (p = 0.007). This study may help to reveal ways for better understanding of E. coli pathogenesis of UTI prevalence in elderly patients.

Keywords: Escherichia coli, glutathione reductase activity, oxidative stress, reduced glutathione (GSH), urinary tract infection (UTI)

Procedia PDF Downloads 307
1987 Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation

Authors: P. Mukhopadhyay, N. C. Dey

Abstract:

Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.

Keywords: workload, working heart rate, occupational health hazard, industrial worker

Procedia PDF Downloads 115
1986 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions

Authors: B. L. Avanthi Isaka, P. G. Ranjith

Abstract:

The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.

Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems

Procedia PDF Downloads 129
1985 Installing Beehives in Solar Parks to Enhance Local Biodiversity

Authors: Nuria Rubio, María Campo, Joana Ruiz, Paola Vecino

Abstract:

Renewable energies have been proposed for some years as a solution to the ecological crisis caused by traditional fuels. The installation of solar parks for electricity production is therefore necessary for a transition to cleaner energy. Additionally, spaces occupied by solar parks can be ideal places for biodiversity promotion consisting in controlled areas allowing free transit of numerous animal species in absence of phytosanitary products or other substances commonly used in rural areas. The main objective of this project is increasing local biodiversity. Secondary objectives include the installation of beehives with Apis mellifera iberiensis swarms (native honeybee species), the monitoring and periodic evaluation of the state of health and demographic progression of these swarms and study of biodiversity increase in these areas, mainly due to the presence of Apis mellifera iberiensis. Prior to bee-hives installation, a preliminary study of the area is carried out to quantify floral load, biocenosis and geo-climatological characteristics of the area of study for determining the optimal number of hives for the benefit of the local ecosystem. Once beehives set up, the bee-swarms health status is monitored and evaluated quarterly using monitoring systems. Parameters studies are weight, humidity inside the hive, external and internal temperature, and sound inside the hive. Furthermore, a biodiversity study of the area was conducted by direct observation and quantification of species (S) in the area of bee-foraging (1 km around the beehives). A great diversity of species has been detected in the area of study. Therefore, the population of Apis mellifera iberiensis is not displacing other pollinators in the area, on the contrary, results show that it is contributing to the pollination of the different plant species enhancing wild bees’ biodiversity.

Keywords: biodiversity, honeybee, pollination, solar park

Procedia PDF Downloads 29
1984 Changes in Serum Hepcidin Levels in Children with Inflammatory Bowel Disease during Anti-Inflammatory Treatment

Authors: Eva Karaskova, Jana Volejnikova, Dusan Holub, Maria Velganova-Veghova, Michaela Spenerova, Dagmar Pospisilova

Abstract:

Background: Hepcidin is the central regulator of iron metabolism. Its production is mainly affected by an iron deficiency and the presence of inflammatory activity in the body. The aim of this study was to compare serum hepcidin levels in paediatric patients with newly diagnosed inflammatory bowel disease and hepcidin levels during maintenance therapy, correlate changes of serum hepcidin levels with selected markers of iron metabolism and inflammation and type of provided treatment. Methods: Children with newly diagnosed Crohn's disease (CD) and ulcerative colitis (UC) were included in this prospective study. Blood and stool samples were collected before treatment (baseline). Serum hepcidin, hemoglobin levels, platelet counts, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL 6), ferritin, iron, soluble transferrin receptors, and fecal calprotectin were assessed. The same parameters were measured and compared with the baseline levels in the follow-up period, during maintenance therapy (average of 39 months after diagnosis). Results: Patients with CD (n=30) had higher serum hepcidin levels (expressed as a median and interquartile range) at diagnosis than subjects with UC (n=13). These levels significantly decreased during the follow-up (from 36.5 (11.5-79.6) ng/ml to 2.1 (0.9-6.7) ng/ml). Contrarily, no significant serum hepcidin level changes were observed in UC (from 5.4 (3.4-16.6) ng/ml to 4.8 (0.9-8.1) ng/ml). While in children with CD hepcidin level dynamics correlated with disease activity and inflammatory markers (ESR, CRP), an only correlation with serum iron levels was observed in patients with UC. Conclusion: Children with CD had higher serum hepcidin levels at diagnosis compared to subjects with UC. Decrease of serum hepcidin in the CD group during anti-inflammatory therapy has been observed, whereas low hepcidin levels in children with UC have remained unchanged. Acknowledgment: This study was supported by grant MH CZ–DRO (FNOl, 00098892).

Keywords: children, Crohn's disease, ulcerative colitis, anaemia, hepcidin

Procedia PDF Downloads 104
1983 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method

Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih

Abstract:

Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.

Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style

Procedia PDF Downloads 256
1982 Development of Innovative Nuclear Fuel Pellets Using Additive Manufacturing

Authors: Paul Lemarignier, Olivier Fiquet, Vincent Pateloup

Abstract:

In line with the strong desire of nuclear energy players to have ever more effective products in terms of safety, research programs on E-ATF (Enhanced-Accident Tolerant Fuels) that are more resilient, particularly to the loss of coolant, have been launched in all countries with nuclear power plants. Among the multitude of solutions being developed internationally, carcinoembryonic antigen (CEA) and its partners are investigating a promising solution, which is the realization of CERMET (CERamic-METal) type fuel pellets made of a matrix of fissile material, uranium dioxide UO2, which has a low thermal conductivity, and a metallic phase with a high thermal conductivity to improve heat evacuation. Work has focused on the development by powder metallurgy of micro-structured CERMETs, characterized by networks of metallic phase embedded in the UO₂ matrix. Other types of macro-structured CERMETs, based on concepts proposed by thermal simulation studies, have been developed with a metallic phase with a specific geometry to optimize heat evacuation. This solution could not be developed using traditional processes, so additive manufacturing, which revolutionizes traditional design principles, is used to produce these innovative prototype concepts. At CEA Cadarache, work is first carried out on a non-radioactive surrogate material, alumina, in order to acquire skills and to develop the equipment, in particular the robocasting machine, an additive manufacturing technique selected for its simplicity and the possibility of optimizing the paste formulations. A manufacturing chain was set up, with the pastes production, the 3D printing of pellets, and the associated thermal post-treatment. The work leading to the first elaborations of macro-structured alumina/molybdenum CERMETs will be presented. This work was carried out with the support of Framatome and EdF.

Keywords: additive manufacturing, alumina, CERMET, molybdenum, nuclear safety

Procedia PDF Downloads 57
1981 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 359
1980 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 58
1979 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring

Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove

Abstract:

Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.

Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor

Procedia PDF Downloads 53
1978 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 97
1977 Learning Gains and Constraints Resulting from Haptic Sensory Feedback among Preschoolers' Engagement during Science Experimentation

Authors: Marios Papaevripidou, Yvoni Pavlou, Zacharias Zacharia

Abstract:

Embodied cognition and additional (touch) sensory channel theories indicate that physical manipulation is crucial to learning since it provides, among others, touch sensory input, which is needed for constructing knowledge. Given these theories, the use of Physical Manipulatives (PM) becomes a prerequisite for learning. On the other hand, empirical research on Virtual Manipulatives (VM) (e.g., simulations) learning has provided evidence showing that the use of PM, and thus haptic sensory input, is not always a prerequisite for learning. In order to investigate which means of experimentation, PM or VM, are required for enhancing student science learning at the kindergarten level, an empirical study was conducted that sought to investigate the impact of haptic feedback on the conceptual understanding of pre-school students (n=44, age mean=5,7) in three science domains: beam balance (D1), sinking/floating (D2) and springs (D3). The participants were equally divided in two groups according to the type of manipulatives used (PM: presence of haptic feedback, VM: absence of haptic feedback) during a semi-structured interview for each of the domains. All interviews followed the Predict-Observe-Explain (POE) strategy and consisted of three phases: initial evaluation, experimentation, final evaluation. The data collected through the interviews were analyzed qualitatively (open-coding for identifying students’ ideas in each domain) and quantitatively (use of non-parametric tests). Findings revealed that the haptic feedback enabled students to distinguish heavier to lighter objects when held in hands during experimentation. In D1 the haptic feedback did not differentiate PM and VM students' conceptual understanding of the function of the beam as a mean to compare the mass of objects. In D2 the haptic feedback appeared to have a negative impact on PM students’ learning. Feeling the weight of an object strengthen PM students’ misconception that heavier objects always sink, whereas the scientifically correct idea that the material of an object determines its sinking/floating behavior in the water was found to be significantly higher among the VM students than the PM ones. In D3 the PM students outperformed significantly the VM students with regard to the idea that the heavier an object is the more the spring will expand, indicating that the haptic input experienced by the PM students served as an advantage to their learning. These findings point to the fact that PMs, and thus touch sensory input, might not always be a requirement for science learning and that VMs could be considered, under certain circumstances, as a viable means for experimentation.

Keywords: haptic feedback, physical and virtual manipulatives, pre-school science learning, science experimentation

Procedia PDF Downloads 115
1976 Environmental Assessment of Roll-to-Roll Printed Smart Label

Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois

Abstract:

Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.

Keywords: Eco-design, label, life cycle assessment, printed electronics

Procedia PDF Downloads 142